Transdermal Fentanyl in Patients with Cachexia—A Scoping Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Strategy
- Methods: study type, setting, timing of the evaluation.
- Participants: general definition of the enrolled population, site of cancer/other diseases, type, location and intensity of pain, number of subjects, mean/median age, sex/gender.
- Interventions: administered drug with dosage, titration, rescue drug, any dose increase/decreases, behavior in relation to any other drugs.
- Outcomes: We categorized the outcomes into primary and secondary. Primary outcomes describe the response to TDF in terms of efficacy and tolerability (NRS, Visual Analogue Scale [VAS], Edmonton Symptom Assessment Scale [ESAS], Symptom Distress Score [SDS], successful/partial successful opioid rotation, worst and least pain intensity scores, percent pain relief, number of rescue events, frequency of opioid-induced side effects), while secondary outcomes define the impact of fentanyl on some key PK stages of the drug (TDF dose, Morphine Equivalent Dose [MED], plasma fentanyl and norfentanyl concentration, Metabolic Ratio [MR], Transepidermal Water Loss [TEWL]).
2.3. Data Extraction and Synthesis
2.4. Quality Appraisal of Evidence
3. Results
3.1. Search Process
3.2. Characteristics of the Studies
- From other opioids to 72 h TDF and the patch was maintained for 3 days at least [21].
- From Continuous Intravenous Infusion (CII) to 72 h TDF, using a 2-step taper over 6 h [25].
- From oxycodone to 72 h TDF [26].
- From other opioids to 72 h TDF [28].
- From oral oxycodone/morphine to 72 h TDF. Then, some patients were switched to morphine injection [31].
3.3. Analysis of the Evidence
3.4. Quality Appraisal of Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
TDF | Transdermal Fentanyl |
PK | pharmacokinetics |
PC | Palliative Care |
VAS | Visual Analog Scale |
NRS | Numeric Rating Scale |
VRS | Verbal Rating Scale |
VDS | Verbal Descriptor Scale |
BMI | body mass index |
Alb | albumin |
eGFR | estimated Glomerular Filtration Rate |
AST | aspartate transaminase |
ALT | alanine transaminase |
IL | interleukin |
TNF- | Tumor Necrosis Factor |
ESAS | Edmonton Symptom Assessment System |
SDS | Symptom Distress Scale |
NRS-2002 | Nutritional Risk Screening 2002 |
PRO | patient-reported outcomes |
MR | Metabolic Ratio |
TEWL | Transepidermal Water Loss |
MED | Morphine Equivalent Dose |
NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
AUC | area under the curve |
CII | Continuous Intravenous Infusion |
OR | opioid rotation |
NIH | National Institutes of Health |
ESMO | European Society for Medical Oncology |
EAPC | European Association for Palliative Care |
EPCRC | European Palliative Care Research Collaborative |
EPOS | European Pharmacogenetic Opioid Study |
ED | Emergency Department |
FDA | Food and Drug Administration |
ICIs | immune checkpoint inhibitors |
BTP | breakthrough pain |
Appendix A
References
- Patocka, J.; Wu, W.; Oleksak, P.; Jelinkova, R.; Nepovimova, E.; Spicanova, L.; Springerova, P.; Alomar, S.; Long, M.; Kuca, K. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon 2024, 10, e28795. [Google Scholar] [CrossRef] [PubMed]
- Ahmedzai, S.; Brooks, D. Transdermal fentanyl versus sustained-release oral morphine in cancer pain: Preference, efficacy, and quality of life. The TTS-Fentanyl Comparative Trial Group. J. Pain Symptom Manag. 1997, 13, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Allan, L.; Hays, H.; Jensen, N.; de Waroux, B.; Bolt, M.; Donald, R.; Kalso, E. Randomised crossover trial of transdermal fentanyl and sustained release oral morphine for treating chronic non-cancer pain. BMJ 2001, 322, 1154–1158. [Google Scholar] [CrossRef]
- Wang, D.D.; Ma, T.T.; Zhu, H.D.; Peng, C.B. Transdermal fentanyl for cancer pain: Trial sequential analysis of 3406 patients from 35 randomized controlled trials. J. Cancer Res. Ther. 2018, 14, S14–S21. [Google Scholar] [CrossRef]
- Tassinari, D.; Drudi, F.; Rosati, M.; Maltoni, M. Transdermal opioids as front line treatment of moderate to severe cancer pain: A systemic review. Palliat. Med. 2011, 25, 478–487. [Google Scholar] [CrossRef]
- Fallon, M.; Giusti, R.; Aielli, F.; Hoskin, P.; Rolke, R.; Sharma, M.; Ripamonti, C. ESMO Guidelines Committee. Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2018, 29 (Suppl. 4), iv166–iv191. [Google Scholar] [CrossRef] [PubMed]
- Grond, S.; Radbruch, L.; Lehmann, K.A. Clinical pharmacokinetics of transdermal opioids: Focus on transdermal fentanyl. Clin. Pharmacokinet. 2000, 38, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Varvel, J.R.; Shafer, S.L.; Hwang, S.S.; Coen, P.A.; Stanski, D.R. Absorption characteristics of transdermally administered fentanyl. Anesthesiology 1989, 70, 928–934. [Google Scholar] [CrossRef]
- Portenoy, R.; Southam, M.; Gupta, S.; Lapin, J.; Layman, M.; Inturrisi, C.; Foley, K. Transdermal fentanyl for cancer pain. Repeated dose pharmacokinetics. Anesthesiology 1993, 78, 36–43. [Google Scholar] [CrossRef]
- Sudeep, R.B.; Alison, H.; Janet, H.; Michael, L.; Angela, T.; Norris, R. Protein binding of fentanyl and its metabolite nor-fentanyl in human plasma, albumin and α-1 acid glycoprotein. Xenobiotica 2015, 45, 207–212. [Google Scholar] [CrossRef]
- Kuip, E.J.M.; Zandvliet, M.L.; Koolen, S.L.W.; Mathijssen, R.H.J.; Rijt, C.; Van der, C.D. A review of factors explaining variability in fentanyl pharmacokinetics; focus on implications for cancer patients. Br. J. Clin. Pharmacol. 2017, 83, 294. [Google Scholar] [CrossRef]
- von Haehling, S.; Anker, S. Cachexia as a major underestimated and unmet medical need: Facts and numbers. J. Cachexia Sarcopenia Muscle 2010, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Daimary, U.; Girisa, S.; Kumar, A.; Kunnumakkara, A. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp. Biol. Med. 2022, 247, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Strasser, F.; Gonella, S.; Solheim, T.; Madeddu, C.; Ravasco, P.; Buonaccorso, L.; De van der Schueren, M.; Baldwin, C.; Chasen, M.; et al. ESMO Guidelines Committee. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines. ESMO Open 2021, 6, 100092. [Google Scholar] [CrossRef] [PubMed]
- Solassol, I.; Bressolle, F.; Caumette, L.; Garcia, F.; Poujol, S.; Culine, S.; Pinguet, F. Inter- and intraindividual variabilities in pharmacokinetics of fentanyl after repeated 72-hour transdermal applications in cancer pain patients. Ther. Drug Monit. 2005, 27, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Radbruch, L.; Sabatowski, R.; Petzke, F.; Brunsch-Radbruch, A.; Grond, S.; Lehmann, K. Transdermal fentanyl for the management of cancer pain: A survey of 1005 patients. Palliat. Med. 2001, 15, 309–321. [Google Scholar] [CrossRef]
- Kokubun, H.; Ebinuma, K.; Matoba, M.; Takayanagi, R.; Yamada, Y.; Yago, K. Population pharmacokinetics of transdermal fentanyl in patients with cancer-related pain. J. Pain Palliat. Care Pharmacother. 2012, 26, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Bower, S.; Liddle, A.; Rowbotham, D. Perioperative pharmacokinetics of transdermal fentanyl in elderly and young adult patients. Br. J. Anaesth. 1998, 81, 152–154. [Google Scholar] [CrossRef]
- Barratt, D.; Bandak, B.; Klepstad, P.; Dale, O.; Kaasa, S.; Christrup, L.; Tuke, J.; Somogyi, A. Genetic, pathological and physiological determinants of transdermal fentanyl pharmacokinetics in 620 cancer patients of the EPOS study. Pharmacogenet. Genom. 2014, 24, 185–194. [Google Scholar] [CrossRef]
- Ashburn, M.; Ogden, L.; Zhang, J.; Love, G.; Basta, S. The pharmacokinetics of transdermal fentanyl delivered with and without controlled heat. J. Pain 2003, 4, 291–297. [Google Scholar] [CrossRef]
- Heiskanen, T.; Mätzke, S.; Haakana, S.; Gergov, M.; Vuori, E.; Kalso, E. Transdermal fentanyl in cachectic cancer patients. Pain 2009, 144, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Davis, M. Fentanyl Pharmacokinetic Paradoxical in Cancer Cachexia. J. Pain Symptom Manag. 2024, 68, e78. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 30 April 2024).
- Nomura, M.; Inoue, K.; Matsushita, S.; Takahari, D.; Kondoh, C.; Shitara, K.; Ura, T.; Hayashi, K.; Kojima, H.; Kamata, M.; et al. Serum concentration of fentanyl during conversion from intravenous to transdermal administration to patients with chronic cancer pain. Clin. J. Pain 2013, 29, 487–491. [Google Scholar] [CrossRef]
- Takahashi, H.; Chiba, T.; Tairabune, T.; Kimura, Y.; Wakabayashi, G.; Takahashi, K.; Kudo, K. A retrospective study on the influence of nutritional status on pain management in cancer patients using the transdermal fentanyl patch. Biol. Pharm. Bull. 2014, 37, 853–857. [Google Scholar] [CrossRef]
- Suno, M.; Endo, Y.; Nishie, H.; Kajizono, M.; Sendo, T.; Matsuoka, J. Refractory cachexia is associated with increased plasma concentrations of fentanyl in cancer patients. Ther. Clin. Risk Manag. 2015, 8, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Tayjasanant, S.; Haider, A.; Heung, Y.; Wu, J.; Liu, D.; Yennurajalingam, S.; Reddy, S.; De la Cruz, M.; Rodriguez, E.; et al. The opioid rotation ratio of strong opioids to transdermal fentanyl in cancer patients. Cancer 2016, 122, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kuip, E.; Oldenmenger, W.; Thijs-Visser, M.; De Bruijn, P.; Oosten, A.; Oomen-de Hoop, E.; Koolen, S.; Van der Rijt, C.; Mathijssen, R. Effects of smoking and body mass index on the exposure of fentanyl in patients with cancer. PLoS ONE 2018, 8, e0198289. [Google Scholar] [CrossRef] [PubMed]
- Moryl, N.; Bokhari, A.; Griffo, Y.; Hadler, R.; Koranteng, L.; Filkins, A.; Zheng, T.; Horn, S.; Inturrisi, C.E. Does transdermal fentanyl work in patients with low BMI? Patient-reported outcomes of pain and percent pain relief in cancer patients on transdermal fentanyl. Cancer Med. 2019, 8, 7516–7522. [Google Scholar] [CrossRef]
- Chiba, T.; Takahashi, H.; Tairabune, T.; Kimura, S.; Ueda, H.; Kudo, K. Cancer Cachexia May Hinder Pain Control When Using Fentanyl Patch. Biol. Pharm. Bull. 2020, 43, 873–878. [Google Scholar] [CrossRef]
- Clemens, K.; Klaschik, E. Clinical experience with transdermal and orally administered opioids in palliative care patients—A retrospective study. Jpn. J. Clin. Oncol. 2007, 37, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.; Toscano, E. Pain management in patients with chronic kidney disease. NDT Plus. 2009, 2, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Caraceni, A.; Hanks, G.; Kaasa, S.; Bennett, M.; Brunelli, C.; Cherny, N.; Dale, O.; De Conno, F.; Fallon, M.; Hanna, M.; et al. European Palliative Care Research Collaborative (EPCRC); European Association for Palliative Care (EAPC). Use of opioid analgesics in the treatment of cancer pain: Evidence-based recommendations from the EAPC. Lancet Oncol. 2012, 13, e58–e68. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P. Opioid switching from morphine to transdermal fentanyl for toxicity reduction in palliative care. Palliat. Med. 2002, 16, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Shehab, N.; Lovegrove, M.; Geller, A.; Rose, K.; Weidle, N.; Budnitz, D. Emergency Department Visits for Outpatient Adverse Drug Events, 2013–2014. JAMA 2016, 316, 2115–2125. [Google Scholar] [CrossRef]
- Colak, S.; Erdogan, M.; Afacan, M.; Kosargelir, M.; Aktas, S.; Tayfur, İ.; Kandis, H. Neuropsychiatric side effects due to a transdermal fentanyl patch: Hallucinations. Am. J. Emerg. Med. 2015, 33, 477.e1–477.e2. [Google Scholar] [CrossRef]
- Lam, D.; Kay, S.; Pickard, J.; Harrison, S. Unusual case of transdermal fentanyl in cachexia. BMJ Support. Palliat. Care 2019, 9, 363–364. [Google Scholar] [CrossRef]
- Sarhill, N.; Mahmoud, F.A.; Christie, R.; Tahir, A. Assessment of nutritional status and fluid deficits in advanced cancer. Am. J. Hosp. Palliat. Care 2003, 20, 465–473. [Google Scholar] [CrossRef]
- Ooi, K.; Mitani, N.; Numajiri, S.; Morimoto, Y. Appropriate method for applying fentanyl patches. Jpn. Pharmacol. Ther. 2008, 36, 589–592. [Google Scholar]
- Sawada, E.; Yoshida, N.; Sugiura, A.; Imokawa, G. Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: An implication for the disrupted barrier mechanism in atopic dermatitis. J. Dermatol. Sci. 2012, 68, 25–35. [Google Scholar] [CrossRef]
- Morley, J.E.; Thomas, D.R.; Wilson, M.M.G. Cachexia: Pathophysiology and clinical relevance. Am. J. Clin. Nutr. 2006, 83, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Odoma, V.A.; Pitliya, A.; AlEdani, E.; Bhangu, J.; Javed, K.; Manshahia, P.K.; Nahar, S.; Kanda, S.; Chatha, U.; Mohammed, L. Opioid Prescription in Patients With Chronic Kidney Disease: A Systematic Review of Comparing Safety and Efficacy of Opioid Use in Chronic Kidney Disease Patients. Cureus 2023, 15, e45485. [Google Scholar] [CrossRef]
- Rivory, L.P.; Slaviero, K.A.; Clarke, S.J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br. J. Cancer 2002, 87, 277–280. [Google Scholar] [CrossRef]
- Naito, T.; Tashiro, M.; Ishida, T.; Ohnishi, K.; Kawakami, J. Cancer cachexia raises the plasma concentration of oxymorphone through the reduction of CYP3A but not CYP2D6 in oxycodone-treated patients. J. Clin. Pharmacol. 2013, 53, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Plein, L.M.; Rittner, H.L. Opioids and the immune system-friend or foe. Br. J. Pharmacol. 2018, 175, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Giusti, R.; Porzio, G.; Maltoni, M.; Filetti, M.; Cuomo, A.; Bandieri, E.; Trapani, D.; Bruera, E. Association of opioid use with survival in patients with cancer treated with immune checkpoint inhibitors: It is time for evidence-based behaviors. Oncologist 2024, 29, e1088–e1099. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef]
- Gatta, A.; Verardo, A.; Bolognesi, M. Hypoalbuminemia. Intern. Emerg. Med. 2012, 7, 193–199. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Kelly, E.; Conibear, A.; Henderson, G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 491–515. [Google Scholar] [CrossRef]
- Mercadante, S.; Bruera, E. Opioid switching in cancer pain: From the beginning to nowadays. Crit. Rev. Oncol. Hematol. 2016, 99, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Zeppetella, G. Breakthrough pain in cancer patients. Clin. Oncol. (R. Coll. Radiol.) 2011, 23, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Meadows, J.; Goldberg, J.; Collett, D.; Seier, K. Is Fentanyl Patch End-Of-Dose Failure Associated with Body Mass Index? (FR441A). J. Pain Symptom Manag. 2018, 55, 615–616. [Google Scholar] [CrossRef]
- Koike, K.; Terui, T.; Nagasako, T.; Horiuchi, I.; Machino, T.; Kusakabe, T.; Hirayama, Y.; Mihara, H.; Yamakage, M.; Kato, J.; et al. A new once-a-day fentanyl citrate patch (Fentos Tape) could be a new treatment option in patients with end-of-dose failure using a 72-h transdermal fentanyl matrix patch. Support Care Cancer 2016, 24, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, O.; Topacoglu, H.; Dikme, O.; Dikme, O. A systematic review of the pain scales in adults: Which to use? Am. J. Emerg. Med. 2018, 36, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.; Bruera, E. The Edmonton Symptom Assessment System 25 Years Later: Past, Present, and Future Developments. J. Pain Symptom Manag. 2017, 53, 630–643. [Google Scholar] [CrossRef]
- Badger, T.A.; Segrin, C.; Meek, P. Development and validation of an instrument for rapidly assessing symptoms: The General Symptom Distress Scale. J. Pain Symptom Manag. 2011, 41, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Gliklich, R.E.; Dreyer, N.A.; Leavy, M.B. Use of Patient-Reported Outcomes in Registries. In Registries for Evaluating Patient Outcomes: A User’s Guide [Internet], 3rd ed.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2014. [Google Scholar]
- Wheelwright, S.J.; Johnson, C.D. Patient-reported outcomes in cancer cachexia clinical trials. Curr. Opin. Support. Palliat. Care 2015, 9, 325–332. [Google Scholar] [CrossRef]
- Botterman, J.; Criel, N. Inappropriate use of high doses of transdermal fentanyl at admission to a palliative care unit. Palliat. Med. 2011, 25, 111–116. [Google Scholar] [CrossRef]
Study Design | Participants | Intervention(s) | Outcome(s) | |
---|---|---|---|---|
Heiskanen, 2009 [21] | Prospective observational study | Adult cancer patients divided by BMI (n = 20) | Other opioids → 72 h TDF (for 3 days at least) | [I] VAS [II] TDF dose, plasma fentanyl concentration |
Nomura, 2013 [25] | Prospective observational study | Adult cancer patients divided by BMI and serum Alb (n = 18) | Fentanyl CII → TDF | [I] NRS, rescue events, opioid-induced side effects [II] Plasma fentanyl concentration |
Barratt, 2013 [19] | Prospective observational study | Adult cancer patients exposed to different BMI and serum Alb levels (n = 620) | TDF for 3 days at least | [II] Plasma fentanyl and norfentanyl concentration, MR |
Takahashi, 2014 [26] | Retrospective observational study | Adult cancer patients divided by NRS-2002 questionnaire (n = 92) | Oxycodone → TDF | [I] NRS |
Suno, 2015 [27] | Prospective observational study | Adult patients classified according to EPCRC criteria (n = 21) | 24 h TDF for 3 days at least | [I] VAS, opioid-induced side effects [II] Plasma fentanyl concentration |
Reddy, 2016 [28] | Retrospective observational study | Adult cancer patients divided by BMI and serum Alb levels (n = 129) | Other opioids → TDF | [I] ESAS, SDS, successful/partial successful OR, opioid-induced side effects [II] MED |
Kuip, 2018 [29] | Prospective observational study | Adult cancer patients divided by BMI (n = 88) | 72h TDF for 8 days at least | [II] Plasma fentanyl concentration |
Moryl, 2019 [30] | Prospective observational study | Adult cancer patients divided by BMI (n = 240) | 72 h TDF | [I] Worst and least pain intensity scores, percent pain relief [II] TDF dose |
Chiba, 2020 [31] | Retrospective observational study | Adult patients classified according to EPCRC criteria (n = 77) | 24 h TDF for 3 days at least | [I] NRS [II] TDF dose, MED, TEWL |
Primary Objective(s) | Secondary Objective(s) | Hypothesized Pathophysiological Mechanism | |
---|---|---|---|
Heiskanen, 2009 [21] | = VAS | ↑ TDF dose ↓ Plasma fentanyl concentration | Changes in skin permeability (xerosis) resulting in a decreased TDF absorption rate. |
Nomura, 2013 [25] | = NRS = Rescue events = Opioid-induced side effects | = (BMI) / ↓ (Alb) Plasma fentanyl concentration | Hypoalbuminemia may cause an undetectable edema and reduced skin permeability resulting in a decreased TDF absorption rate. |
Barratt, 2013 [19] | - | ↓ Plasma fentanyl concentration ↑ Plasma norfentanyl concentration ↑ MR | No significant differences were observed between cachectic and non-cachectic patients. |
Takahashi, 2014 [26] | ↑ NRS | - | Changes in skin permeability (cutaneous dryness) resulting in a decreased TDF absorption rate. |
Suno, 2015 [27] | = VAS Opioid-induced side effects not reported | ↑ Plasma fentanyl concentration | Reduction in eGFR and cachexia-related inflammation which downregulates CYP3A4 may increase fentanyl plasma concentrations. |
Reddy, 2016 [28] | = ESAS and SDS = Successful/partial successful OR = Opioid-induced side effects | = MED | No significant differences were observed between cachectic and non-cachectic patients. |
Kuip, 2018 [29] | - | = Plasma fentanyl concentration | No significant differences were observed between cachectic and non-cachectic patients. |
Moryl, 2019 [30] | ↑ Percent pain relief ↓ Least pain | ↓ TDF dose | No pathophysiological mechanism was hypothesized. |
Chiba, 2020 [31] * | ↓ NRS | ↑ TDF dose ↑ MED ↓ TEWL | IL-4 elevation from cancer cachexia may decrease ceramide in the skin surface impairing stratum corneum water-holding capability (cutaneous dryness) and reducing the TDF absorption rate. |
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Grading | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Heiskanen, 2009 [21] | Low risk | ||||||||||||||
Nomura, 2013 [25] | Low risk | ||||||||||||||
Barratt, 2013 [19] | Low risk | ||||||||||||||
Takahashi, 2014 [26] | Fair risk | ||||||||||||||
Suno, 2015 [27] | Fair risk | ||||||||||||||
Reddy, 2016 [28] | Low risk | ||||||||||||||
Kuip, 2018 [29] | Low risk | ||||||||||||||
Moryl, 2019 [30] | Low risk | ||||||||||||||
Chiba, 2020 [31] | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlini, A.; Scarpi, E.; Bettini, C.; Ardizzoni, A.; Donati, C.M.; Fabbri, L.; Ghetti, F.; Martini, F.; Ricci, M.; Sansoni, E.; et al. Transdermal Fentanyl in Patients with Cachexia—A Scoping Review. Cancers 2024, 16, 3094. https://doi.org/10.3390/cancers16173094
Carlini A, Scarpi E, Bettini C, Ardizzoni A, Donati CM, Fabbri L, Ghetti F, Martini F, Ricci M, Sansoni E, et al. Transdermal Fentanyl in Patients with Cachexia—A Scoping Review. Cancers. 2024; 16(17):3094. https://doi.org/10.3390/cancers16173094
Chicago/Turabian StyleCarlini, Andrea, Emanuela Scarpi, Carla Bettini, Andrea Ardizzoni, Costanza Maria Donati, Laura Fabbri, Francesca Ghetti, Francesca Martini, Marianna Ricci, Elisabetta Sansoni, and et al. 2024. "Transdermal Fentanyl in Patients with Cachexia—A Scoping Review" Cancers 16, no. 17: 3094. https://doi.org/10.3390/cancers16173094
APA StyleCarlini, A., Scarpi, E., Bettini, C., Ardizzoni, A., Donati, C. M., Fabbri, L., Ghetti, F., Martini, F., Ricci, M., Sansoni, E., Tenti, M. V., Morganti, A. G., Bruera, E., Maltoni, M. C., & Rossi, R. (2024). Transdermal Fentanyl in Patients with Cachexia—A Scoping Review. Cancers, 16(17), 3094. https://doi.org/10.3390/cancers16173094