Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS)
Abstract
:Simple Summary
Abstract
1. Introduction
- α-chemokines with a CXC motif at the N-terminus. In humans, 16 representatives can be distinguished: CXC chemokine ligand 1-17 (CXCL1-17),
- β-chemokines with a CC motif at the N-terminus. In humans, 24 representatives can be distinguished: CC chemokine ligand 1-28 (CCL1-28),
- γ-chemokines with an XC motif at the N-terminus. In humans, 2 representatives can be distinguished: XC chemokine ligand 1-2 (XCL1-2), and
- δ-chemokines with a CX3C motif at the N-terminus. In humans, 1 representative can be distinguished: CX3C chemokine ligand 1 (CX3CL1).
2. Information Retrieval Method
- The articles were required to include the name of a chemokine. In the 1990s and the early 2000s, chemokines were often named by their discoverers. In 2000, a new classification system was established [28], where the name of each chemokine in a given subfamily included the motif (CC, CXC, CX3C, XC), followed by an indicator of whether it was a chemokine/ligand (L) or receptor (R), and a number designating the chemokine or receptor. To ensure comprehensive results, searches were conducted using chemokine names from both the old and new nomenclature across the relevant subfamilies.
- The articles had to include the abbreviation of the disease being studied, “AML”. Since the focus of the review is on the significance of specific chemokine subfamilies in AML, the selected articles needed to contain both the name of a chemokine and the abbreviation of the disease.
- The articles needed to include the term “leukemia”. In various fields, the abbreviation “AML” can refer to concepts other than “acute myeloid leukemia”, such as “renal angiomyolipoma”, “alveolar macrophage-like”, the AML-12 cell line (hepatocyte), or “adversarial machine learning”, among others. To filter out articles where “AML” was used in contexts unrelated to “acute myeloid leukemia”, the search focused on identifying those that contained both the abbreviation “AML” and the word “leukemia”.
- All review articles were excluded from the search. Although reviews often cite experimental studies, they typically present only a portion of the data from those sources. To gain a more comprehensive understanding of the topic, only experimental studies were considered for analysis. However, for writing brief introductions to specific chemokine axes, review articles were sometimes used and cited to provide readers with general background information on chemokines.
- Additionally, when searching for articles on chemokines in MDS, the search focused on articles that included the name of the target chemokines along with the terms “MDS” and “myelodysplastic”.
3. β-Chemokines
3.1. Ligands of the CCR1 Receptor
3.1.1. CCR1 in AML
3.1.2. CCL3 in AML
3.1.3. CCL23 in AML
3.1.4. Other CCR1 Ligands: CCL14, CCL15, and CCL16 in AML
3.2. Ligands of the CCR2 Receptor
3.2.1. Expression of CCR2 and Its Ligands in AML
3.2.2. Action of CCR2 Ligands in AML
3.3. Ligands of the CCR3 Receptor
Expression and Action of CCR3 Ligands in AML
3.4. Ligands of the CCR4 Receptor
3.4.1. Expression of CCR4 and Its Ligands in AML
3.4.2. Action of CCR4 and Its Ligands in AML
3.5. Ligands of the CCR5 Receptor
3.5.1. Expression of CCR5 and Its Ligands in AML
3.5.2. Action of CCR5 and Its Ligands in AML
3.6. Ligands of the CCR6 Receptor
3.6.1. Expression of CCR6 and Its Ligands in AML
3.6.2. Action of CCR6 and Its Ligands in AML
3.7. Ligands of the CCR7 Receptor
3.7.1. Expression of CCR7 and Its Ligands in AML
3.7.2. Action of CCR7 and Its Ligands in AML
3.8. Ligands of the CCR8 Receptor
3.8.1. CCL1 in AML
3.8.2. CCL18 in AML
3.9. Ligands of the CCR9 Receptor
3.9.1. Expression of CCR9 and Its Ligands in AML
3.9.2. Action of CCR9 and Its Ligands in AML
3.10. Ligands of the CCR10 Receptor
3.10.1. Expression of CCR10 and Its Ligands in AML
3.10.2. Action of CCR10 and Its Ligands in AML
4. γ-Chemokines
5. δ-Chemokines
5.1. Expression of CX3CR1 and Its Ligand in AML
5.2. Action of CX3CR1 and Its Ligand in AML
6. Atypical Chemokine Receptors
- PITPNM3 (NIR1, ACKR6): A receptor for CCL18, responsible for the properties of this chemokine [106]. It is discussed in the context of CCL18 and CCR8.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, D.B.; Varela, V.A.; Datoguia, T.S.; Caraciolo, V.B.; Lopes, G.H.; Pereira, W.O. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front. Cell Dev. Biol. 2021, 9, 764698. [Google Scholar] [CrossRef]
- Eckardt, J.N.; Stölzel, F.; Kunadt, D.; Röllig, C.; Stasik, S.; Wagenführ, L.; Jöhrens, K.; Kuithan, F.; Krämer, A.; Scholl, S.; et al. Molecular profiling and clinical implications of patients with acute myeloid leukemia and extramedullary manifestations. J. Hematol. Oncol. 2022, 15, 60. [Google Scholar] [CrossRef]
- Adès, L.; Itzykson, R.; Fenaux, P. Myelodysplastic syndromes. Lancet 2014, 383, 2239–2252. [Google Scholar] [CrossRef]
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020, 111, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.S.; Kim, H.J. FLT3 mutations in acute myeloid leukemia: A review focusing on clinically applicable drugs. Blood Res. 2022, 57, 32–36. [Google Scholar] [CrossRef]
- Levis, M. Midostaurin approved for FLT3-mutated AML. Blood 2017, 129, 3403–3406. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef]
- Head, D.R.; Savage, R.A.; Cerezo, L.; Craven, C.M.; Bickers, J.N.; Hartsock, R.; Hosty, T.A.; Saiki, J.H.; Wilson, H.E.; Morrison, F.S.; et al. Reproducibility of the French-American-British classification of acute leukemia: The Southwest Oncology Group Experience. Am. J. Hematol. 1985, 18, 47–57. [Google Scholar] [CrossRef]
- Venditti, A.; del Poeta, G.; Buccisano, F.; Tamburini, A.; Cox, M.C.; Stasi, R.; Bruno, A.; Aronica, G.; Maffei, L.; Suppo, G.; et al. Minimally differentiated acute myeloid leukemia (AML-M0): Comparison of 25 cases with other French-American-British subtypes. Blood 1997, 89, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Shysh, A.C.; Nguyen, L.T.; Guo, M.; Vaska, M.; Naugler, C.; Rashid-Kolvear, F. The incidence of acute myeloid leukemia in Calgary, Alberta, Canada: A retrospective cohort study. BMC Public Health 2017, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Song, Y.; Wu, K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: Estimates based on the global burden of disease study 2017. J. Hematol. Oncol. 2020, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.A.; Huang, Z.H.; Zhang, X.P.; Ou-Yang, J.; Li, J.Y.; Zhai, Y.P.; Sun, X.M.; Xu, Y.-L.; Lu, Q.; Wang, J.M.; et al. An epidemiological investigation of leukemia incidence between 2003 and 2007 in Nanjing, China. J. Hematol. Oncol. 2010, 3, 21. [Google Scholar] [CrossRef]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019, 36, 70–87. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Lacalle, R.A.; Blanco, R.; Carmona-Rodríguez, L.; Martín-Leal, A.; Mira, E.; Mañes, S. Chemokine Receptor Signaling and the Hallmarks of Cancer. Int. Rev. Cell Mol. Biol. 2017, 331, 181–244. [Google Scholar] [CrossRef]
- Koenen, A.; Babendreyer, A.; Schumacher, J.; Pasqualon, T.; Schwarz, N.; Seifert, A.; Deupi, X.; Ludwig, A.; Dreymueller, D. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS ONE 2017, 12, e0173486. [Google Scholar] [CrossRef]
- Morein, D.; Erlichman, N.; Ben-Baruch, A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front. Immunol. 2020, 11, 952. [Google Scholar] [CrossRef]
- Uy, G.L.; Rettig, M.P.; Motabi, I.H.; McFarland, K.; Trinkaus, K.M.; Hladnik, L.M.; Kulkarni, S.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012, 119, 3917–3924. [Google Scholar] [CrossRef]
- Cooper, T.M.; Sison, E.A.R.; Baker, S.D.; Li, L.; Ahmed, A.; Trippett, T.; Gore, L.; Macy, M.E.; Narendran, A.; August, K.; et al. A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators’ Consortium study (POE 10-03). Pediatr. Blood Cancer 2017, 64, e26414. [Google Scholar] [CrossRef]
- Boddu, P.; Borthakur, G.; Koneru, M.; Huang, X.; Naqvi, K.; Wierda, W.; Bose, P.; Jabbour, E.; Estrov, Z.; Burger, J.; et al. Initial Report of a Phase I Study of LY2510924, Idarubicin, and Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Front. Oncol. 2018, 8, 369. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Baumgartner, B.; Weber, M.; Quirling, M.; Fischer, C.; Page, S.; Adam, M.; von Schilling, C.; Waterhouse, C.; Schmid, C.; Neumeier, D.; et al. Increased IkappaB kinase activity is associated with activated NF-kappaB in acute myeloid blasts. Leukemia 2002, 16, 2062–2071. [Google Scholar] [CrossRef]
- Yashiro, T.; Nakano, S.; Nomura, K.; Uchida, Y.; Kasakura, K.; Nishiyama, C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci. Rep. 2019, 9, 1161. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef]
- Maiga, A.; Lemieux, S.; Pabst, C.; Lavallée, V.P.; Bouvier, M.; Sauvageau, G.; J Hébert, J. Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: Identification of potential disease-specific targets. Blood Cancer J. 2016, 6, e431. [Google Scholar] [CrossRef] [PubMed]
- Cignetti, A.; Vallario, A.; Roato, I.; Circosta, P.; Strola, G.; Scielzo, C.; Allione, B.; Garetto, L.; Caligaris-Cappio, F.; Ghia, P. The characterization of chemokine production and chemokine receptor expression reveals possible functional cross-talks in AML blasts with monocytic differentiation. Exp. Hematol. 2003, 31, 495–503. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Ryningen, A.; Olsnes, A.M.; Stordrange, L.; Øyan, A.M.; Kalland, K.H.; Gjertsen, B.T. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 2007, 92, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, B.; Fan, W.; Zhao, Q.; Yang, L.; Xin, W.; Fu, D. Identification of prognostic genes in the acute myeloid leukemia microenvironment. Aging (Albany NY) 2019, 11, 10557–10580. [Google Scholar] [CrossRef] [PubMed]
- Nibbs, R.J.; Wylie, S.M.; Pragnell, I.B.; Graham, G.J. Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. J. Biol. Chem. 1997, 272, 12495–12504. [Google Scholar] [CrossRef] [PubMed]
- Seal, R.L.; Braschi, B.; Gray, K.; Jones, T.E.M.; Tweedie, S.; Haim-Vilmovsky, L.; Bruford, E.A. Genenames.org: The HGNC resources in 2023. Nucleic Acids Res. 2023, 51, D1003–D1009. [Google Scholar] [CrossRef] [PubMed]
- Schall, T.J.; Bacon, K.; Camp, R.D.; Kaspari, J.W.; Goeddel, D.V. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J. Exp. Med. 1993, 177, 1821–1826. [Google Scholar] [CrossRef]
- Frisch, B.J.; Ashton, J.M.; Xing, L.; Becker, M.W.; Jordan, C.T.; Calvi, L.M. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 2012, 119, 540–550. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, A.; Zhao, H.; Lu, P.; Cheng, H.; Dong, F.; Gong, Y.; Ma, S.; Zheng, Y.; Zhang, H.; et al. Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3. Leukemia 2016, 30, 1897–1908. [Google Scholar] [CrossRef]
- Yazdani, Z.; Mousavi, Z.; Ghasemimehr, N.; Kalantary Khandany, B.; Nikbakht, R.; Jafari, E.; Fatemi, A.; Hassanshahi, G. Differential regulatory effects of chemotherapeutic protocol on CCL3_CCL4_CCL5/CCR5 axes in acute myeloid leukemia patients with monocytic lineage. Life Sci. 2020, 240, 117071. [Google Scholar] [CrossRef]
- Kornblau, S.M.; McCue, D.; Singh, N.; Chen, W.; Estrov, Z.; Coombes, K.R. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 2010, 116, 4251–4261. [Google Scholar] [CrossRef]
- Çelik, H.; Lindblad, K.E.; Popescu, B.; Gui, G.; Goswami, M.; Valdez, J.; DeStefano, C.; Lai, C.; Thompson, J.; Ghannam, J.Y.; et al. Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv. 2020, 4, 367–379. [Google Scholar] [CrossRef]
- Kittang, A.O.; Sand, K.; Brenner, A.K.; Rye, K.P.; Bruserud, Ø. The Systemic Profile of Soluble Immune Mediators in Patients with Myelodysplastic Syndromes. Int. J. Mol. Sci. 2016, 17, 1080. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Liu, K.; Jiang, Y.; Wang, T.; Wang, Y.; Xu, R. Integrated analysis on mRNA microarray and microRNA microarray to screen immune-related biomarkers and pathways in myelodysplastic syndrome. Hematology 2021, 26, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, K.J.; Bedringsaas, S.L.; Ryningen, A.; Gjertsen, B.T.; Bruserud, O. Hypoxia increases HIF-1α expression and constitutive cytokine release by primary human acute myeloid leukaemia cells. Eur. Cytokine Netw. 2010, 21, 154–164. [Google Scholar] [PubMed]
- Hatfield, K.J.; Evensen, L.; Reikvam, H.; Lorens, J.B.; Bruserud, Ø. Soluble mediators released by acute myeloid leukemia cells increase capillary-like networks. Eur. J. Haematol. 2012, 89, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Reikvam, H.; Brenner, A.K.; Hagen, K.M.; Liseth, K.; Skrede, S.; Hatfield, K.J.; Bruserud, Ø. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res. 2015, 15, 530–541. [Google Scholar] [CrossRef]
- Wang, R.; Feng, W.; Wang, H.; Wang, L.; Yang, X.; Yang, F.; Zhang, Z.; Liu, X.; Zhang, D.; Ren, Q.; et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett. 2020, 469, 151–161. [Google Scholar] [CrossRef]
- Yamamura, Y.; Hattori, T.; Obaru, K.; Sakai, K.; Asou, N.; Takatsuki, K.; Ohmoto, Y.; Homiyama, H.; K Shimada, K. Synthesis of a novel cytokine and its gene (LD78) expressions in hematopoietic fresh tumor cells and cell lines. J. Clin. Investig. 1989, 84, 1707–1712. [Google Scholar] [CrossRef]
- Argiropoulos, B.; Palmqvist, L.; Yung, E.; Kuchenbauer, F.; Heuser, M.; Sly, L.M.; Wan, A.; Krystal, G.; Humphries, R.K. Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. Exp. Hematol. 2008, 36, 845–859. [Google Scholar] [CrossRef]
- Meriç, N.; Kocabaş, F. The Historical Relationship Between Meis1 and Leukemia. Adv. Exp. Med. Biol. 2022, 1387, 127–144. [Google Scholar] [CrossRef]
- Harrison, J.S.; Rameshwar, P.; Chang, V.; Bandari, P. Oxygen saturation in the bone marrow of healthy volunteers. Blood 2002, 99, 394. [Google Scholar] [CrossRef]
- Fiegl, M.; Samudio, I.; Clise-Dwyer, K.; Burks, J.K.; Mnjoyan, Z.; Andreeff, M. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009, 113, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.K.; Nepstad, I.; Bruserud, Ø. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms. Front. Immunol. 2017, 8, 106. [Google Scholar] [CrossRef]
- Ferrajoli, A.; Talpaz, M.; Zipf, T.F.; Hirsch-Ginsberg, C.; Estey, E.; Wolpe, S.D.; Estrov, Z. Inhibition of acute myelogenous leukemia progenitor proliferation by macrophage inflammatory protein 1-alpha. Leukemia 1994, 8, 798–805. [Google Scholar] [PubMed]
- Basara, N.; Stosić-Grujicić, S.; Sefer, D.; Ivanović, Z.; Antunović, P.; Milenković, P. The inhibitory effect of human macrophage inflammatory protein-1 alpha (LD78) on acute myeloid leukemia cells in vitro. Stem Cells 1996, 14, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wang, Y.J.; Zheng, Y.W.; Dong, F.; Pang, Y.K.; Cheng, H.; Yuan, W.P.; Cheng, T.; Hao, S. Macrophage inflammatory protein-1α promotes the growth of acute myeloid leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015, 23, 306–311. [Google Scholar]
- Owen-Lynch, P.J.; Adams, J.A.; Brereton, M.L.; Czaplewski, L.G.; Whetton, A.D.; Yin, J.A. The effect of the chemokine rhMIP-1 alpha, and a non-aggregating variant BB-10010, on blast cells from patients with acute myeloid leukaemia. Br. J. Haematol. 1996, 95, 77–84. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, C.; Xu, Y.; Wang, M.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; Wang, Y.; et al. Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia. BMC Cancer 2020, 20, 472. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Mikami, N.; Wing, J.B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T Cells and Human Disease. Annu. Rev. Immunol. 2020, 38, 541–566. [Google Scholar] [CrossRef]
- Sander, F.E.; Nilsson, M.; Rydström, A.; Aurelius, J.; Riise, R.E.; Movitz, C.; Bernson, E.; Kiffin, R.; Ståhlberg, A.; Brune, M.; et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol. Immunother. 2017, 66, 1473–1484. [Google Scholar] [CrossRef]
- Xie, Q.; Tang, Z.; Liang, X.; Shi, Z.; Yao, Y.; Huang, X.; Zhu, S.; Wu, M.; Li, J.; Zhao, W.; et al. An immune-related gene prognostic index for acute myeloid leukemia associated with regulatory T cells infiltration. Hematology 2022, 27, 1088–1100. [Google Scholar] [CrossRef]
- Solh, M.; Solomon, S.; Morris, L.; Holland, K.; Bashey, A. Extramedullary acute myelogenous leukemia. Blood Rev. 2016, 30, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Faaij, C.M.; Willemze, A.J.; Révész, T.; Balzarolo, M.; Tensen, C.P.; Hoogeboom, M.; Vermeer, M.H.; van Wering, E.; Zwaan, C.M.; Kaspers, G.J.L.; et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: Differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatr. Blood Cancer 2010, 55, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Alsobhi, E.; Farahat, F.; Daghistani, M.; Awad, K.; Al-Zahran, O.; Al-Saiari, A.; Koshak, F. Overall survival of adult acute myeloid leukemia based on cytogenetic and molecular abnormalities during 5 years in a single center study. Saudi Med. J. 2019, 40, 1171–1176. [Google Scholar] [CrossRef]
- Mei, C.; Ren, Y.; Zhou, X.; Ye, L.; Ma, L.; Luo, Y.; Lin, P.; Xu, W.; Lu, C.; Yang, H.; et al. Clinical and biological characteristics of acute myeloid leukemia with 20-29% blasts: A retrospective single-center study. Leuk. Lymphoma 2019, 60, 1136–1145. [Google Scholar] [CrossRef]
- Youn, B.S.; Zhang, S.M.; Broxmeyer, H.E.; Cooper, S.; Antol, K.; Fraser, M., Jr.; Kwon, B.S. Characterization of CKbeta8 and CKbeta8-1: Two alternatively spliced forms of human beta-chemokine, chemoattractants for neutrophils, monocytes, and lymphocytes, and potent agonists at CC chemokine receptor 1. Blood 1998, 91, 3118–3126. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, D.; Schramm, A.; Eggert, A.; Onda, M.; Dawczynski, K.; Rump, A.; Pastan, I.; Wittig, S.; Pfaffendorf, N.; Voigt, A.; et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin. Cancer Res. 2006, 12, 2434–2441. [Google Scholar] [CrossRef]
- Gong, Q.; Zheng, J.E.; Liu, W.; Liu, L.Q.; Li, Y.Y.; Huang, S.A. Effect of CCL23/myeloid progenitor inhibitory factor 1 (MPIF-1) on the proliferation, apoptosis and differentiation of U937 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007, 15, 496–500. [Google Scholar]
- Han, I.S.; Ra, J.S.; Kim, M.W.; Lee, E.A.; Jun, H.Y.; Park, S.K.; Kwon, B.S. Differentiation of CD34+ cells from human cord blood and murine bone marrow is suppressed by C6 beta-chemokines. Mol. Cells 2003, 15, 176–180. [Google Scholar] [CrossRef]
- Struyf, S.; Schutyser, E.; Gouwy, M.; Gijsbers, K.; Proost, P.; Benoit, Y.; Opdenakker, G.; Van Damme, J.; Laureys, G. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am. J. Pathol. 2003, 163, 2065–2075. [Google Scholar] [CrossRef]
- Do, H.T.T.; Lee, C.H.; Cho, J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers 2020, 12, 287. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Z.; Wei, S.; Liu, Z.; Chen, G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 2021, 499, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Macanas-Pirard, P.; Quezada, T.; Navarrete, L.; Broekhuizen, R.; Leisewitz, A.; Nervi, B.; Ramirez, P.A. The CCL2/CCR2 Axis Affects Transmigration and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid Leukemia Cells. PLoS ONE 2017, 12, e0168888. [Google Scholar] [CrossRef] [PubMed]
- Mazur, G.; Wróbel, T.; Butrym, A.; Kapelko-Słowik, K.; Poreba, R.; Kuliczkowski, K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma 2007, 54, 285–289. [Google Scholar]
- Merle, M.; Fischbacher, D.; Liepert, A.; Grabrucker, C.; Kroell, T.; Kremser, A.; Dreyssig, J.; Freudenreich, M.; Schuster, F.; Borkhardt, A.; et al. Serum Chemokine-release Profiles in AML-patients Might Contribute to Predict the Clinical Course of the Disease. Immunol. Investig. 2020, 49, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Binato, R.; de Almeida Oliveira, N.C.; du Rocher, B.; Abdelhay, E. The molecular signature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process. Cancer Lett. 2015, 369, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dong, J.; Li, J.; Duan, Y.; Wang, K.; Kong, Q.; Zhang, H. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1. Clin. Transl. Oncol. 2021, 23, 1105–1116. [Google Scholar] [CrossRef]
- Mohammadi Najafabadi, M.; Shamsasenjan, K.; Akbarzadehlaleh, P. The Angiogenic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells. Cell J. 2018, 20, 19–24. [Google Scholar] [CrossRef]
- Huang, J.C.; Basu, S.K.; Zhao, X.; Chien, S.; Fang, M.; Oehler, V.G.; Appelbaum, F.R.; Becker, P.S. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015, 5, e302. [Google Scholar] [CrossRef]
- Chen, J.Y.; Lai, Y.S.; Tsai, H.J.; Kuo, C.C.; Yen, B.L.; Yeh, S.P.; Sun, H.S.; Hung, W.-C. The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci. Rep. 2016, 6, 32428. [Google Scholar] [CrossRef]
- Moudra, A.; Hubackova, S.; Machalova, V.; Vancurova, M.; Bartek, J.; Reinis, M.; Hodny, Z.; Jonasova, A. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine. Oncoimmunology 2016, 5, e1183860. [Google Scholar] [CrossRef]
- Legdeur, M.C.; Beelen, R.H.; Schuurhuis, G.J.; Broekhoven, M.G.; van de Loosdrecht, A.A.; Tekstra, J.; M M Langenhuijsen, M.M.; Ossenkoppele, G.J. A functional study on the migration of human monocytes to human leukemic cell lines and the role of monocyte chemoattractant protein-1. Leukemia 1997, 11, 1904–1908. [Google Scholar] [CrossRef]
- Wu, S.Y.; Yang, J.; Hong, D.; Xiao, P.F.; Lu, J.; Gao, L.; Hu, Y.-X.; Wang, M.; Shao, X.-J.; Zhou, Y.C.; et al. Suppressed CCL2 expression inhibits the proliferation of leukemia cells via the cell cycle protein Cyclin D1: Preliminary in vitro data. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5588–5596. [Google Scholar] [CrossRef]
- Jin, H.J.; Lee, H.J.; Heo, J.; Lim, J.; Kim, M.; Kim, M.K.; Kim, M.K.; Hae Yun Nam, H.Y.; Hong, G.H.; Cho, Y.S.; et al. Senescence-Associated MCP-1 Secretion Is Dependent on a Decline in BMI1 in Human Mesenchymal Stromal Cells. Antioxid. Redox Signal. 2016, 24, 471–485. [Google Scholar] [CrossRef]
- Al-Matary, Y.S.; Botezatu, L.; Opalka, B.; Hönes, J.M.; Lams, R.F.; Thivakaran, A.; Schütte, J.; Köster, R.; Lennartz, K.; Schroeder, T.; et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica 2016, 101, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Miari, K.E.; Guzman, M.L.; Wheadon, H.; Williams, M.T.S. Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes. Front. Cell Dev. Biol. 2021, 9, 692800. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Jiang, H.; Liu, P.; Xie, N.; Fu, R.; Wang, H.; Liu, C.; Zhang, T.; Wang, H.; Shao, Z. Increased myeloid-derived suppressor cells in patients with myelodysplastic syndromes suppress CD8+ T lymphocyte function through the STAT3-ARG1 pathway. Leuk. Lymphoma 2021, 62, 218–223. [Google Scholar] [CrossRef]
- Tang, L.; Wu, J.; Li, C.G.; Jiang, H.W.; Xu, M.; Du, M.; Yin, Z.; Mei, H.; Hu, Y. Characterization of Immune Dysfunction and Identification of Prognostic Immune-Related Risk Factors in Acute Myeloid Leukemia. Clin. Cancer Res. 2020, 26, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Driss, V.; Quesnel, B.; Brinster, C. Monocyte chemoattractant protein 1 (MCP-1/CCL2) contributes to thymus atrophy in acute myeloid leukemia. Eur. J. Immunol. 2015, 45, 396–406. [Google Scholar] [CrossRef]
- Yamada, H.; Hirai, K.; Miyamasu, M.; Iikura, M.; Misaki, Y.; Shoji, S.; Takaishi, T.; Kasahara, T.; Morita, Y.; Ito, K. Eotaxin is a potent chemotaxin for human basophils. Biochem. Biophys. Res. Commun. 1997, 231, 365–368. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yang, X.; Han, W.; Liu, Y.; Xu, Q.; Zhao, R.; Di, C.; Song, Q.; Ma, D. Chemokine-like factor 1 is a functional ligand for CC chemokine receptor 4 (CCR4). Life Sci. 2006, 78, 614–621. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Chen, D.; Zheng, G.; Zhang, Z.; Li, Z.; Sun, X.; Zhao, Q.; Xu, J. An inflammatory response-related gene signature associated with immune status and prognosis of acute myeloid leukemia. Am. J. Transl. Res. 2022, 14, 4898–4917. [Google Scholar] [PubMed]
- Olsnes, A.M.; Motorin, D.; Ryningen, A.; Zaritskey, A.Y.; Bruserud, Ø. T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): Local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol. Immunother. 2006, 55, 830–840. [Google Scholar] [CrossRef]
- Jackson, J.J.; Ketcham, J.M.; Younai, A.; Abraham, B.; Biannic, B.; Beck, H.P.; Bui, M.H.T.; Chian, D.; Cutler, G.; Diokno, R.; et al. Discovery of a Potent and Selective CCR4 Antagonist That Inhibits Treg Trafficking into the Tumor Microenvironment. J. Med. Chem. 2019, 62, 6190–6213. [Google Scholar] [CrossRef] [PubMed]
- Riezu-Boj, J.I.; Larrea, E.; Aldabe, R.; Guembe, L.; Casares, N.; Galeano, E.; Echeverria, I.; Sarobe, P.; Herrero, I.; Sangro, B.; et al. Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J. Hepatol. 2011, 54, 422–431. [Google Scholar] [CrossRef]
- Eby, J.M.; Kang, H.K.; Tully, S.T.; Bindeman, W.E.; Peiffer, D.S.; Chatterjee, S.; Mehrotra, S.; Le Poole, I.C. CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. J. Investig. Dermatol. 2015, 135, 1574–1580. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, R.; Mao, C.; Shi, L.; Wang, S.; Yu, L.; Hu, Q.; Dai, D.; Xu, H. Chemokine/chemokine receptor interactions contribute to the accumulation of Th17 cells in patients with esophageal squamous cell carcinoma. Hum. Immunol. 2012, 73, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Z.; Niu, L.T.; Qiang, W.T.; Chen, J.; Wang, J.; Yang, H.; Zhang, W.; Zhu, J.; Yu, S.H. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance. FASEB J. 2019, 33, 9565–9576. [Google Scholar] [CrossRef]
- Van Elssen, C.H.; Vanderlocht, J.; Frings, P.W.; Senden-Gijsbers, B.L.; Schnijderberg, M.C.; van Gelder, M.; Meek, B.; Libon, C.; Ferlazzo, G.; Germeraad, W.T.V.; et al. Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells. Eur. J. Immunol. 2010, 40, 3138–3149. [Google Scholar] [CrossRef]
- Liu, C.; Lou, Y.; Lizée, G.; Qin, H.; Liu, S.; Rabinovich, B.; Kim, G.J.; Wang, Y.H.; Ye, Y.; Sikora, A.G.; et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J. Clin. Investig. 2008, 118, 1165–1175. [Google Scholar] [CrossRef]
- Chen, X.M.; Zhang, H.M.; Yang, B.; Lu, X.C.; He, P.F. Analysis of Unfavorable Prognosis Gene Markers in Patients with Acute Myeloid Leukemia by Multiomics. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019, 27, 331–338. [Google Scholar]
- Wang, J.; Uddin, M.N.; Hao, J.P.; Chen, R.; Xiang, Y.X.; Xiong, D.Q.; Wu, Y. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia. Front. Genet. 2021, 12, 723001. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.B.; Hansen, J.W.; Ørskov, A.D.; Dimopoulos, K.; Salem, M.; Grigorian, M.; Bruunsgaard, H.; Grønbæk, K. Inflammatory Cytokine Profiles Do Not Differ Between Patients with Idiopathic Cytopenias of Undetermined Significance and Myelodysplastic Syndromes. Hemasphere 2022, 6, e0713. [Google Scholar] [CrossRef] [PubMed]
- Waldeck, S.; Rassner, M.; Keye, P.; Follo, M.; Herchenbach, D.; Endres, C.; Charlet, A.; Andrieux, G.; Salzer, U.; Boerries, M.; et al. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML. Mol. Oncol. 2020, 14, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Zheng, Y.; Li, X.; Lu, S.; Li, H.; Chen, F.; Chen, D.; Shao, Y.; Shi, J.; Feng, S. Differential expression profile of Th1/Th17/Th2-related chemokines and their receptors in patients with acquired bone marrow failure syndromes. Hum. Immunol. 2013, 74, 176–180. [Google Scholar] [CrossRef]
- Costello, R.T.; Mallet, F.; Chambost, H.; Sainty, D.; Arnoulet, C.; Gastaut, J.A.; Olive, D. Acute myeloid leukaemia triggering via CD40 induces leukocyte chemoattraction and cytotoxicity against allogenic or autologous leukemic targets. Leukemia 2000, 14, 123–128. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Y.; Gong, C.; Yu, F.; Su, S.; Chen, J.; Liu, B.; Deng, H.; Wang, F.; Lin, L.; et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011, 19, 541–555. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Deng, W.; Huang, M.; Wu, Y.; Zhou, Z.; Wang, Y.; Cheng, X.; Zhou, X.; Chen, L.; et al. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol. Med. Rep. 2019, 19, 1678–1686. [Google Scholar] [CrossRef]
- Aravind, A.; Palollathil, A.; Rex, D.A.B.; Kumar, K.M.K.; Vijayakumar, M.; Shetty, R.; Codi, J.A.K.; Prasad, T.S.K.; Raju, R. A multi-cellular molecular signaling and functional network map of C-C motif chemokine ligand 18 (CCL18): A chemokine with immunosuppressive and pro-tumor functions. J. Cell Commun. Signal. 2022, 16, 293–300. [Google Scholar] [CrossRef]
- Martinez, F.O.; Gordon, S.; Locati, M.; Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J. Immunol. 2006, 177, 7303–7311. [Google Scholar] [CrossRef]
- Leung, S.Y.; Yuen, S.T.; Chu, K.M.; Mathy, J.A.; Li, R.; Chan, A.S.; Low, S.; Wong, J.; Chen, X.; So, S. Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. Gastroenterology 2004, 127, 457–469. [Google Scholar] [CrossRef]
- Wu, X.; Sun, M.; Yang, Z.; Lu, C.; Wang, Q.; Wang, H.; Deng, C.; Liu, Y.; Yang, Y. The Roles of CCR9/CCL25 in Inflammation and Inflammation-Associated Diseases. Front. Cell Dev. Biol. 2021, 9, 686548. [Google Scholar] [CrossRef] [PubMed]
- Xiong, N.; Fu, Y.; Hu, S.; Xia, M.; Yang, J. CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell 2012, 3, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, C.; Baudet, A.; Miharada, N.; Soneji, S.; Gupta, R.; Magnusson, M.; Enver, T.; Karlsson, G.; Larsson, J. Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells. Blood 2013, 121, 3838–3842. [Google Scholar] [CrossRef]
- Brenner, A.K.; Reikvam, H.; Bruserud, Ø. A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators. Front. Immunol. 2016, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Takahama, Y. XCL1 and XCR1 in the immune system. Microbes Infect. 2012, 14, 262–267. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, S.; Lu, W.; Liu, J.; Wie, Y.; Guo, H.; Zhang, Y.; Shi, J. Increased NFATC4 Correlates with Poor Prognosis of AML Through Recruiting Regulatory T Cells. Front. Genet. 2020, 11, 573124. [Google Scholar] [CrossRef]
- Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 2001, 276, 37993–38001. [Google Scholar] [CrossRef]
- Haskell, C.A.; Cleary, M.D.; Charo, I.F. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J. Biol. Chem. 1999, 274, 10053–10058. [Google Scholar] [CrossRef]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 91, 521–530. [Google Scholar] [CrossRef]
- Schoppmeyer, R.; van Steen, A.C.I.; Kempers, L.; Timmerman, A.L.; Nolte, M.A.; Hombrink, P.; van Buul, J.D. The endothelial diapedesis synapse regulates transcellular migration of human T lymphocytes in a CX3CL1- and SNAP23-dependent manner. Cell Rep. 2022, 38, 110243. [Google Scholar] [CrossRef]
- Bourd-Boittin, K.; Basset, L.; Bonnier, D.; L’helgoualc’h, A.; Samson, M.; Théret, N. CX3CL1/fractalkine shedding by human hepatic stellate cells: Contribution to chronic inflammation in the liver. J. Cell. Mol. Med. 2009, 13, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.-H.; Downing, J.R.; Campana, D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 2018, 3, e98561. [Google Scholar] [CrossRef] [PubMed]
- Mei, N.; Su, H.; Gong, S.; Du, H.; Zhang, X.; Wang, L.; Wang, H. High CX3CR1 expression predicts poor prognosis in paediatric acute myeloid leukaemia undergoing hyperleukocytosis. Int. J. Lab. Hematol. 2023, 45, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997, 385, 640–644. [Google Scholar] [CrossRef]
- Tavor, S.; Eisenbach, M.; Jacob-Hirsch, J.; Golan, T.; Petit, I.; Benzion, K.; Kay, S.; Baron, S.; Amariglio, N.; Deutsch, V.; et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 2008, 22, 2151–5158. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Milisav, I. The Role of Antioxidants in Cancer, Friends or Foes? Curr. Pharm. Des. 2018, 24, 5234–5244. [Google Scholar] [CrossRef]
- Pruenster, M.; Mudde, L.; Bombosi, P.; Dimitrova, S.; Zsak, M.; Middleton, J.; Richmond, A.; Graham, G.J.; Segerer, S.S.; Nibbs, R.J.B.; et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat. Immunol. 2009, 10, 101–108. [Google Scholar] [CrossRef]
- Xiong, Z.; Cavaretta, J.; Qu, L.; Stolz, D.B.; Triulzi, D.; Lee, J.S. Red blood cell microparticles show altered inflammatory chemokine binding and release ligand upon interaction with platelets. Transfusion 2011, 51, 610–621. [Google Scholar] [CrossRef]
- Zhao, Y.; Mangalmurti, N.S.; Xiong, Z.; Prakash, B.; Guo, F.; Stolz, D.B.; Lee, J.S. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells. PLoS ONE 2011, 6, e29624. [Google Scholar] [CrossRef]
- Weber, M.; Blair, E.; Simpson, C.V.; O’Hara, M.; Blackburn, P.E.; Rot, A.; Graham, G.J.; Nibbs, R.J.B. The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol. Biol. Cell 2004, 15, 2492–2508. [Google Scholar] [CrossRef]
- Levoye, A.; Balabanian, K.; Baleux, F.; Bachelerie, F.; Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 2009, 113, 6085–6093. [Google Scholar] [CrossRef] [PubMed]
- Bachelerie, F.; Graham, G.J.; Locati, M.; Mantovani, A.; Murphy, P.M.; Nibbs, R.; Rot, A.; Sozzani, S.; Thelen, M. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br. J. Pharmacol. 2015, 172, 3945–3949. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.M.; Summers, B.C.; Wang, Y.; Melikian, A.; Berahovich, R.; Miao, Z.; Penfold, M.E.T.; Sunshine, M.J.; Littman, D.R.; Kuo, C.J.; et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 2006, 203, 2201–2213. [Google Scholar] [CrossRef] [PubMed]
- Meyrath, M.; Reynders, N.; Uchański, T.; Chevigné, A.; Szpakowska, M. Systematic reassessment of chemokine-receptor pairings confirms CCL20 but not CXCL13 and extends the spectrum of ACKR4 agonists to CCL22. J. Leukoc. Biol. 2021, 109, 373–376. [Google Scholar] [CrossRef]
- Ulvmar, M.H.; Werth, K.; Braun, A.; Kelay, P.; Hub, E.; Eller, K.; Chan, L.; Lucas, B.; Novitzky-Basso, I.; Nakamura, K.; et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 2014, 15, 623–630. [Google Scholar] [CrossRef]
- Monnier, J.; Lewén, S.; O’Hara, E.; Huang, K.; Tu, H.; Butcher, E.C.; Zabel, B.A. Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. J. Immunol. 2012, 189, 956–967. [Google Scholar] [CrossRef]
- Leick, M.; Catusse, J.; Follo, M.; Nibbs, R.J.; Hartmann, T.N.; Veelken, H.; Burger, M. CCL19 is a specific ligand of the constitutively recycling atypical human chemokine receptor CRAM-B. Immunology 2010, 129, 536–546. [Google Scholar] [CrossRef]
- Catusse, J.; Leick, M.; Groch, M.; Clark, D.J.; Buchner, M.V.; Zirlik, K.; Burger, M. Role of the atypical chemoattractant receptor CRAM in regulating CCL19 induced CCR7 responses in B-cell chronic lymphocytic leukemia. Mol. Cancer 2010, 9, 297. [Google Scholar] [CrossRef]
- Karantanos, T.; Teodorescu, P.; Arvanitis, M.; Perkins, B.; Jain, T.; DeZern, A.E.; Dalton, W.B.; Christodoulou, I.; Paun, B.C.; Varadhan, R.; et al. CCRL2 affects the sensitivity of myelodysplastic syndrome and secondary acute myeloid leukemia cells to azacitidine. Haematologica 2023, 108, 1886–1899. [Google Scholar] [CrossRef]
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR1 | Higher expression on AML cells compared to cord blood-derived CD34+ cells. The highest expression in AML cells with FAB M4–M5 phenotypes. In these cells, the expression level is similar to that in monocytes. Higher expression on CD34+ AML cells than on CD34− AML cells. | Higher expression in AML cells signifies a worse prognosis. | [23,24,29,30,31,32] |
CCL3 | Higher levels in the blood and bone marrow of AML patients compared to healthy subjects. AML cells with the FAB M4–M5 phenotypes exhibit higher production than less differentiated AML cells. These AML cells also secrete more CCL3 than monocytes. Lower production in AML cells with the FAB M0–M1 phenotypes compared to CD34+ bone marrow cells. | Depending on the published paper, it can either decrease or increase the proliferation rate of AML cells. Causes recruitment and accumulation of Treg in the bone marrow of AML patients. In pediatric patients, it is involved in the formation of extramedullary AML of the skin. Disrupts erythropoiesis leading to a decrease in the number of erythrocytes and platelets in the blood. Higher expression of CCL3 in AML cells is associated with a poorer prognosis | [23,24,30,31,36,37,38,39,46,53,54,55,56,57,62] |
CCL14 | Lower levels in AML cells with mutations in the FLT3 gene. | In some patients, it may increase AML cell proliferation. No association between expression in AML cells and prognosis. | [23,24,31,69] |
CCL15 | In some patients, it may increase AML cell proliferation. No association between expression in AML cells and prognosis. | [23,24,31] | |
CCL16 | In some patients, it may increase AML cell proliferation. No association between expression in AML cells and prognosis. | [23,24,31] | |
CCL23 | Higher levels in the bone marrow of AML patients compared to healthy individuals. The highest expression in AML cells with FAB M4–M5 phenotypes. | A trend (p = 0.059) of higher expression in AML cells with worse prognosis. In some patients, it causes an increase, and in others, a decrease in AML cell proliferation. It disrupts erythropoiesis, leading to a decrease in the number of erythrocytes and platelets in the blood | [23,24,31,40,66,68] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR2 | Higher expression in AML cells than in cord blood-derived CD34+ cells, but lower than in monocytes. The highest expression in AML cells with the FAB M4–M5 phenotype. The expression in AML cells with the FAB M4–M5 phenotypes is similar to that on monocytes. Higher expression on CD34+ AML cells than on CD34− AML cells. Higher expression in AML cells with inv(16). | AML cell expression levels are not associated with prognosis. | [23,24,29,30,31] |
CCL2 | The lowest levels in blood in AML with FAB M4–M5 phenotypes. Lower levels in blood with lower levels of AML blasts in blood. Highest expression in AML cells with FAB M4–M5 phenotypes. Reduced expression in AML cells with FLT3 gene mutation. | Expression level in AML cells is not associated with prognosis. Chemoattractant and recruiter of monocytes. Causes senescence of MSC cells in bone marrow. Thymic dysfunction in patients with AML | [23,24,30,31,45,73,74,76,81,83,88] |
CCL7 | Expression in AML cells with FAB M4–M5 phenotypes. No expression in AML cells with FAB M0–M1 phenotypes. | [23,24,30] | |
CCL8 | Expression in AML cells with FAB M4–M5 phenotypes. No expression in AML cells with FAB M0–M1 phenotypes. The highest expression in AML cells with FAB M6 phenotype. | Expression level in AML cells is not associated with prognosis. | [23,24,30] |
CCL13 | The highest expression in AML cells with FAB M6 phenotype. | Expression level in AML cells is not associated with prognosis. | [23,24] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR4 | The highest expression in AML cells with the FAB M0 phenotype. Lower expression in AML cells with FLT3 gene mutation. Higher expression on CD34+ AML cells than on CD34− AML cells. | Higher expression level in AML cells is associated with a trend (p = 0.06) of poorer prognosis. | [23,24,27,31] |
CCL17 | Lower blood levels in in AML patients. | [23,24,31,92] | |
CCL22 | Higher production in AML cells compared to bone marrow CD34+ cells and blood monocytes. The highest expression in AML cells with FAB M4–M5 phenotypes. | Higher expression in AML cells signifies a poorer prognosis. | [23,24,30,31,91] |
CKLF | The lowest expression in AML cells with the FAB M3 phenotype. | Higher expression in AML cells signifies a poorer prognosis. | [23,24,27] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR5 | The highest expression in AML cells with the FAB M4–M5 phenotypes. Higher expression on CD34+ AML cells than on CD34− AML cells. | Higher expression in AML cells signifies poorer prognosis. In AML with FLT3 mutations, causing resistance to FLT3 tyrosine kinase inhibitors. Involved in Treg recruitment to the bone marrow. | [23,24,30,31,32,46,57,103] |
CCL4 | The highest expression in AML cells with the FAB M7 phenotype. Lower expression in AML cells with mutation in the FLT3 gene. | Higher expression in AML cells signifies a poorer prognosis. | [23,24,27,39] |
CCL5 | Higher levels in the blood of patients with a lower percentage of AML blasts in the blood. Highest expression in AML cells with FAB M5 and M7 phenotypes. | Higher expression in AML cells signifies a poorer prognosis. In AML with FLT3 mutations, CCL5 causes resistance to FLT3 tyrosine kinase inhibitors. | [23,24,39,44,74,100,101,103] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR9 | Higher expression in AML cells with FAB M4–M5 phenotypes than on monocytes. Lower expression in AML cells with FLT3 gene mutation. | Expression level in AML cells is not associated with prognosis. | [23,24,30] |
CCL25 | The highest expression in AML cells with the FAB M7 phenotype, the lowest in AML cells with the FAB M3 phenotype. Lower expression in AML cells with FLT3 gene mutation. | Higher expression in AML cells signifies a poorer prognosis. | [23,24,30] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
CCR10 | The highest expression is the highest in AML cells with the FAB M7 phenotype, and the lowest in AML cells with the FAB M3 phenotype. Lower expression in AML cells with FLT3 gene mutation. | Higher expression in AML cells signifies a poorer prognosis. | [23,24] |
CCL27 | |||
CCL28 | Expression is the lowest in AML cells with FAB M3 and M5 phenotypes. Lower expression is observed in AML cells with mutation in the FLT3 gene. | Modulates the action of hematopoietic growth factors. | [23,24,114] |
Protein | Expression in AML | Involvement in Tumorigenesis in AML | Sources |
---|---|---|---|
XCR1 | Higher expression in AML cells signifies a poorer prognosis. | [94] | |
XCL1 | The highest expression in AML cells with FAB M7 phenotype Lower expression in AML cells with FLT3 gene mutation | Possibly increases the rate of AML cell proliferation. | [23,24,31] |
XCL2 | The highest expression in AML cells with the FAB M7 phenotype Lower expression in AML cells with mutation in the FLT3 gene | [23,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbecki, J.; Bosiacki, M.; Stasiak, P.; Snarski, E.; Brodowska, A.; Chlubek, D.; Baranowska-Bosiacka, I. Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers 2024, 16, 3246. https://doi.org/10.3390/cancers16193246
Korbecki J, Bosiacki M, Stasiak P, Snarski E, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers. 2024; 16(19):3246. https://doi.org/10.3390/cancers16193246
Chicago/Turabian StyleKorbecki, Jan, Mateusz Bosiacki, Piotr Stasiak, Emilian Snarski, Agnieszka Brodowska, Dariusz Chlubek, and Irena Baranowska-Bosiacka. 2024. "Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS)" Cancers 16, no. 19: 3246. https://doi.org/10.3390/cancers16193246
APA StyleKorbecki, J., Bosiacki, M., Stasiak, P., Snarski, E., Brodowska, A., Chlubek, D., & Baranowska-Bosiacka, I. (2024). Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers, 16(19), 3246. https://doi.org/10.3390/cancers16193246