Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade
Abstract
:Simple Summary
Abstract
1. Introduction
2. Why Do Lung Cancer Patients Have a High Thrombotic Burden?
3. Thrombotic Risk Is Related to Antineoplastic Treatment
Immune Checkpoint Blockade
4. Risk Assessment Models (RAMs) for Cancer-Associated Thrombosis
5. Evaluation of the Bleeding Risk
- The particular characteristics of LC in the evaluated patient, including lung cancer histology, the stage and resectability of the disease, the invasion of large vessels, the presence of active brain metastases, the response to antineoplastic treatment and the presence of cancer cachexia;
- The medications of the patient, including present antineoplastic and anticoagulation therapy and possible drug–drug interactions;
- The personal history of bleeding or thrombosis;
- The existence of comorbidities that exacerbate the risk of bleeding or CAT, including thrombopenia, renal or hepatic insufficiency, gastrointestinal and other disorders, as well as the expected duration and potential reversibility;
- The prognosis of the disease, the intent of treatment (curative or palliative) and patient preferences
6. Considerations when Choosing the Optimal Anticoagulant
7. Diagnosis of Lung Cancer-Associated Thrombosis
8. Prophylaxis in the Surgical Setting
9. Prophylaxis in the Medical Setting
10. Treatment of Lung Cancer-Associated Thrombosis
11. Special Populations
12. Lung Cancer, CAT and COVID-19
13. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horsted, F.; West, J.; Grainge, M.J. Risk of Venous Thromboembolism in Patients with Cancer: A Systematic Review and Meta-Analysis. PLoS Med. 2012, 9, e1001275. [Google Scholar] [CrossRef] [PubMed]
- Abdol Razak, N.; Jones, G.; Bhandari, M.; Berndt, M.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous Thromboembolism in Cancer Patients: A Population-Based Cohort Study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism Is a Leading Cause of Death in Cancer Patients Receiving Outpatient Chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Fujino, S.; Inaba, S.; Yamamura, R.; Katoh, H.; Noji, Y.; Yamaguchi, M.; Aoyama, T. Venous Thromboembolism in Patents with Lung Cancer. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620977910. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.; Pasi, J. Epidemiology and Pathophysiology of Cancer-Associated Thrombosis. Br. J. Cancer 2010, 102, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Soff, G.A. Pathophysiology and Management of Thrombosis in Cancer: 150 Years of Progress. J. Thromb. Thrombolysis 2013, 35, 346–351. [Google Scholar] [CrossRef]
- Hisada, Y.; Mackman, N. Cancer-Associated Pathways and Biomarkers of Venous Thrombosis. Blood 2017, 130, 1499–1506. [Google Scholar] [CrossRef]
- Syrigos, K.; Grapsa, D.; Sangare, R.; Evmorfiadis, I.; Larsen, A.K.; Van Dreden, P.; Boura, P.; Charpidou, A.; Kotteas, E.; Sergentanis, T.N.; et al. Prospective Assessment of Clinical Risk Factors and Biomarkers of Hypercoagulability for the Identification of Patients with Lung Adenocarcinoma at Risk for Cancer-Associated Thrombosis: The Observational ROADMAP-CAT Study. Oncologist 2018, 23, 1372–1381. [Google Scholar] [CrossRef]
- Nasser, N.J.; Fox, J.; Agbarya, A. Potential Mechanisms of Cancer-Related Hypercoagulability. Cancers 2020, 12, 566. [Google Scholar] [CrossRef]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of Venous Thromboembolism and Its Effect on Survival Among Patients with Common Cancers. Arch. Intern. Med. 2006, 166, 458. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shang, Y.; Wang, W.; Ning, S.; Chen, H. Lung Cancer and Pulmonary Embolism: What Is the Relationship? A Review. J. Cancer 2018, 9, 3046–3057. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Xu, H.; Xue, T.; Ling, C. Advances in the Prediction and Risk Assessment of Lung Cancer-Associated Venous Thromboembolism. CMAR 2021, 13, 8317–8327. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.; Maringe, C.; Coleman, M.P.; Peake, M.D.; Butler, J.; Young, N.; Bergström, S.; Hanna, L.; Jakobsen, E.; Kölbeck, K.; et al. Lung Cancer Survival and Stage at Diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A Population-Based Study, 2004–2007. Thorax 2013, 68, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.J.; Morinaga, L.T.K.; Alves, J.L.; Castro, M.A.; Calderaro, D.; Jardim, C.V.P.; Souza, R. Cancer-Associated Thrombosis: The When, How and Why. Eur. Respir. Rev. 2019, 28, 180119. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Poniewierski, M.S.; Culakova, E.; Lyman, G.H.; Khorana, A.A.; Pabinger, I.; Agnelli, G.; Liebman, H.A.; Vicaut, E.; Meyer, G.; et al. Predictors of Venous Thromboembolism and Early Mortality in Lung Cancer: Results from a Global Prospective Study (CANTARISK). Oncologist 2018, 23, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Huo, M.; Hua, L.; Zhang, Y.; Yi, J.; Zhang, S.; Li, J.; Zhang, Y. Association of Venous Thromboembolism and Early Mortality in Patients with Newly Diagnosed Metastatic Non-Small Cell Lung Cancer. Cancer Manag. Res. 2021, 13, 4031–4040. [Google Scholar] [CrossRef]
- Tormoen, G.; Haley, K.; Levine, R.; McCarty, O. Do Circulating Tumor Cells Play a Role in Coagulation and Thrombosis? Front. Oncol. 2012, 2, 30968. [Google Scholar] [CrossRef]
- Phillips, K.G.; Lee, A.M.; Tormoen, G.W.; Rigg, R.A.; Kolatkar, A.; Luttgen, M.; Bethel, K.; Bazhenova, L.; Kuhn, P.; Newton, P.; et al. The Thrombotic Potential of Circulating Tumor Microemboli: Computational Modeling of Circulating Tumor Cell-Induced Coagulation. Am. J. Physiol.-Cell Physiol. 2015, 308, C229–C236. [Google Scholar] [CrossRef]
- Gi, T.; Kuwahara, A.; Yamashita, A.; Matsuda, S.; Maekawa, K.; Moriguchi-Goto, S.; Sato, Y.; Asada, Y. Histopathological Features of Cancer-Associated Venous Thromboembolism: Presence of Intrathrombus Cancer Cells and Prothrombotic Factors. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 146–159. [Google Scholar] [CrossRef]
- Madison, C.J.; Melson, R.A.; Conlin, M.J.; Gundle, K.R.; Thompson, R.F.; Calverley, D.C. Thromboembolic Risk in Patients with Lung Cancer Receiving Systemic Therapy. Br. J. Haematol. 2021, 194, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.W.; Osanto, S.; Rosendaal, F.R. The Risk of a Venous Thrombotic Event in Lung Cancer Patients: Higher Risk for Adenocarcinoma than Squamous Cell Carcinoma. J. Thromb. Haemost. 2004, 2, 1760–1765. [Google Scholar] [CrossRef]
- Walker, A.J.; Baldwin, D.R.; Card, T.R.; Powell, H.A.; Hubbard, R.B.; Grainge, M.J. Risk of Venous Thromboembolism in People with Lung Cancer: A Cohort Study Using Linked UK Healthcare Data. Br. J. Cancer 2016, 115, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Hisada, Y.; Thålin, C.; Lundström, S.; Wallén, H.; Mackman, N. Comparison of Microvesicle Tissue Factor Activity in Non-Cancer Severely Ill Patients and Cancer Patients. Thromb. Res. 2018, 165, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ahlbrecht, J.; Dickmann, B.; Ay, C.; Dunkler, D.; Thaler, J.; Schmidinger, M.; Quehenberger, P.; Haitel, A.; Zielinski, C.; Pabinger, I. Tumor Grade Is Associated with Venous Thromboembolism in Patients with Cancer: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2012, 30, 3870–3875. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.K.; Davies, A.M.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. The Incidence of Venous Thromboembolism among Patients with Primary Lung Cancer. J. Thromb. Haemost. 2008, 6, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Zhu, V.W.; Zhao, J.J.; Gao, Y.; Syn, N.L.; Zhang, S.S.; Ou, S.-H.I.; Bauer, K.A.; Nagasaka, M. Thromboembolism in ALK+ and ROS1+ NSCLC Patients: A Systematic Review and Meta-Analysis. Lung Cancer 2021, 157, 147–155. [Google Scholar] [CrossRef]
- Corrales-Rodriguez, L.; Soulières, D.; Weng, X.; Tehfe, M.; Florescu, M.; Blais, N. Mutations in NSCLC and Their Link with Lung Cancer-Associated Thrombosis: A Case-Control Study. Thromb. Res. 2014, 133, 48–51. [Google Scholar] [CrossRef]
- Leiva, O.; Connors, J.M.; Al-Samkari, H. Impact of Tumor Genomic Mutations on Thrombotic Risk in Cancer Patients. Cancers 2020, 12, 1958. [Google Scholar] [CrossRef]
- Vitale, C.; D’Amato, M.; Calabrò, P.; Stanziola, A.A.; Mormile, M.; Molino, A. Venous Thromboembolism and Lung Cancer: A Review. Multidiscip. Respir. Med. 2015, 10, 28. [Google Scholar] [CrossRef]
- Wang, T.-F.; Carrier, M. Immune Checkpoint Inhibitors-Associated Thrombosis: Incidence, Risk Factors and Management. Curr. Oncol. 2023, 30, 3032–3046. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Martín, A.J.; Ramírez, S.P.; Morán, L.O.; Zamorano, M.R.; Benéitez, M.C.V.; Salcedo, I.A.; Escobar, I.G.; Fernández, J.M.S. Pharmacological Cancer Treatment and Venous Thromboembolism Risk. Eur. Heart J. Suppl. 2020, 22, C2–C14. [Google Scholar] [CrossRef] [PubMed]
- Salla, E.; Dimakakos, E.P.; Tsagkouli, S.; Giozos, I.; Charpidou, A.; Kainis, E.; Syrigos, K.N. Venous Thromboembolism in Patients Diagnosed with Lung Cancer. Angiology 2016, 67, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Adel, N.; Riedel, E.; Bhutani, M.; Feldman, D.R.; Tabbara, N.E.; Soff, G.; Parameswaran, R.; Hassoun, H. High Incidence of Thromboembolic Events in Patients Treated with Cisplatin-Based Chemotherapy: A Large Retrospective Analysis. J. Clin. Oncol. 2011, 29, 3466–3473. [Google Scholar] [CrossRef] [PubMed]
- Kenmotsu, H.; Notsu, A.; Mori, K.; Omori, S.; Tsushima, T.; Satake, Y.; Miki, Y.; Abe, M.; Ogiku, M.; Nakamura, T.; et al. Cumulative Incidence of Venous Thromboembolism in Patients with Advanced Cancer in Prospective Observational Study. Cancer Med. 2021, 10, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.C.; Greeno, E.W. Chemotherapy-Induced Thrombosis. Thromb. Res. 2006, 118, 555–568. [Google Scholar] [CrossRef]
- Grover, S.P.; Hisada, Y.M.; Kasthuri, R.S.; Reeves, B.N.; Mackman, N. Cancer Therapy–Associated Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1291–1305. [Google Scholar] [CrossRef]
- Hill, H.; Robinson, M.; Lu, L.; Slaughter, D.; Amin, A.; Mileham, K.; Patel, J.N. Venous Thromboembolism Incidence and Risk Factors in Non-Small Cell Lung Cancer Patients Receiving First-Line Systemic Therapy. Thromb. Res. 2021, 208, 71–78. [Google Scholar] [CrossRef]
- Roopkumar, J.; Poudel, S.K.; Gervaso, L.; Reddy, C.A.; Velcheti, V.; Pennell, N.A.; McCrae, K.R.; Khorana, A.A. Risk of Thromboembolism in Patients with ALK- and EGFR-Mutant Lung Cancer: A Cohort Study. J. Thromb. Haemost. 2021, 19, 822–829. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Zhao, C. Risk of Venous and Arterial Thromboembolic Events Associated with Anti-VEGF Agents in Advanced Non-Small-Cell Lung Cancer: A Meta-Analysis and Systematic Review. Onco Targets Ther. 2016, 9, 3695–3704. [Google Scholar] [CrossRef]
- Girard, N.; Cho, B.C.; Spira, A.I.; Shu, C.A.; Sanborn, R.E.; Neal, J.W.; Marmarelis, M.E.; Sabari, J.K.; Waqar, S.N.; Nagasaka, M.; et al. Risk Factors for Venous Thromboembolism (VTE) among Patients with EGFR-Mutated Advanced Non-Small Cell Lung Cancer (NSCLC) Receiving Amivantamab plus Lazertinib versus Either Agent Alone. JCO 2023, 41, 9137. [Google Scholar] [CrossRef]
- Akhtar-Danesh, G.-G.; Akhtar-Danesh, N.; Shargall, Y. Venous Thromboembolism in Surgical Lung Cancer Patients: A Provincial Population-Based Study. Ann. Thorac. Surg. 2022, 114, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, C.; Vandreden, P.; Marret, E.; Bonnet, F.; Robert, F.; Spyropoulos, A.; Galea, V.; Elalamy, I.; Hatmi, M.; Gerotziafas, G.T. Lobectomy and Postoperative Thromboprophylaxis with Enoxaparin Improve Blood Hypercoagulability in Patients with Localized Primary Lung Adenocarcinoma. Thromb. Res. 2013, 132, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Castaman, G. Risk of Thrombosis in Cancer and the Role of Supportive Care (Transfusion, Catheters, and Growth Factors). Thromb. Res. 2016, 140 (Suppl. S1), S89–S92. [Google Scholar] [CrossRef] [PubMed]
- Bryer, E.J.; Kallan, M.J.; Chiu, T.-S.; Scheuba, K.M.; Henry, D.H. A Retrospective Analysis of Venous Thromboembolism Trends in Chemotherapy-Induced Anemia: Red Blood Cell Transfusion versus Erythrocyte Stimulating Agent Administration. EJHaem 2020, 1, 35–43. [Google Scholar] [CrossRef]
- Roopkumar, J.; Kim, A.S.; Bicky, T.; Hobbs, B.P.; Khorana, A.A. Venous Thromboembolism in Cancer Patients Receiving Immunotherapy. Blood 2018, 132, 2510. [Google Scholar] [CrossRef]
- Deschênes-Simard, X.; Richard, C.; Galland, L.; Blais, F.; Desilets, A.; Malo, J.; Cvetkovic, L.; Belkaid, W.; Elkrief, A.; Gagné, A.; et al. Venous Thrombotic Events in Patients Treated with Immune Checkpoint Inhibitors for Non-Small Cell Lung Cancer: A Retrospective Multicentric Cohort Study. Thromb. Res. 2021, 205, 29–39. [Google Scholar] [CrossRef]
- Bjørnhart, B.; Hansen, K.H.; Jørgensen, T.L.; Herrstedt, J.; Schytte, T. Incidence, Risk Factors and Clinical Outcome of Venous Thromboembolism in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibition. Thromb. Update 2021, 4, 100056. [Google Scholar] [CrossRef]
- Le Sève, J.D.; Guédon, A.F.; Bordenave, S.; Agard, C.; Connault, J.; Pistorius, M.-A.; Quéreux, G.; Espitia, O. Risk Factors of Venous Thromboembolic Disease in Cancer Patients Treated with Immune Checkpoint Inhibitor. Thromb. Haemost. 2023, 123, 1049–1056. [Google Scholar] [CrossRef]
- Wang, T.-F.; Khorana, A.A.; Carrier, M. Thrombotic Complications Associated with Immune Checkpoint Inhibitors. Cancers 2021, 13, 4606. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial Dysfunction and Immunothrombosis as Key Pathogenic Mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Massberg, S. Thrombosis as an Intravascular Effector of Innate Immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.T.; Gorzelanny, C.; Gebhardt, C.; Pantel, K.; Schneider, S.W. Interplay between Coagulation and Inflammation in Cancer: Limitations and Therapeutic Opportunities. Cancer Treat. Rev. 2022, 102, 102322. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.; Hasan, M.M.; Azam, Z.; Grippo, P.J.; Al-Hilal, T.A. The Role of Coagulome in the Tumor Immune Microenvironment. Adv. Drug Deliv. Rev. 2023, 200, 115027. [Google Scholar] [CrossRef]
- Wolach, O.; Martinod, K. Casting a NET on Cancer: The Multiple Roles for Neutrophil Extracellular Traps in Cancer. Curr. Opin. Hematol. 2022, 29, 53. [Google Scholar] [CrossRef] [PubMed]
- Thålin, C.; Hisada, Y.; Lundström, S.; Mackman, N.; Wallén, H. Neutrophil Extracellular Traps. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1724–1738. [Google Scholar] [CrossRef]
- Meikle, C.K.; Meisler, A.J.; Bird, C.M.; Jeffries, J.A.; Azeem, N.; Garg, P.; Crawford, E.L.; Kelly, C.A.; Gao, T.Z.; Wuescher, L.M.; et al. Platelet-T Cell Aggregates in Lung Cancer Patients: Implications for Thrombosis. PLoS ONE 2020, 15, e0236966. [Google Scholar] [CrossRef]
- Moik, F.; Riedl, J.; Barth, D.; Chan, W.-S.E.; Wiedemann, S.; Höller, C.; Fuereder, T.; Jost, P.; Pabinger, I.; Preusser, M.; et al. Early Dynamics of C-Reactive Protein Predict Risk of Venous Thromboembolism in Patients with Cancer Treated with Immune Checkpoint Inhibitors. Blood 2022, 140, 1250–1251. [Google Scholar] [CrossRef]
- Roopkumar, J.; Swaidani, S.; Kim, A.S.; Thapa, B.; Gervaso, L.; Hobbs, B.P.; Wei, W.; Alban, T.J.; Funchain, P.; Kundu, S.; et al. Increased Incidence of Venous Thromboembolism with Cancer Immunotherapy. Medicne 2021, 2, 423–434.e3. [Google Scholar] [CrossRef]
- Söyler, Y.; Akın Kabalak, P.; Kavurgacı, S.; Akyürek, N.; Demirağ, F.; Yılmaz, Ü. Could PD-L1 Positivity Be Associated with Venous Thrombosis in Patients with Non-Small Cell Lung Cancer? J. Thromb. Thrombolysis 2023, 55, 382–391. [Google Scholar] [CrossRef]
- Johannet, P.; Sawyers, A.; Gulati, N.; Donnelly, D.; Kozloff, S.; Qian, Y.; Floristan, A.; Hernando, E.; Zhong, J.; Osman, I. Treatment with Therapeutic Anticoagulation Is Not Associated with Immunotherapy Response in Advanced Cancer Patients. J. Transl. Med. 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Nichetti, F.; Ligorio, F.; Zattarin, E.; Signorelli, D.; Prelaj, A.; Proto, C.; Galli, G.; Marra, A.; Apollonio, G.; Porcu, L.; et al. Is There an Interplay between Immune Checkpoint Inhibitors, Thromboprophylactic Treatments and Thromboembolic Events? Mechanisms and Impact in Non-Small Cell Lung Cancer Patients. Cancers 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Ajona, D.; Ortiz-Espinosa, S.; Moreno, H.; Lozano, T.; Pajares, M.J.; Agorreta, J.; Bértolo, C.; Lasarte, J.J.; Vicent, S.; Hoehlig, K.; et al. A Combined PD-1/C5a Blockade Synergistically Protects against Lung Cancer Growth and Metastasis. Cancer Discov. 2017, 7, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Bennouna, J.; Touchefeu, Y.; Ghiringhelli, F.; Isambert, N.; Barlesi, F.; Tomasini, P.; Cassier, P.; Edeline, J.; Sourd, S.M.L.; Tosi, D.; et al. 15P STELLAR-001: A Phase I Study of the Anti-C5aR Avdoralimab in Combination with the Anti-PD-L1 Durvalumab in Advanced Solid Tumors. Ann. Oncol. 2022, 33, S9. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and Validation of a Predictive Model for Chemotherapy-Associated Thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; van Es, N. CAT-prediction collaborators The Khorana Score for Prediction of Venous Thromboembolism in Cancer Patients: A Systematic Review and Meta-Analysis. Haematologica 2019, 104, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Patell, R.; Rybicki, L.; McCrae, K.R.; Khorana, A.A. Predicting Risk of Venous Thromboembolism in Hospitalized Cancer Patients: Utility of a Risk Assessment Tool. Am. J. Hematol. 2017, 92, 501–507. [Google Scholar] [CrossRef]
- Parker, A.; Peterson, E.; Lee, A.Y.Y.; de Wit, C.; Carrier, M.; Polley, G.; Tien, J.; Wu, C. Risk Stratification for the Development of Venous Thromboembolism in Hospitalized Patients with Cancer. J. Thromb. Haemost. 2018, 16, 1321–1326. [Google Scholar] [CrossRef]
- Tsubata, Y.; Kawakado, K.; Hamai, K.; Furuya, N.; Yokoyama, T.; Saito, R.; Nakamura, A.; Masuda, T.; Hamaguchi, M.; Kuyama, S.; et al. Identification of Risk Factors for Venous Thromboembolism and Validation of the Khorana Score in Patients with Advanced Lung Cancer: Based on the Multicenter, Prospective Rising-VTE/NEJ037 Study Data. Int. J. Clin. Oncol. 2023, 28, 69–78. [Google Scholar] [CrossRef]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.P.; et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N. Engl. J. Med. 2019, 380, 720–728. [Google Scholar] [CrossRef]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, C.; Rich, S.E. Bleeding in Cancer Patients and Its Treatment: A Review. Ann. Palliat. Med. 2018, 7, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gershman, E.; Guthrie, R.; Swiatek, K.; Shojaee, S. Management of Hemoptysis in Patients with Lung Cancer. Ann. Transl. Med. 2019, 7, 358. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wang, G.; Cao, H.; Ma, H.; Sui, P.; Du, J. Haemoptysis as a Prognostic Factor in Lung Adenocarcinoma after Curative Resection. Br. J. Cancer 2013, 109, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Barlesi, F.; Crinò, L.; Henschke, C.I.; Isla, D.; Stiebeler, S.; Spigel, D.R. Predicting and Managing the Risk of Pulmonary Haemorrhage in Patients with NSCLC Treated with Bevacizumab: A Consensus Report from a Panel of Experts. Ann. Oncol. 2012, 23, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Weycker, D.; Hatfield, M.; Grossman, A.; Hanau, A.; Lonshteyn, A.; Sharma, A.; Chandler, D. Risk and Consequences of Chemotherapy-Induced Thrombocytopenia in US Clinical Practice. BMC Cancer 2019, 19, 151. [Google Scholar] [CrossRef]
- Kopolovic, I.; Lee, A.Y.Y.; Wu, C. Management and Outcomes of Cancer-Associated Venous Thromboembolism in Patients with Concomitant Thrombocytopenia: A Retrospective Cohort Study. Ann. Hematol. 2015, 94, 329–336. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients with Cancer with Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef]
- McBane, R.D.; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and Dalteparin in Active Malignancy-Associated Venous Thromboembolism: The ADAM VTE Trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Jegatheswaran, J.; Hundemer, G.L.; Massicotte-Azarniouch, D.; Sood, M.M. Anticoagulation in Patients with Advanced Chronic Kidney Disease: Walking the Fine Line Between Benefit and Harm. Can. J. Cardiol. 2019, 35, 1241–1255. [Google Scholar] [CrossRef] [PubMed]
- Frere, C.; Font, C.; Esposito, F.; Crichi, B.; Girard, P.; Janus, N. Incidence, Risk Factors, and Management of Bleeding in Patients Receiving Anticoagulants for the Treatment of Cancer-Associated Thrombosis. Support. Care Cancer 2022, 30, 2919–2931. [Google Scholar] [CrossRef] [PubMed]
- Salgado, M.; Brozos-Vázquez, E.; Campos, B.; González-Villarroel, P.; Pérez, M.E.; Vázquez-Tuñas, M.L.; Arias, D. Venous Thromboembolism In Cancer Patients: “From Evidence to Care”. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221098717. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; Jara-Palomares, L.; et al. Venous Thromboembolism in Cancer Patients: ESMO Clinical Practice Guideline †. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Becattini, C.; Verso, M.; Muňoz, A.; Agnelli, G. Updated Meta-Analysis on Prevention of Venous Thromboembolism in Ambulatory Cancer Patients. Haematologica 2020, 105, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.T.M.; Mulder, F.I.; Kamphuisen, P.W.; Middeldorp, S.; Bossuyt, P.M.; Büller, H.R.; van Es, N. Primary Thromboprophylaxis in Ambulatory Cancer Patients with a High Khorana Score: A Systematic Review and Meta-Analysis. Blood Adv. 2020, 4, 5215–5225. [Google Scholar] [CrossRef]
- Cohen, A.T.; Spiro, T.E.; Büller, H.R.; Haskell, L.; Hu, D.; Hull, R.; Mebazaa, A.; Merli, G.; Schellong, S.; Spyropoulos, A.C.; et al. Rivaroxaban for Thromboprophylaxis in Acutely Ill Medical Patients. N. Engl. J. Med. 2013, 368, 513–523. [Google Scholar] [CrossRef]
- Farge, D.; Frere, C.; Connors, J.M.; Khorana, A.A.; Kakkar, A.; Ay, C.; Muñoz, A.; Brenner, B.; Prata, P.H.; Brilhante, D.; et al. 2022 International Clinical Practice Guidelines for the Treatment and Prophylaxis of Venous Thromboembolism in Patients with Cancer, Including Patients with COVID-19. Lancet Oncol 2022, 23, e334–e347. [Google Scholar] [CrossRef]
- Hoemme, A.; Barth, H.; Haschke, M.; Krähenbühl, S.; Strasser, F.; Lehner, C.; von Kameke, A.; Wälti, T.; Thürlimann, B.; Früh, M.; et al. Prognostic Impact of Polypharmacy and Drug Interactions in Patients with Advanced Cancer. Cancer Chemother. Pharmacol. 2019, 83, 763–774. [Google Scholar] [CrossRef]
- Lee, J.Y.; Oh, I.-Y.; Lee, J.-H.; Kim, S.-Y.; Kwon, S.S.; Yang, H.-J.; Kim, Y.-K.; Bang, S.-M. The Increased Risk of Bleeding Due to Drug-Drug Interactions in Patients Administered Direct Oral Anticoagulants. Thromb. Res. 2020, 195, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Peixoto de Miranda, É.J.F.; Takahashi, T.; Iwamoto, F.; Yamashiro, S.; Samano, E.; Macedo, A.V.S.; Ramacciotti, E. Drug-Drug Interactions of 257 Antineoplastic and Supportive Care Agents with 7 Anticoagulants: A Comprehensive Review of Interactions and Mechanisms. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620936325. [Google Scholar] [CrossRef] [PubMed]
- Tsoukalas, N.; Brito-Dellan, N.; Font, C.; Butler, T.; Rojas-Hernandez, C.M.; Butler, T.; Escalante, C. MASCC Hemostasis Study Group Complexity and Clinical Significance of Drug-Drug Interactions (DDIs) in Oncology: Challenging Issues in the Care of Patients Regarding Cancer-Associated Thrombosis (CAT). Support Care Cancer 2022, 30, 8559–8573. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.K.; Li, M.; Wu, Z.; Basu, T.; Dorsch, M.P.; Barnes, G.D.; Carrier, M.; Griggs, J.J.; Sood, S.L. Anticoagulant Medication Adherence for Cancer-Associated Thrombosis: A Comparison of LMWH to DOACs. J. Thromb. Haemost. 2021, 19, 212–220. [Google Scholar] [CrossRef]
- Khorana, A.A.; O’Connell, C.; Agnelli, G.; Liebman, H.A.; Lee, A.Y.Y. Subcommittee on Hemostasis and Malignancy of the SSC of the ISTH Incidental Venous Thromboembolism in Oncology Patients. J. Thromb. Haemost. 2012, 10, 2602–2604. [Google Scholar] [CrossRef]
- O’Connell, C.L.; Boswell, W.D.; Duddalwar, V.; Caton, A.; Mark, L.S.; Vigen, C.; Liebman, H.A. Unsuspected Pulmonary Emboli in Cancer Patients: Clinical Correlates and Relevance. J. Clin. Oncol. 2006, 24, 4928–4932. [Google Scholar] [CrossRef]
- Carmona-Bayonas, A.; Gómez, D.; Martínez de Castro, E.; Pérez Segura, P.; Muñoz Langa, J.; Jimenez-Fonseca, P.; Sánchez Cánovas, M.; Ortega Moran, L.; García Escobar, I.; Rupérez Blanco, A.B.; et al. A Snapshot of Cancer-Associated Thromboembolic Disease in 2018-2019: First Data from the TESEO Prospective Registry. Eur. J. Intern. Med. 2020, 78, 41–49. [Google Scholar] [CrossRef]
- Qdaisat, A.; Kamal, M.; Al-Breiki, A.; Goswami, B.; Wu, C.C.; Zhou, S.; Rice, T.W.; Alagappan, K.; Yeung, S.-C.J. Clinical Characteristics, Management, and Outcome of Incidental Pulmonary Embolism in Cancer Patients. Blood Adv. 2020, 4, 1606–1614. [Google Scholar] [CrossRef]
- Gladish, G.W.; Choe, D.H.; Marom, E.M.; Sabloff, B.S.; Broemeling, L.D.; Munden, R.F. Incidental Pulmonary Emboli in Oncology Patients: Prevalence, CT Evaluation, and Natural History. Radiology 2006, 240, 246–255. [Google Scholar] [CrossRef]
- Farrell, C.; Jones, M.; Girvin, F.; Ritchie, G.; Murchison, J.T. Unsuspected Pulmonary Embolism Identified Using Multidetector Computed Tomography in Hospital Outpatients. Clin. Radiol. 2010, 65, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.; McGurk, S.; McCreath, C.; Graham, C.; Murchison, J.T. Prospective Evaluation of Unsuspected Pulmonary Embolism on Contrast Enhanced Multidetector CT (MDCT) Scanning. Thorax 2007, 62, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Storto, M.L.; Di Credico, A.; Guido, F.; Larici, A.R.; Bonomo, L. Incidental Detection of Pulmonary Emboli on Routine MDCT of the Chest. AJR Am. J. Roentgenol. 2005, 184, 264–267. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Bleker, S.M.; Di Nisio, M. Cancer-Associated Unsuspected Pulmonary Embolism. Thromb. Res. 2014, 133 (Suppl. S2), S172–S178. [Google Scholar] [CrossRef] [PubMed]
- Font, C.; Farrús, B.; Vidal, L.; Caralt, T.M.; Visa, L.; Mellado, B.; Tàssies, D.; Monteagudo, J.; Reverter, J.C.; Gascon, P. Incidental versus Symptomatic Venous Thrombosis in Cancer: A Prospective Observational Study of 340 Consecutive Patients. Ann. Oncol. 2011, 22, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-M.; Kim, T.S.; Lee, J.; Park, Y.H.; Ahn, J.S.; Kim, H.; Kwon, O.J.; Lee, K.S.; Park, K.; Ahn, M.-J. Unsuspected Pulmonary Emboli in Lung Cancer Patients: The Impact on Survival and the Significance of Anticoagulation Therapy. Lung Cancer 2010, 69, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Shinagare, A.B.; Guo, M.; Hatabu, H.; Krajewski, K.M.; Andriole, K.; Van den Abbeele, A.D.; DiPiro, P.J.; Nishino, M. Incidence of Pulmonary Embolism in Oncologic Outpatients at a Tertiary Cancer Center. Cancer 2011, 117, 3860–3866. [Google Scholar] [CrossRef]
- Bach, A.G.; Schmoll, H.-J.; Beckel, C.; Behrmann, C.; Spielmann, R.P.; Wienke, A.; Abbas, J.; Surov, A. Pulmonary Embolism in Oncologic Patients: Frequency and Embolus Burden of Symptomatic and Unsuspected Events. Acta Radiol. 2014, 55, 45–53. [Google Scholar] [CrossRef]
- Connolly, G.C.; Menapace, L.; Safadjou, S.; Francis, C.W.; Khorana, A.A. Prevalence and Clinical Significance of Incidental and Clinically Suspected Venous Thromboembolism in Lung Cancer Patients. Clin. Lung Cancer 2013, 14, 713–718. [Google Scholar] [CrossRef]
- Kraaijpoel, N.; Bleker, S.M.; Meyer, G.; Mahé, I.; Muñoz, A.; Bertoletti, L.; Bartels-Rutten, A.; Beyer-Westendorf, J.; Porreca, E.; Boulon, C.; et al. Treatment and Long-Term Clinical Outcomes of Incidental Pulmonary Embolism in Patients with Cancer: An International Prospective Cohort Study. J. Clin. Oncol. 2019, 37, 1713–1720. [Google Scholar] [CrossRef]
- Di Nisio, M.; Lee, A.Y.Y.; Carrier, M.; Liebman, H.A.; Khorana, A.A. Subcommittee on Haemostasis and Malignancy Diagnosis and Treatment of Incidental Venous Thromboembolism in Cancer Patients: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2015, 13, 880–883. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.D.; Vad, H.; Pedersen, S.; Hvas, A.-M.; Wotton, R.; Naidu, B.; Larsen, T.B. Venous Thromboembolism in Patients Undergoing Operations for Lung Cancer: A Systematic Review. Ann. Thorac. Surg. 2014, 97, 394–400. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, J.; Yang, R. The Venous Thromboembolism Prophylaxis in Patients Receiving Thoracic Surgery: A Systematic Review. Asia Pac. J. Clin. Oncol. 2021, 17, e142–e152. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for Enhanced Recovery after Lung Surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardiothorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef] [PubMed]
- Agzarian, J.; Hanna, W.C.; Schneider, L.; Schieman, C.; Finley, C.J.; Peysakhovich, Y.; Schnurr, T.; Nguyen-Do, D.; Linkins, L.-A.; Douketis, J.; et al. Postdischarge Venous Thromboembolic Complications Following Pulmonary Oncologic Resection: An Underdetected Problem. J. Thorac. Cardiovasc. Surg. 2016, 151, 992–999. [Google Scholar] [CrossRef]
- Okushi, Y.; Kusunose, K.; Okayama, Y.; Zheng, R.; Nakai, M.; Sumita, Y.; Ise, T.; Tobiume, T.; Yamaguchi, K.; Yagi, S.; et al. Acute Hospital Mortality of Venous Thromboembolism in Patients with Cancer From Registry Data. J. Am. Heart Assoc. 2021, 10, e019373. [Google Scholar] [CrossRef]
- Prince, R.M.; Atenafu, E.G.; Krzyzanowska, M.K. Hospitalizations During Systemic Therapy for Metastatic Lung Cancer: A Systematic Review of Real World vs Clinical Trial Outcomes. JAMA Oncol. 2015, 1, 1333–1339. [Google Scholar] [CrossRef]
- Rubio-Salvador, A.R.; Escudero-Vilaplana, V.; Marcos Rodríguez, J.A.; Mangues-Bafalluy, I.; Bernárdez, B.; García Collado, C.; Collado-Borrell, R.; Alvarado Fernández, M.D.; Chacón López-Muñiz, J.I.; Yébenes Cortés, M.; et al. Cost of Venous Thromboembolic Disease in Patients with Lung Cancer: Costecat Study. Int. J. Env. Environ. Res. Public. Health 2021, 18, 394. [Google Scholar] [CrossRef]
- Kirschner, M.; do Ó Hartmann, N.; Parmentier, S.; Hart, C.; Henze, L.; Bisping, G.; Griesshammer, M.; Langer, F.; Pabinger-Fasching, I.; Matzdorff, A.; et al. Primary Thromboprophylaxis in Patients with Malignancies: Daily Practice Recommendations by the Hemostasis Working Party of the German Society of Hematology and Medical Oncology (DGHO), the Society of Thrombosis and Hemostasis Research (GTH), and the Austrian Society of Hematology and Oncology (ÖGHO). Cancers 2021, 13, 2905. [Google Scholar] [CrossRef]
- Macbeth, F.; Noble, S.; Evans, J.; Ahmed, S.; Cohen, D.; Hood, K.; Knoyle, D.; Linnane, S.; Longo, M.; Moore, B.; et al. Randomized Phase III Trial of Standard Therapy Plus Low Molecular Weight Heparin in Patients with Lung Cancer: FRAGMATIC Trial. J. Clin. Oncol. 2016, 34, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Gussoni, G.; Bianchini, C.; Verso, M.; Mandalà, M.; Cavanna, L.; Barni, S.; Labianca, R.; Buzzi, F.; Scambia, G.; et al. Nadroparin for the Prevention of Thromboembolic Events in Ambulatory Patients with Metastatic or Locally Advanced Solid Cancer Receiving Chemotherapy: A Randomised, Placebo-Controlled, Double-Blind Study. Lancet Oncol. 2009, 10, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Thein, K.Z.; Yeung, S.-C.J.; Oo, T.H. Primary Thromboprophylaxis (PTP) in Ambulatory Patients with Lung Cancer Receiving Chemotherapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials (RCTs). Asia Pac. J. Clin. Oncol. 2018, 14, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Kuderer, N.M.; Garcia, D.A.; Khorana, A.A.; Wells, P.S.; Carrier, M.; Lyman, G.H. Direct Oral Anticoagulant for the Prevention of Thrombosis in Ambulatory Patients with Cancer: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. 2019, 17, 2141–2151. [Google Scholar] [CrossRef]
- Di Nisio, M.; Porreca, E.; Candeloro, M.; De Tursi, M.; Russi, I.; Rutjes, A.W. Primary Prophylaxis for Venous Thromboembolism in Ambulatory Cancer Patients Receiving Chemotherapy. Cochrane Database Syst. Rev. 2016, 12, CD008500. [Google Scholar] [CrossRef]
- Deitcher, S.R.; Kessler, C.M.; Merli, G.; Rigas, J.R.; Lyons, R.M.; Fareed, J. ONCENOX Investigators Secondary Prevention of Venous Thromboembolic Events in Patients with Active Cancer: Enoxaparin Alone versus Initial Enoxaparin Followed by Warfarin for a 180-Day Period. Clin. Appl. Thromb. Hemost. 2006, 12, 389–396. [Google Scholar] [CrossRef]
- Lee, A.Y.Y.; Levine, M.N.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.; Rickles, F.R.; Julian, J.A.; Haley, S.; Kovacs, M.J.; et al. Low-Molecular-Weight Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2003, 349, 146–153. [Google Scholar] [CrossRef]
- Meyer, G.; Marjanovic, Z.; Valcke, J.; Lorcerie, B.; Gruel, Y.; Solal-Celigny, P.; Le Maignan, C.; Extra, J.M.; Cottu, P.; Farge, D. Comparison of Low-Molecular-Weight Heparin and Warfarin for the Secondary Prevention of Venous Thromboembolism in Patients with Cancer: A Randomized Controlled Study. Arch. Intern. Med. 2002, 162, 1729–1735. [Google Scholar] [CrossRef]
- Hull, R.D.; Pineo, G.F.; Brant, R.F.; Mah, A.F.; Burke, N.; Dear, R.; Wong, T.; Cook, R.; Solymoss, S.; Poon, M.-C.; et al. Long-Term Low-Molecular-Weight Heparin versus Usual Care in Proximal-Vein Thrombosis Patients with Cancer. Am. J. Med. 2006, 119, 1062–1072. [Google Scholar] [CrossRef]
- Romera, A.; Cairols, M.A.; Vila-Coll, R.; Martí, X.; Colomé, E.; Bonell, A.; Lapiedra, O. A Randomised Open-Label Trial Comparing Long-Term Sub-Cutaneous Low-Molecular-Weight Heparin Compared with Oral-Anticoagulant Therapy in the Treatment of Deep Venous Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 349–356. [Google Scholar] [CrossRef]
- Kahale, L.A.; Hakoum, M.B.; Tsolakian, I.G.; Matar, C.F.; Terrenato, I.; Sperati, F.; Barba, M.; Yosuico, V.E.; Schünemann, H.; Akl, E.A. Anticoagulation for the Long-Term Treatment of Venous Thromboembolism in People with Cancer. Cochrane Database Syst. Rev. 2018, 6, CD006650. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.Y.; Kamphuisen, P.W.; Meyer, G.; Bauersachs, R.; Janas, M.S.; Jarner, M.F.; Khorana, A.A. CATCH Investigators Tinzaparin vs Warfarin for Treatment of Acute Venous Thromboembolism in Patients with Active Cancer: A Randomized Clinical Trial. JAMA 2015, 314, 677–686. [Google Scholar] [CrossRef] [PubMed]
- EINSTEIN Investigators; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral Rivaroxaban for Symptomatic Venous Thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- EINSTEIN–PE Investigators; Büller, H.R.; Prins, M.H.; Lensin, A.W.A.; Decousus, H.; Jacobson, B.F.; Minar, E.; Chlumsky, J.; Verhamme, P.; Wells, P.; et al. Oral Rivaroxaban for the Treatment of Symptomatic Pulmonary Embolism. N. Engl. J. Med. 2012, 366, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kakkar, A.K.; Goldhaber, S.Z.; Schellong, S.; Eriksson, H.; Mismetti, P.; Christiansen, A.V.; Friedman, J.; Le Maulf, F.; Peter, N.; et al. Treatment of Acute Venous Thromboembolism with Dabigatran or Warfarin and Pooled Analysis. Circulation 2014, 129, 764–772. [Google Scholar] [CrossRef]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Mismetti, P.; Schellong, S.; Eriksson, H.; Baanstra, D.; Schnee, J.; Goldhaber, S.Z. RE-COVER Study Group Dabigatran versus Warfarin in the Treatment of Acute Venous Thromboembolism. N. Engl. J. Med. 2009, 361, 2342–2352. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Gallus, A.S.; Lee, T.C.; Pak, R.; Raskob, G.E.; Weitz, J.I.; Yamabe, T. Oral Apixaban for the Treatment of Venous Thromboembolism in Cancer Patients: Results from the AMPLIFY Trial. J. Thromb. Haemost. 2015, 13, 2187–2191. [Google Scholar] [CrossRef]
- Hokusai-VTE Investigators; Büller, H.R.; Décousus, H.; Grosso, M.A.; Mercuri, M.; Middeldorp, S.; Prins, M.H.; Raskob, G.E.; Schellong, S.M.; Schwocho, L.; et al. Edoxaban versus Warfarin for the Treatment of Symptomatic Venous Thromboembolism. N. Engl. J. Med. 2013, 369, 1406–1415. [Google Scholar] [CrossRef]
- Carrier, M.; Cameron, C.; Delluc, A.; Castellucci, L.; Khorana, A.A.; Lee, A.Y.Y. Efficacy and Safety of Anticoagulant Therapy for the Treatment of Acute Cancer-Associated Thrombosis: A Systematic Review and Meta-Analysis. Thromb. Res. 2014, 134, 1214–1219. [Google Scholar] [CrossRef]
- Schrag, D.; Uno, H.; Rosovsky, R.P.G.; Rutherford, C.; Sanfilippo, K.M.; Villano, J.L.; Drescher, M.R.; Jayaram, N.H.; Holmes, C.E.; Feldman, L.E.; et al. The Comparative Effectiveness of Direct Oral Anti-Coagulants and Low Molecular Weight Heparins for Prevention of Recurrent Venous Thromboembolism in Cancer: The CANVAS Pragmatic Randomized Trial. JCO 2021, 39, 12020. [Google Scholar] [CrossRef]
- Planquette, B.; Bertoletti, L.; Charles-Nelson, A.; Laporte, S.; Grange, C.; Mahé, I.; Pernod, G.; Elias, A.; Couturaud, F.; Falvo, N.; et al. Rivaroxaban vs Dalteparin in Cancer-Associated Thromboembolism: A Randomized Trial. Chest 2022, 161, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Frere, C.; Farge, D.; Schrag, D.; Prata, P.H.; Connors, J.M. Direct Oral Anticoagulant versus Low Molecular Weight Heparin for the Treatment of Cancer-Associated Venous Thromboembolism: 2022 Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Hematol. Oncol. 2022, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, C.; Escalante, C.P.; Goldhaber, S.Z.; McBane, R.; Connors, J.M.; Raskob, G.E. Treatment of Cancer-Associated Venous Thromboembolism with Low-Molecular-Weight Heparin or Direct Oral Anticoagulants: Patient Selection, Controversies, and Caveats. Oncologist 2021, 26, e8–e16. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 Guidelines for Management of Venous Thromboembolism: Prevention and Treatment in Patients with Cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef] [PubMed]
- Streiff, M.B.; Holmstrom, B.; Angelini, D.; Ashrani, A.; Elshoury, A.; Fanikos, J.; Fertrin, K.Y.; Fogerty, A.E.; Gao, S.; Goldhaber, S.Z.; et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2021, 19, 1181–1201. [Google Scholar] [CrossRef] [PubMed]
- Becattini, C.; Di Nisio, M.; Franco, L.; Lee, A.; Agnelli, G.; Mandalà, M. Treatment of Venous Thromboembolism in Cancer Patients: The Dark Side of the Moon. Cancer Treat. Rev. 2021, 96, 102190. [Google Scholar] [CrossRef] [PubMed]
- Howlett, J.; Benzenine, E.; Cottenet, J.; Foucher, P.; Fagnoni, P.; Quantin, C. Could Venous Thromboembolism and Major Bleeding Be Indicators of Lung Cancer Mortality? A Nationwide Database Study. BMC Cancer 2020, 20, 461. [Google Scholar] [CrossRef]
- Sigel, K.; Wisnivesky, J.P. Comorbidity Profiles of Patients with Lung Cancer: A New Approach to Risk Stratification? Ann. Am. Thorac. Soc. 2017, 14, 1512–1513. [Google Scholar] [CrossRef]
- Hua, X.; Han, S.-H.; Wei, S.-Z.; Wu, Y.; Sha, J.; Zhu, X.-L. Clinical Features of Pulmonary Embolism in Patients with Lung Cancer: A Meta-Analysis. PLoS ONE 2019, 14, e0223230. [Google Scholar] [CrossRef]
- Kadlec, B.; Skrickova, J.; Merta, Z.; Dusek, L.; Jarkovsky, J. The Incidence and Predictors of Thromboembolic Events in Patients with Lung Cancer. Sci. World J. 2014, 2014, 125706. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, W.; Liang, L.; Zhai, Z.; Guo, L.; Wang, C. China Venous Thromboembolism VTE Study Group Hypertension Associated with Venous Thromboembolism in Patients with Newly Diagnosed Lung Cancer. Sci. Rep. 2016, 6, 19603. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I. COMPASS–CAT Working Group A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective COMPASS-Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef]
- Launay-Vacher, V.; Scotté, F.; Riess, H.; Ashman, N.; McFarlane, P.; Ribic, C.C.M.; Elalamy, I. Thrombosis and Kidney Disease in Cancer: Comorbidities Defining a Very High Risk Patient: A Position Paper from the Cancer & the Kidney International Network. J. Onco-Nephrol. 2018, 2, 37–49. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Rupa-Matysek, J.; Lembicz, M.; Rogowska, E.K.; Gil, L.; Komarnicki, M.; Batura-Gabryel, H. Evaluation of Risk Factors and Assessment Models for Predicting Venous Thromboembolism in Lung Cancer Patients. Med. Oncol. 2018, 35, 63. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Ball, S.; Hajra, A.; Chakraborty, S.; Dey, A.K.; Ghosh, R.K.; Palazzo, A.M. Impact of Atrial Fibrillation in Patients with Lung Cancer: Insights from National Inpatient Sample. Int. J. Cardiol. Heart Vasc. 2019, 22, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D. Anticoagulation for Atrial Fibrillation in Active Cancer: What the Cardiologists Think. Eur. J. Prev. Cardiol. 2021, 28, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Meshulami, N.; Russo, A.; Krammer, F.; García-Sastre, A.; Mack, P.C.; Gomez, J.E.; Bhardwaj, N.; Benyounes, A.; Sirera, R.; et al. Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation. J. Thorac. Oncol. 2022, 17, 214–227. [Google Scholar] [CrossRef]
- Conibear, J.; Nossiter, J.; Foster, C.; West, D.; Cromwell, D.; Navani, N. The National Lung Cancer Audit: The Impact of COVID-19. Clin. Oncol. (R. Coll. Radiol.) 2022, 34, 701–707. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Lagou, S.; Kontopantelis, E.; Stergiou, G.S.; Syrigos, K. Venous Thromboembolism in COVID-19: A Systematic Review and Meta-Analysis. Vasc. Med. 2021, 26, 415–425. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Stergiou, G.S.; Syrigos, K. Heterogeneity in Reporting Venous Thromboembolic Phenotypes in COVID-19: Methodological Issues and Clinical Implications. Br. J. Haematol. 2020, 190, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Dimakakos, E.; Gomatou, G.; Catalano, M.; Olinic, D.-M.; Spyropoulos, A.C.; Falanga, A.; Maraveyas, A.; Liew, A.; Schulman, S.; Belch, J.; et al. Thromboembolic Disease in Patients with Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations-State-of-the-Art. Anticancer. Res. 2022, 42, 3261–3274. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.; Cottenet, J.; Bonniaud, P.; Piroth, L.; Arveux, P.; Tubert-Bitter, P.; Quantin, C. Comparison of Cancer Patients to Non-Cancer Patients among COVID-19 Inpatients at a National Level. Cancers 2021, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Obispo, B.; Rogado, J.; Muñoz-Rivas, N.; Pangua, C.; Serrano, G.; Lara, M.A. Infanta Leonor Thrombosis Research Group Prevalence of Thrombosis in Patients with Cancer and SARS-CoV-2 Infection. Med. Clin. 2022, 159, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Fenioux, C.; Allenbach, Y.; Vozy, A.; Salem, J.-É.; Maalouf, G.; Vieira, M.; Le Joncour, A.; Benveniste, O.; Saadoun, D.; Frère, C.; et al. Differences of characteristics and outcomes between cancer patients and patients with no active cancer hospitalised for a SARS-CoV-2 infection. Bull. Cancer 2021, 108, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological Findings and Complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef]
- Lyman, G.H.; Kuderer, N.M. Clinical Practice Guidelines for the Treatment and Prevention of Cancer-Associated Thrombosis. Thromb. Res. 2020, 191 (Suppl. S1), S79–S84. [Google Scholar] [CrossRef]
- ESMO Supportive Care Strategies During the COVID-19 Pandemic. Available online: https://www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic/supportive-care-in-the-covid-19-era (accessed on 5 March 2023).
- Kyriakoulis, K.G.; Dimakakos, E.; Kyriakoulis, I.G.; Catalano, M.; Spyropoulos, A.C.; Schulman, S.; Douketis, J.; Falanga, A.; Maraveyas, A.; Olinic, D.-M.; et al. Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A Consensus Statement Based on Available Clinical Trials. J. Clin. Med. 2022, 11, 5997. [Google Scholar] [CrossRef]
- Li, A.; Kuderer, N.M.; Hsu, C.-Y.; Shyr, Y.; Warner, J.L.; Shah, D.P.; Kumar, V.; Shah, S.; Kulkarni, A.A.; Fu, J.; et al. The CoVID-TE Risk Assessment Model for Venous Thromboembolism in Hospitalized Patients with Cancer and COVID-19. J. Thromb. Haemost. 2021, 19, 2522–2532. [Google Scholar] [CrossRef]
Molecular Alteration | CAT Incidence | Effect on CAT Risk |
---|---|---|
ALK rearrangement | 26.9–47.1% | 2.2–5 times increase |
ROS1 rearrangement | 34.6–41.6% | 3–5 times increase |
KRAS mutation | 16.1–54% | 2.67 times increase |
EGFR mutation | 9–35% | Conflicting results |
Interaction of Thrombosis with Immune Response | Interaction of Immune Response with Thrombosis |
---|---|
Immune invasion | Neutrophil extracellular traps |
Diminished T-cell response | Platelet T-cell aggregates |
Altered tumor immune microenvironment | Tissue factor-positive monocytes |
Criteria | KRS | Vienna-CATS | CONKO | ONCOTEV | PROTECHT | COMPASS-CAT |
---|---|---|---|---|---|---|
Very high-risk tumor (stomach, pancreas) | 2 | 2 | 2 | 2 | ||
High-risk tumor (lung, lymphoma, gynecologic, bladder, testicular) | 1 | 1 | 1 | 1 | ||
Pre-ChT platelet count ≥ 350 × 109/L | 1 | 1 | 1 | 1 | 2 | |
Hb ≤ 100 g/L or use of red cell growth factors | 1 | 1 | 1 | 1 | ||
Pre-ChT WBC ≤ 11 × 109/L | 1 | 1 | 1 | 1 | ||
BMI ≥ 35 kg/m2 or more | 1 | 1 | 1 | 1 | ||
D-dimer > 1.44 μg/L | 1 | |||||
Soluble P-Selectin > 53.1 ng/L | 1 | |||||
WHO performance status ≥ 2 | 1 | |||||
Gemcitabine ChT | 1 | |||||
Platinum-based ChT | 1 | |||||
KRS > 2 | 1 | |||||
Previous VTE | 1 | 1 | ||||
Metastatic disease | 1 | |||||
Vascular/lymphatic macroscopic compression | 1 | |||||
Anti-hormonal therapy for BC or anthracycline ChT | 6 | |||||
Time since cancer diagnosis ≤6 months | 4 | |||||
Central venous catheter | 3 | |||||
Advanced disease | 2 | |||||
Cardiovascular risk | 5 | |||||
Recent hospitalization for acute medical illness | 5 | |||||
Low | 0 | 0 | 0 | 0 | 0 | 0–6 |
Intermediate | 1–2 | 1–2 | 1–2 | 1 | 1–2 | |
High | ≥3 | ≥3 | ≥3 | ≥2 | ≥3 | ≥7 |
Category | Agent | CYP3A4 Interactions | P-gp Interactions |
---|---|---|---|
Corticosteroids | Dexamethasone | Strong inducer and substrate | No |
Prednisolone | Moderate inducer and substrate | Inhibitor and Substrate | |
Bisphosphonates and Denosumab | Zoledronic acid | No | No |
Denosumab | No | No | |
Antiemetics | Ondansetron | Substrate | Substrate |
Palonosetron | Substrate | No | |
Metoclopramide | No | No | |
Aprepitant | Moderate inhibitor and substrate | No | |
Fosaprepitant | Moderate inhibitor and substrate | No | |
Analgesics and anxiolytics | Oxycodone | Substrate | No |
Hydromorphone | No | No | |
Morphine | No | No | |
Fentanyl | Weak inhibitor and substrate | No | |
Paracetamol | Weak inhibitor and substrate | No | |
Lorazepam | No | No | |
Clonazepam | Substrate | No | |
G-CSF | Filgrastim | No | No |
ESA | Epoetin alfa/beta | No | No |
Darbepoetin alfa | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charpidou, A.; Gerotziafas, G.; Popat, S.; Araujo, A.; Scherpereel, A.; Kopp, H.-G.; Bironzo, P.; Massard, G.; Jiménez, D.; Falanga, A.; et al. Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade. Cancers 2024, 16, 450. https://doi.org/10.3390/cancers16020450
Charpidou A, Gerotziafas G, Popat S, Araujo A, Scherpereel A, Kopp H-G, Bironzo P, Massard G, Jiménez D, Falanga A, et al. Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade. Cancers. 2024; 16(2):450. https://doi.org/10.3390/cancers16020450
Chicago/Turabian StyleCharpidou, Andriani, Grigorios Gerotziafas, Sanjay Popat, Antonio Araujo, Arnaud Scherpereel, Hans-Georg Kopp, Paolo Bironzo, Gilbert Massard, David Jiménez, Anna Falanga, and et al. 2024. "Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade" Cancers 16, no. 2: 450. https://doi.org/10.3390/cancers16020450
APA StyleCharpidou, A., Gerotziafas, G., Popat, S., Araujo, A., Scherpereel, A., Kopp, H. -G., Bironzo, P., Massard, G., Jiménez, D., Falanga, A., Kollias, A., & Syrigos, K. (2024). Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade. Cancers, 16(2), 450. https://doi.org/10.3390/cancers16020450