Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated with Increased Risk of Kidney Cancer: A Nationwide Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Main Outcomes
2.2. Variables and Covariates
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients among the Entire Population
3.2. Cumulative Risk for Primary and Secondary Outcomes According to MASLD or MetALD Compared with Non-MASLD
3.3. Stratification Analyses of the Risk for Kidney Cancer According to MASLD or MetALD Compared with Non-MASLD
3.4. Analysis of the Risk for Kidney Cancer in Relation to Metabolic Burden Defined as the Number of Metabolic Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. Mafld: How is it different from nafld? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, Y.; Shin, H.R.; Lee, B.; Shin, A.; Jung, K.W.; Jee, S.H.; Kim, D.H.; Yun, Y.H.; Park, S.K.; et al. Population-attributable causes of cancer in korea: Obesity and physical inactivity. PLoS ONE 2014, 9, e90871. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L.; Chadid, S.; Singer, M.R.; Kreger, B.E.; Denis, G.V. Metabolic health reduces risk of obesity-related cancer in framingham study adults. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Karra, P.; Winn, M.; Pauleck, S.; Bulsiewicz-Jacobsen, A.; Peterson, L.; Coletta, A.; Doherty, J.; Ulrich, C.M.; Summers, S.A.; Gunter, M.; et al. Metabolic dysfunction and obesity-related cancer: Beyond obesity and metabolic syndrome. Obesity (Silver Spring) 2022, 30, 1323–1334. [Google Scholar] [CrossRef]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (nafld) and nonalcoholic steatohepatitis (nash): A systematic review. Hepatology (Baltim. Md.) 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.M.; AlQahtani, S.; Younossi, Y.; Tuncer, G.; Younossi, Z.M. Burden of non-alcoholic fatty liver disease in asia, the middle east and north africa: Data from global burden of disease 2009–2019. J. Hepatol. 2021, 75, 795–809. [Google Scholar] [CrossRef]
- Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of mafld and nafld diagnostic criteria in real world. Liver Int. 2020, 40, 2082–2089. [Google Scholar] [CrossRef]
- Boyle, M.; Masson, S.; Anstee, Q.M. The bidirectional impacts of alcohol consumption and the metabolic syndrome: Cofactors for progressive fatty liver disease. J. Hepatol. 2018, 68, 251–267. [Google Scholar] [CrossRef]
- The Lancet Gastroenterology Hepatology. Redefining non-alcoholic fatty liver disease: What’s in a name? Lancet. Gastroenterol. Hepatol. 2020, 5, 419. [Google Scholar] [CrossRef]
- Han, S.K.; Baik, S.K.; Kim, M.Y. Non-alcoholic fatty liver disease: Definition and subtypes. Clin. Mol. Hepatol. 2023, 29, S5–S16. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J. Mafld: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Bhagat, N.; Mehta, M.; Taneja, S.; Duseja, A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J. Hepatol. 2024, 80, e61–e62. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety delphi consensus statement on new fatty liver disease nomenclature. Hepatology (Baltim. Md.) 2023, 78, 1966–1986. [Google Scholar]
- Staufer, K.; Stauber, R.E. Steatotic liver disease: Metabolic dysfunction, alcohol, or both? Biomedicines 2023, 11, 2108. [Google Scholar] [CrossRef]
- Kim, G.A.; Moon, J.H.; Kim, W. Critical appraisal of metabolic dysfunction-associated steatotic liver disease: Implication of janus-faced modernity. Clin. Mol. Hepatol. 2023, 29, 831–843. [Google Scholar] [CrossRef]
- Yoon, E.L.; Jun, D.W. Waiting for the changes after the adoption of steatotic liver disease. Clin. Mol. Hepatol. 2023, 29, 844–850. [Google Scholar] [CrossRef]
- Mantovani, A.; Morieri, M.L.; Aldigeri, R.; Palmisano, L.; Masulli, M.; Bonomo, K.; Baroni, M.G.; Cossu, E.; Cimini, F.A.; Cavallo, G.; et al. Masld, hepatic steatosis and fibrosis are associated with the prevalence of chronic kidney disease and retinopathy in adults with type 1 diabetes mellitus. Diabetes Metab. 2023, 50, 101497. [Google Scholar] [CrossRef]
- Sun, Y.; Hong, L.; Huang, Z.; Wang, L.; Xiong, Y.; Zong, S.; Zhang, R.; Liu, J.; Zang, S. Fibrosis risk in nonalcoholic fatty liver disease is related to chronic kidney disease in older type 2 diabetes patients. J. Clin. Endocrinol. Metab. 2022, 107, e3661–e3669. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, H.; Liu, Y.; Hou, X.; Wei, L.; Bao, Y.; Yang, C.; Zong, G.; Wu, J.; Jia, W. Association of mafld with diabetes, chronic kidney disease, and cardiovascular disease: A 4.6-year cohort study in china. J. Clin. Endocrinol. Metab. 2022, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Bilson, J.; Mantovani, A.; Byrne, C.D.; Targher, G. Steatotic liver disease, masld and risk of chronic kidney disease. Diabetes Metab. 2023, 50, 101506. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut 2022, 71, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Ma, X.F.; Zhao, J.; Du, S.X.; Zhang, J.; Dong, M.Z.; Xin, Y.N. Association between nonalcoholic fatty liver disease and extrahepatic cancers: A systematic review and meta-analysis. Lipids Health Dis. 2020, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, C.; Suo, C.; Zhao, R.; Jin, L.; Zhang, T.; Chen, X. Metabolic dysfunction-associated fatty liver disease and the risk of 24 specific cancers. Metab. Clin. Exp. 2022, 127, 154955. [Google Scholar] [CrossRef]
- Konyn, P.; Ahmed, A.; Kim, D. Causes and risk profiles of mortality among individuals with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S43–S57. [Google Scholar] [CrossRef]
- Song, S.O.; Jung, C.H.; Song, Y.D.; Park, C.Y.; Kwon, H.S.; Cha, B.S.; Park, J.Y.; Lee, K.U.; Ko, K.S.; Lee, B.W. Background and data configuration process of a nationwide population-based study using the korean national health insurance system. Diabetes Metab. J. 2014, 38, 395–403. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, J.Y.; Han, K.; Shen, J.J. Association between glycemic status and the risk of kidney cancer in men and women: A nationwide cohort study. Diabetes Care 2023, 46, 38–45. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.H.; Kim, S.U.; Kim, H.C. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: A nationwide cohort study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147.e10. [Google Scholar] [CrossRef]
- Jeong, S.W.; Kim, S.H.; Kang, S.H.; Kim, H.J.; Yoon, C.H.; Youn, T.J.; Chae, I.H. Mortality reduction with physical activity in patients with and without cardiovascular disease. Eur. Heart J. 2019, 40, 3547–3555. [Google Scholar] [CrossRef]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Han, K.D.; Lee, Y.H.; Kim, K.S.; Hong, S.; Park, J.H.; Park, C.Y. Fatty liver & diabetes statistics in korea: Nationwide data 2009 to 2017. Diabetes Metab. J. 2023, 47, 347–355. [Google Scholar] [PubMed]
- Oh, J.; Lee, S.; Sim, J.; Kim, S.; Cho, A.; Yun, B.; Yoon, J.-H. Association between self-perceived social support in the workplace and the presence of depressive/anxiety symptoms. Int. J. Environ. Res. Public Health 2021, 18, 10330. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Scelo, G.; Larose, T.L. Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 2018, 36, Jco2018791905. [Google Scholar] [CrossRef] [PubMed]
- Berger, N.A. Young adult cancer: Influence of the obesity pandemic. Obesity (Silver Spring Md.) 2018, 26, 641–650. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef]
- Magliano, D.J.; Sacre, J.W.; Harding, J.L.; Gregg, E.W.; Zimmet, P.Z.; Shaw, J.E. Young-onset type 2 diabetes mellitus—Implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020, 16, 321–331. [Google Scholar] [CrossRef]
- Berger, N.A. Obesity and cancer pathogenesis. Ann. N. Y. Acad. Sci. 2014, 1311, 57–76. [Google Scholar] [CrossRef]
- Doerner, S.K.; Reis, E.S.; Leung, E.S.; Ko, J.S.; Heaney, J.D.; Berger, N.A.; Lambris, J.D.; Nadeau, J.H. High-fat diet-induced complement activation mediates intestinal inflammation and neoplasia, independent of obesity. Mol. Cancer Res. MCR 2016, 14, 953–965. [Google Scholar] [CrossRef]
- Gluba-Brzózka, A.; Rysz, J.; Ławiński, J.; Franczyk, B. Renal cell cancer and obesity. Int. J. Mol. Sci. 2022, 23, 3404. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Liu, G.; Wei, Y. Association between il-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. Int. J. Clin. Exp. Med. 2015, 8, 13491–13499. [Google Scholar] [PubMed]
- Carey, A.L.; Steinberg, G.R.; Macaulay, S.L.; Thomas, W.G.; Holmes, A.G.; Ramm, G.; Prelovsek, O.; Hohnen-Behrens, C.; Watt, M.J.; James, D.E.; et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via amp-activated protein kinase. Diabetes 2006, 55, 2688–2697. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ashcraft, K. An il-6 link between obesity and cancer. Front. Biosci. (Elite Ed.) 2013, 5, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Challapalli, A.; Carroll, L.; Aboagye, E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging 2017, 5, 225–253. [Google Scholar] [CrossRef]
- van Kruijsdijk, R.C.; van der Wall, E.; Visseren, F.L. Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2569–2578. [Google Scholar] [CrossRef]
- Chen, C.; Chang, Y.C.; Lan, M.S.; Breslin, M. Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by increasing cyclin d1 and mcl-1 expression via the activation of the mek/erk1/2 and pi3k/akt signaling pathways. Int. J. Oncol. 2013, 42, 1113–1119. [Google Scholar] [CrossRef]
- Sugiyama, M.; Takahashi, H.; Hosono, K.; Endo, H.; Kato, S.; Yoneda, K.; Nozaki, Y.; Fujita, K.; Yoneda, M.; Wada, K.; et al. Adiponectin inhibits colorectal cancer cell growth through the ampk/mtor pathway. Int. J. Oncol. 2009, 34, 339–344. [Google Scholar]
- London, A.; Lundsgaard, A.M.; Kiens, B.; Bojsen-Møller, K.N. The role of hepatic fat accumulation in glucose and insulin homeostasis-dysregulation by the liver. J. Clin. Med. 2021, 10, 390. [Google Scholar] [CrossRef]
- Hsiao, T.-J.; Chen, J.-C.; Wang, J.-D. Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients. Int. J. Obes. 2004, 28, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Bae, S.J.; Lee, M.J.; Kim, E.H.; Park, H.; Kim, H.S.; Cho, Y.K.; Jung, C.H.; Lee, W.J.; Choe, J. Association of visceral fat obesity, sarcopenia, and myosteatosis with non-alcoholic fatty liver disease without obesity. Clin. Mol. Hepatol. 2023, 29, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kim, H.; Kim, M.G.; Kim, K. Comparison of glucagon-like peptide-1 receptor agonists and thiazolidinediones on treating nonalcoholic fatty liver disease: A network meta-analysis. Clin. Mol. Hepatol. 2023, 29, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Le, I.; Ha, A.; Le, R.H.; Rouillard, N.A.; Fong, A.; Gudapati, S.; Park, J.E.; Maeda, M.; Barnett, S.; et al. Differences in liver and mortality outcomes of non-alcoholic fatty liver disease by race and ethnicity: A longitudinal real-world study. Clin. Mol. Hepatol. 2023, 29, 1002–1012. [Google Scholar] [CrossRef]
Non-MASLD (n = 5,731,764) | MASLD (n = 2,679,407) | MetALD (n = 418,339) | |
---|---|---|---|
Age | |||
20–39 | 2,023,106 (35.3) | 695,594 (25.96) | 136,490 (32.63) |
40–59 | 3,084,660 (53.82) | 1,581,351 (59.02) | 257,568 (61.57) |
60–79 | 623,998 (10.89) | 402,462 (15.02) | 24,281 (5.8) |
Sex | |||
Male | 2,364,378 (41.25) | 1,912,048 (71.36) | 391,332 (93.54) |
Female | 3,367,386 (58.75) | 767,359 (28.64) | 27,007 (6.46) |
Type of Insurance | |||
Employee | 3,775,951 (65.88) | 1,884,263 (70.32) | 353,519 (84.51) |
Self-Employed | 1,955,813 (34.12) | 795,144 (29.68) | 64,820 (15.49) |
Income Quartile | |||
(Premium Insurance, KRW) | |||
High | 1,349,674 (23.55) | 753,276 (28.11) | 111,234 (26.59) |
High-middle | 1,357,747 (23.69) | 725,883 (27.09) | 119,631 (28.6) |
Low-middle | 1,518,673 (26.5) | 627,702 (23.43) | 107,316 (25.65) |
Low | 1,505,670 (26.27) | 572,546 (21.37) | 80,158 (19.16) |
Residential Area | |||
Capital | 1,119,023 (19.52) | 495,329 (18.49) | 77,751 (18.59) |
Metropolitan | 1,547,452 (27) | 704,732 (26.3) | 110,878 (26.5) |
Others | 3,065,289 (53.48) | 1,479,346 (55.21) | 229,710 (54.91) |
Chronic Kidney Disease | |||
No | 4,959,732 (86.53) | 2,451,292 (91.49) | 404,299 (96.64) |
Yes | 772,032 (13.47) | 228,115 (8.51) | 14,040 (3.36) |
Charlson Comorbidity Index | |||
0 | 4,449,249 (77.62) | 1,850,746 (69.07) | 323,297 (77.28) |
1 | 771,468 (13.46) | 381,406 (14.23) | 39,661 (9.48) |
≥2 | 511,047 (8.92) | 447,255 (16.69) | 55,381 (13.24) |
Smoking History | |||
non-smoker | 3,998,494 (69.76) | 1,312,370 (48.98) | 77,234 (18.46) |
ex-smoker | 606,348 (10.58) | 501,184 (18.71) | 104,369 (24.95) |
current smoker | 1,126,922 (19.66) | 865,853 (32.32) | 236,736 (56.59) |
Physical Activity | |||
<500 | 279,270 (4.87) | 132,476 (4.94) | 22,899 (5.47) |
500 to <1000 | 574,254 (10.02) | 274,127 (10.23) | 49,031 (11.72) |
1000 to <1500 | 1,584,680 (27.65) | 733,660 (27.38) | 125,009 (29.88) |
≥1500 | 3,293,560 (57.46) | 1,539,144 (57.44) | 221,400 (52.92) |
Outcome | Metabolic SLDs | Crude Model | Model 1 | Model 2 | Final Model |
---|---|---|---|---|---|
KC | Non-MASLD | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
MASLD | 2.15 (2.08–2.21) | 1.55 (1.50–1.60) | 1.55 (1.50–1.60) | 1.51 (1.46–1.56) | |
MetALD | 2.15 (2.03–2.28) | 1.57 (1.48–1.67) | 1.57 (1.48–1.67) | 1.51 (1.42–1.61) | |
All-cause mortality | Non-MASLD | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
MASLD | 1.54 (1.53–1.55) | 1.07 (1.06–1.08) | 1.06 (1.07–1.08) | 1.09 (1.09–1.10) | |
MetALD | 1.24 (1.23–1.26) | 1.24 (1.22–1.25) | 1.24 (1.22–1.25) | 1.19 (1.17–1.20) |
Metabolic SLDs | N at Event | Person-Year | Rate (Per 100,000) | Adjusted HR (95% CI) | |
---|---|---|---|---|---|
Age | |||||
Young (20–39) | Non-MASLD | 1206 | 26,786,386 | 4.5 | Reference (1.00) |
MASLD | 1154 | 9,183,713 | 12.57 | 1.93 (1.77–2.11) | |
MetALD | 224 | 1,798,528 | 12.45 | 1.91 (1.65–2.22) | |
Middle (40–59) | Non-MASLD | 5102 | 40,612,225 | 12.56 | Reference (1.00) |
MASLD | 5248 | 20,653,918 | 25.41 | 1.51 (1.45–1.55) | |
MetALD | 879 | 3,345,501 | 26.27 | 1.45 (1.34–1.56) | |
Elder (60–79) | Non-MASLD | 1871 | 7,481,997 | 25.01 | Reference (1.00) |
MASLD | 1703 | 4,828,358 | 35.27 | 1.32 (1.24–1.41) | |
MetALD | 168 | 283,212 | 59.32 | 1.50 (1.28–1.77) | |
Sex | |||||
Male | Non-MASLD | 4662 | 30,620,323 | 15.23 | Reference (1.00) |
MASLD | 6447 | 24,727,118 | 26.07 | 1.58 (1.52–1.64) | |
MetALD | 1232 | 5,073,089 | 24.29 | 1.57 (1.47–1.67) | |
Female | Non-MASLD | 3517 | 44,260,285 | 7.95 | Reference (1.00) |
MASLD | 1658 | 9,938,871 | 16.68 | 1.42 (1.33–1.51) | |
MetALD | 39 | 354,152 | 11.01 | 1.38 (1.00–1.90) |
Metabolic SLDs | Number of Metabolic Components | N at Risk | N of KC | Person-Year | Rate (Per 100,000) | Adjusted HR (95% CI) |
---|---|---|---|---|---|---|
Non-MASLD | 0 | 1,660,901 | 1373 | 21,901,403 | 6.269 | reference (1.00) |
1 | 1,825,417 | 2215 | 23,927,946 | 9.257 | 1.14 (1.07–1.22) | |
2 | 1,273,925 | 2236 | 16,578,036 | 13.488 | 1.38 (1.29–1.48) | |
3 | 616,847 | 1317 | 7,964,314 | 16.536 | 1.48 (1.37–1.61) | |
4 | 258,751 | 723 | 3,295,460 | 21.939 | 1.78 (1.62–1.96) | |
5 | 95,923 | 315 | 1,213,450 | 25.959 | 1.89 (1.67–2.15) | |
MASLD | 1 | 251,788 | 514 | 3,297,716 | 15.587 | reference (1.00) |
2 | 653,856 | 1619 | 8,528,412 | 18.984 | 1.14 (1.03–1.26) | |
3 | 821,516 | 2321 | 10,654,397 | 21.784 | 1.23 (1.11–1.35) | |
4 | 631,805 | 2270 | 8,134,048 | 27.907 | 1.48 (1.35–1.64) | |
5 | 320,442 | 1381 | 4,051,415 | 34.087 | 1.67 (1.50–1.85) | |
MetALD | 1 | 44,951 | 85 | 586,151 | 14.501 | reference (1.00) |
2 | 113,522 | 283 | 1,478,212 | 19.145 | 1.24 (0.97–1.58) | |
3 | 137,568 | 406 | 1,785,078 | 22.744 | 1.36 (1.08–1.72) | |
4 | 91,067 | 321 | 1,177,025 | 27.272 | 1.51 (1.18–1.92) | |
5 | 31,231 | 176 | 400,774 | 43.915 | 2.09 (1.60–2.72) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Kim, B.K.; Yoon, J.-H.; Lee, H.H.; Park, H.; Lee, J.; Park, Y.; Yun, B.; Chung, J. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated with Increased Risk of Kidney Cancer: A Nationwide Study. Cancers 2024, 16, 3161. https://doi.org/10.3390/cancers16183161
Oh J, Kim BK, Yoon J-H, Lee HH, Park H, Lee J, Park Y, Yun B, Chung J. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated with Increased Risk of Kidney Cancer: A Nationwide Study. Cancers. 2024; 16(18):3161. https://doi.org/10.3390/cancers16183161
Chicago/Turabian StyleOh, Juyeon, Beom Kyung Kim, Jin-Ha Yoon, Hyung Ho Lee, Heejoo Park, Jian Lee, Youngsun Park, Byungyoon Yun, and Jinsoo Chung. 2024. "Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated with Increased Risk of Kidney Cancer: A Nationwide Study" Cancers 16, no. 18: 3161. https://doi.org/10.3390/cancers16183161
APA StyleOh, J., Kim, B. K., Yoon, J. -H., Lee, H. H., Park, H., Lee, J., Park, Y., Yun, B., & Chung, J. (2024). Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated with Increased Risk of Kidney Cancer: A Nationwide Study. Cancers, 16(18), 3161. https://doi.org/10.3390/cancers16183161