Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Meta-Analysis
3. Results
3.1. Study Characteristics
3.2. Association Between NER Levels and Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Hudock, N.L.; Mani, K.; Khunsriraksakul, C.; Walter, V.; Nekhlyudov, L.; Wang, M.; Lehrer, E.J.; Hudock, M.R.; Liu, D.J.; Spratt, D.E.; et al. Future trends in incidence and long-term survival of metastatic cancer in the United States. Commun. Med. 2023, 3, 76. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; p. 20182020. [Google Scholar]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Bluethmann, S.M.; Mariotto, A.B.; Rowland, J.H. Anticipating the “Silver Tsunami”: Prevalence Trajectories and Comorbidity Burden among Older Cancer Survivors in the United States. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1029–1036. [Google Scholar] [CrossRef]
- Shapiro, C.L. Cancer Survivorship. N. Engl. J. Med. 2018, 379, 2438–2450. [Google Scholar] [CrossRef]
- Rizzo, A.; Ricci, A.D. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert. Opin. Investig. Drugs 2022, 31, 549–555. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Sahin, T.K.; Rizzo, A.; Aksoy, S.; Guven, D.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 1835. [Google Scholar] [CrossRef]
- Guven, D.C.; Sahin, T.K.; Erul, E.; Cakir, I.Y.; Ucgul, E.; Yildirim, H.C.; Aktepe, O.H.; Erman, M.; Kilickap, S.; Aksoy, S.; et al. The Association between Early Changes in Neutrophil-Lymphocyte Ratio and Survival in Patients Treated with Immunotherapy. J. Clin. Med. 2022, 11, 4523. [Google Scholar] [CrossRef]
- Gong, Z.; Xin, R.; Li, L.; Lv, L.; Wu, X. Platelet-to-lymphocyte ratio associated with the clinicopathological features and prognostic value of breast cancer: A meta-analysis. Int. J. Biol. Markers 2022, 37, 339–348. [Google Scholar] [CrossRef]
- Guven, D.C.; Sahin, T.K.; Erul, E.; Kilickap, S.; Gambichler, T.; Aksoy, S. The Association between the Pan-Immune-Inflammation Value and Cancer Prognosis: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2675. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.; Rezaei, N. Eosinophils in the tumor microenvironment: Implications for cancer immunotherapy. J. Transl. Med. 2023, 21, 551. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Liao, W.; Wang, L.; Lu, Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus. Med. Hemother 2016, 43, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, E.; Kondo, K.; Okano, Y.; Ichihara, S.; Kunishige, M.; Kadota, N.; Machida, H.; Hatakeyama, N.; Naruse, K.; Ogino, H.; et al. Pretreatment eosinophil counts as a predictive biomarker in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Thorac. Cancer 2023, 14, 3042–3050. [Google Scholar] [CrossRef]
- Yoshimura, A.; Nagahara, A.; Ishizuya, Y.; Yamamoto, Y.; Hatano, K.; Kawashima, A.; Nakai, Y.; Nakayama, M.; Nishimura, K.; Nonomura, N.; et al. The prognostic impact of peripheral blood eosinophil counts in metastatic renal cell carcinoma patients treated with nivolumab. Clin. Exp. Med. 2024, 24, 111. [Google Scholar] [CrossRef]
- Simon, S.C.S.; Hu, X.; Panten, J.; Grees, M.; Renders, S.; Thomas, D.; Weber, R.; Schulze, T.J.; Utikal, J.; Umansky, V. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology 2020, 9, 1727116. [Google Scholar] [CrossRef]
- Long, W.; Chen, J.; Gao, C.; Lin, Z.; Xie, X.; Dai, H. Brief review on the roles of neutrophils in cancer development. J. Leukoc. Biol. 2021, 109, 407–413. [Google Scholar] [CrossRef]
- Simon, S.C.S.; Utikal, J.; Umansky, V. Opposing roles of eosinophils in cancer. Cancer Immunol. Immunother. 2019, 68, 823–833. [Google Scholar] [CrossRef]
- Pozorski, V.; Park, Y.; Mohamoud, Y.; Tesfamichael, D.; Emamekhoo, H.; Birbrair, A.; Albertini, M.R.; Ma, V.T. Neutrophil-to-eosinophil ratio as a biomarker for clinical outcomes in advanced stage melanoma patients treated with anti-PD-1 therapy. Pigment. Cell Melanoma Res. 2023, 36, 501–511. [Google Scholar] [CrossRef]
- Gambale, E.; Maruzzo, M.; Messina, C.; De Gennaro Aquino, I.; Vascotto, I.A.; Rossi, V.; Bimbatti, D.; Cavasin, N.; Messina, M.; Mennitto, A.; et al. Neutrophil-to-Eosinophil Ratio Predicts the Efficacy of Avelumab in Patients with Advanced Urothelial Carcinoma Enrolled in the MALVA Study (Meet-URO 25). Clin. Genitourin. Cancer 2024, 22, 102099. [Google Scholar] [CrossRef]
- Tucker, M.D.; Brown, L.C.; Chen, Y.W.; Kao, C.; Hirshman, N.; Kinsey, E.N.; Ancell, K.K.; Beckermann, K.E.; Davis, N.B.; McAlister, R.; et al. Association of baseline neutrophil-to-eosinophil ratio with response to nivolumab plus ipilimumab in patients with metastatic renal cell carcinoma. Biomark. Res. 2021, 9, 80. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Alves, F.R.; Silva, D.; Fernandes, I.; Fontes-Sousa, M.; Alves, M.; Papoila, A.; Da Luz, R. Prognostic Impact of Baseline Neutrophil-to-Eosinophil Ratio in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab Therapy in Second or Later Lines. Cureus 2022, 14, e22224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Tucker, M.D.; Brown, L.C.; Yasin, H.A.; Ancell, K.K.; Armstrong, A.J.; Beckermann, K.E.; Davis, N.B.; Harrison, M.R.; Kaiser, E.G.; et al. The Association between a Decrease in On-Treatment Neutrophil-to-Eosinophil Ratio (NER) at Week 6 after Ipilimumab Plus Nivolumab Initiation and Improved Clinical Outcomes in Metastatic Renal Cell Carcinoma. Cancers 2022, 14, 3830. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Brooke, B.S.; Schwartz, T.A.; Pawlik, T.M. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021, 156, 787–788. [Google Scholar] [CrossRef]
- Zhuang, T.Z.; Ravindranathan, D.; Liu, Y.; Martini, D.J.; Brown, J.T.; Nazha, B.; Russler, G.; Yantorni, L.B.; Caulfield, S.; Carthon, B.C.; et al. Baseline Neutrophil-to-Eosinophil Ratio Is Associated with Outcomes in Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2023, 28, 239–245. [Google Scholar] [CrossRef]
- Shao, G.; Ma, Y.; Qu, C.; Gao, R.; Zhu, C.; Qu, L.; Liu, K.; Li, N.; Sun, P.; Cao, J. Machine Learning Model Based on the Neutrophil-to-Eosinophil Ratio Predicts the Recurrence of Hepatocellular Carcinoma After Surgery. J. Hepatocell. Carcinoma 2024, 11, 679–691. [Google Scholar] [CrossRef]
- Ye, M.; Huang, A.; Yuan, B.; Tan, G.; Ai, J.; Liu, H. Neutrophil-to-lymphocyte ratio and monocyte-to-eosinophil ratio as prognostic indicators for advanced nasopharyngeal carcinoma. Eur. Arch. Otorhinolaryngol. 2024, 281, 1971–1989. [Google Scholar] [CrossRef]
- Suzuki, S.; Abe, T.; Endo, T.; Kaya, H.; Kitabayashi, T.; Kawasaki, Y.; Yamada, T. Association of Pretreatment Neutrophil-to-Eosinophil Ratio with Clinical Outcomes in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Treated with Nivolumab. Cancer Manag. Res. 2022, 14, 3293–3302. [Google Scholar] [CrossRef]
- Furubayashi, N.; Minato, A.; Negishi, T.; Sakamoto, N.; Song, Y.; Hori, Y.; Tomoda, T.; Tamura, S.; Kuroiwa, K.; Seki, N.; et al. The Association of Clinical Outcomes with Posttreatment Changes in the Relative Eosinophil Counts and Neutrophil-to-Eosinophil Ratio in Patients with Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancer Manag. Res. 2021, 13, 8049–8056. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.; Labaki, C.; Semaan, K.; Saliby, R.M.; Saad, E.; Shah, V.; Choueiri, T.K. Association of neutrophil to eosinophil ratio (NER) with clinical outcomes in patients with metastatic renal cell carcinoma (mRCC) treated with first-line (1L) immune checkpoint inhibitors (ICI) –based regimens. J. Clin. Oncol. 2023, 41, 4557. [Google Scholar] [CrossRef]
- Matthew, T.; Yu-Wei, C.; Martin, H.V.; Bradley, A.M.; Mehmet, A.B.; Marc-Oliver, G.; Paul, N.; Christian, K.; Yoshihiko, T.; Bo, H.; et al. Association between neutrophil-to-eosinophil ratio and efficacy outcomes with avelumab plus axitinib or sunitinib in patients with advanced renal cell carcinoma: Post hoc analyses from the JAVELIN Renal 101 trial. BMJ Oncol. 2024, 3, e000181. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between inflammation and cancer. Rep. Pract. Oncol. Radiother. 2020, 25, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Germano, G.; Allavena, P.; Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008, 43, 374–379. [Google Scholar] [CrossRef]
- Awasthi, D.; Sarode, A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int. J. Mol. Sci. 2024, 25, 2929. [Google Scholar] [CrossRef]
- Galdiero, M.R.; Marone, G.; Mantovani, A. Cancer Inflammation and Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028662. [Google Scholar] [CrossRef]
- Varricchi, G.; Galdiero, M.R.; Loffredo, S.; Lucarini, V.; Marone, G.; Mattei, F.; Marone, G.; Schiavoni, G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2018, 7, e1393134. [Google Scholar] [CrossRef]
- Carretero, R.; Sektioglu, I.M.; Garbi, N.; Salgado, O.C.; Beckhove, P.; Hämmerling, G.J. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 2015, 16, 609–617. [Google Scholar] [CrossRef]
- Arnold, I.C.; Artola-Boran, M.; Gurtner, A.; Bertram, K.; Bauer, M.; Frangez, Z.; Becher, B.; Kopf, M.; Yousefi, S.; Simon, H.U.; et al. The GM-CSF-IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. J. Exp. Med. 2020, 217, e20190706. [Google Scholar] [CrossRef] [PubMed]
- Prizment, A.E.; Vierkant, R.A.; Smyrk, T.C.; Tillmans, L.S.; Lee, J.J.; Sriramarao, P.; Nelson, H.H.; Lynch, C.F.; Thibodeau, S.N.; Church, T.R.; et al. Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women’s Health Study. Mod. Pathol. 2016, 29, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, L.; Du, H.; Lin, B.; Yi, J.; Wen, X.; Geng, L.; Du, X. Prognostic impact of eosinophils in peripheral blood and tumor site in patients with esophageal squamous cell carcinoma treated with concurrent chemoradiotherapy. Medicine 2021, 100, e24328. [Google Scholar] [CrossRef] [PubMed]
- Robinson, I.; Santa Lucia, G.; Li, A.; Oberholtzer, N.; Plante, J.; Quinn, K.M.; Reuben, D.; Mehrotra, S.; Valdebran, M. Eosinophils and melanoma: Implications for immunotherapy. Pigment Cell Melanoma Res. 2022, 35, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Caliman, E.; Fancelli, S.; Ottanelli, C.; Mazzoni, F.; Paglialunga, L.; Lavacchi, D.; Michelet, M.R.G.; Giommoni, E.; Napolitano, B.; Scolari, F.; et al. Absolute eosinophil count predicts clinical outcomes and toxicity in non-small cell lung cancer patients treated with immunotherapy. Cancer Treat. Res. Commun. 2022, 32, 100603. [Google Scholar] [CrossRef]
- Alashkar, A.B.; Yuskaeva, K.; Wulf, F.; Trinkmann, F.; Kriegsmann, M.; Thomas, M.; Keber, C.U.; Strandmann, E.P.V.; Herth, F.J.; Kolahian, S.; et al. Peripheral Inflammation Featuring Eosinophilia or Neutrophilia Is Associated with the Survival and Infiltration of Eosinophils within the Tumor among Various Histological Subgroups of Patients with NSCLC. Int. J. Mol. Sci. 2024, 25, 9552. [Google Scholar] [CrossRef]
- Rimini, M.; Franco, P.; Bertolini, F.; Berardino, B.; Giulia, Z.M.; Stefano, V.; Andrikou, K.; Arcadipane, F.; Napolitano, M.; Buno, L.V.; et al. The Prognostic Role of Baseline Eosinophils in HPV-Related Cancers: A Multi-institutional Analysis of Anal SCC and OPC Patients Treated with Radical CT-RT. J. Gastrointest. Cancer. 2023, 54, 662–671. [Google Scholar] [CrossRef]
Study | Year | Country | Sample Size | Cancer Type | Study Design | Cut-off Selection Method | NER Cut-Off Value | Sample Size (NER Low–High) | Primary Treatment | Tumor Stage | Survival Outcomes | Median Follow-Up (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tucker et al. [22] | 2021 | USA | 110 | RCC | Retrospective | Median | 26.4 | 55–55 | Nivolumab + Ipilimumab | Advanced | OS, PFS, ORR | 19.6 |
Furubayashi et al. [32] | 2021 | Japan | 105 | Urothelial Carcinoma | Retrospective | ROC curve | 13.7 | 24–81 | Pembrolizumab | Advanced | OS | 8.4 |
Gil et al. [24] | 2022 | Portugal | 49 | RCC | Multicenter retrospective | ROC curve | 48 | 29–20 | Nivolumab | Advanced | PFS, OS, ORR | 9 |
Suzuki et al. [31] | 2022 | Japan | 47 | HNSCC | Retrospective | ROC curve | 32 | 24–23 | Nivolumab | Advanced | PFS, OS, ORR | N/A |
Pozorski et al. [20] | 2023 | USA | 182 | Melanoma | Retrospective | Median | 30.67 | 90–92 | Anti-PD-1 monotherapy or combination therapy | Advanced | OS, PFS, ORR | 26.7 |
Zhuang et al. [28] | 2023 | USA | 184 | RCC | Retrospective | ROC curve | 49.2 | 138–46 | ICIs | Advanced | OS, PFS, CBR | 25.4 |
Eid et al. [33] | 2023 | USA | 156 | RCC | Retrospective | Median | 21 (ICI + ICI)16.4 (ICI + VEGF-TT) | 30–30 (ICI + ICI)–48–48 (ICI + VEGF-TT) | ICI-based regimens | Advanced | OS | N/A |
Ye et al. [30] | 2023 | China | 70 | Nasopharyngeal Carcinoma | Retrospective | ROC curve | 29.6 | 33–37 | Neoadjuvant Chemotherapy + CRT | Advanced | OS, DMFS | N/A |
Shao et al. [29] | 2024 | China | 562 | HCC | Retrospective | X-tile 3.6.1 software analysis | 102 | 494–68 | Hepatectomy | Localized | PFS | 61.0 |
Tucker et al. [34] | 2024 | USA | 886 | RCC | Post hoc analysis of JAVELIN 101 | Median | 28 | 191–192 (ICI + ICI)–195–201 (TT) | Avelumab + Axitinib or Sunitinib | Advanced | PFS, OS, ORR | 28+ |
Author, Year | Selection | Comparability | Exposure/Outcome | NOS Score |
---|---|---|---|---|
Tucker, 2021 [22] | **** | ** | *** | 9 |
Furubayashi, 2021 [32] | *** | ** | ** | 7 |
Gil, 2022 [24] | *** | ** | ** | 7 |
Suzuki, 2022 [31] | *** | ** | *** | 8 |
Pozorski, 2023 [20] | **** | ** | ** | 8 |
Zhuang, 2023 [28] | *** | ** | *** | 8 |
Eid, 2023 [33] | No full-text available | |||
Ye, 2023 [30] | *** | ** | *** | 8 |
Shao, 2024 [29] | **** | ** | ** | 8 |
Tucker, 2024 [34] | **** | ** | *** | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, T.K.; Ayasun, R.; Rizzo, A.; Guven, D.C. Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3689. https://doi.org/10.3390/cancers16213689
Sahin TK, Ayasun R, Rizzo A, Guven DC. Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(21):3689. https://doi.org/10.3390/cancers16213689
Chicago/Turabian StyleSahin, Taha Koray, Ruveyda Ayasun, Alessandro Rizzo, and Deniz Can Guven. 2024. "Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis" Cancers 16, no. 21: 3689. https://doi.org/10.3390/cancers16213689
APA StyleSahin, T. K., Ayasun, R., Rizzo, A., & Guven, D. C. (2024). Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis. Cancers, 16(21), 3689. https://doi.org/10.3390/cancers16213689