Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Participants and Selection Criteria
2.2. DNA Extraction and Sequencing
2.3. Variant Interpretation and Annotation
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics of the Cohorts
3.2. Germline Mutations between Cohorts
4. Discussion
HBOC | Unselected Breast Cancer | Benign Breast | Normal Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Japan [41] | Taiwan [42] | China [43] | Singapore [44] | Korea [45] | Hong Kong | China [28] | Hong Kong | Hong Kong | China [28] | |
Panel | 30 Genes | 20 Genes | 22 Genes | Mixed | 35 Genes | Mixed | 15 Genes | 30 Genes | 30 Genes | 15 Genes |
N = | 568 | 480 | 481 | 460 | 120 | 3935 | 8067 | 307 | 101 | 13,129 |
% | % | % | % | % | % | % | % | % | % | |
BRCA1 | Neg | 1.25 | 14.6 | 14.1 | Neg | 3.58 | 1.81 | 1.63 | 0 | 0.19 |
BRCA2 | Neg | 7.08 | 5 | 9.3 | Neg | 4.98 | 3.52 | 1.3 | 0 | 0.35 |
PALB2 | 1.23 | 1.88 | 1.7 | 0.4 | 2.5 | 1.2 | 0.71 | 0 | 0 | 0.14 |
TP53 | 0 | 0.21 | 0.6 | 1.3 | 1.7 | 0.6 | 0.38 | 0.33 | 0 | 0.02 |
PTEN | 0 | 0 | 0.4 | 0 | 0 | 0.1 | 0.06 | 0 | 0 | 0 |
CDH1 | 0 | 0 | 0 | 0.22 | 0 | 0 | 0.01 | 0 | 0 | 0 |
ATM | 0.88 | 0.63 | 1 | 0.4 | 0 | 0.3 | 0.38 | 0.98 | 3 | 0.18 |
BARD1 | 0.88 | 0.21 | 0 | 0 | 1.7 | 0.2 | 0.19 | 1.3 | 0 | 0.06 |
RAD51D | 0.7 | 1.25 | 0.4 | 0.22 | 0 | 0.2 | 0.38 | 0.33 | 1 | 0.18 |
BRIP1 | 0.53 | 0.21 | 0.8 | 0.4 | 1.7 | 0.1 | 0.14 | 0.33 | 2 | 0.22 |
RAD51C | 0.53 | 0.42 | 0 | 0.22 | 0 | 0.1 | 0.02 | 0 | 1 | 0.17 |
CHEK2 | 0.18 | 0 | 0 | 0.22 | 0 | 0.2 | 0.32 | 0 | 0 | 0.13 |
NBN | 0 | 0 | 0.4 | 0.22 | 0 | 0 | 0.07 | 0 | 0 | 0.04 |
STK11 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 1 | 0.01 |
RAD50 | 0.18 | 0.21 | 0.4 | 0.22 | 0 | NT | 0.26 | NT | NT | 0.24 |
PMS2 | 0 | 0.21 | 0 | 0 | 0 | 0.03 | NT | 0 | 0 | NT |
MSH2 | 0 | 0 | 0.4 | 0.22 | 0 | 0.1 | NT | 0 | 0 | NT |
MLH1 | 0 | 0 | 0 | 0.7 | 0 | 0 | NT | 0.33 | 0 | NT |
MSH6 | 0 | 0 | 0 | 0 | 0 | 0.03 | NT | 0 | 0 | NT |
MUTYH | NT | NT | 0.6 | 1.5 | 0 | 0.13 | NT | 0 | 0 | NT |
BLM | 0.7 | NT | NT | NT | 0 | NT | NT | NT | NT | NT |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robson, M.; Goessl, C.; Domchek, S. Olaparib for Metastatic Germline BRCA-Mutated Breast Cancer. N. Engl. J. Med. 2017, 377, 1792–1793. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E., Jr.; Garber, J.E.; Gelber, R.D.; Yothers, G.; Taboada, M.; Ross, L.; Rastogi, P.; Cui, K.; Arahmani, A.; Aktan, G.; et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann. Oncol. 2022, 33, 1250–1268. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef]
- Gruber, J.J.; Afghahi, A.; Timms, K.; DeWees, A.; Gross, W.; Aushev, V.N.; Wu, H.T.; Balcioglu, M.; Sethi, H.; Scott, D.; et al. A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. Nat. Cancer 2022, 3, 1181–1191. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Vogelstein, B.; Kinzler, K.W. The multistep nature of cancer. Trends Genet. 1993, 9, 138–141. [Google Scholar] [CrossRef]
- Espinel, W.; Champine, M.; Hampel, H.; Jeter, J.; Sweet, K.; Pilarski, R.; Pearlman, R.; Shane, K.; Brock, P.; Westman, J.A.; et al. Clinical Impact of Pathogenic Variants in DNA Damage Repair Genes beyond BRCA1 and BRCA2 in Breast and Ovarian Cancer Patients. Cancers 2022, 14, 2426. [Google Scholar] [CrossRef]
- Graffeo, R.; Rana, H.Q.; Conforti, F.; Bonanni, B.; Cardoso, M.J.; Paluch-Shimon, S.; Pagani, O.; Goldhirsch, A.; Partridge, A.H.; Lambertini, M.; et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022, 65, 32–40. [Google Scholar] [CrossRef]
- Jung, K.; Lee, S.; Na, H.Y.; Kim, J.W.; Lee, J.C.; Hwang, J.H.; Kim, J.W.; Kim, J. NGS-based targeted gene mutational profiles in Korean patients with pancreatic cancer. Sci. Rep. 2022, 12, 20937. [Google Scholar] [CrossRef]
- Kwong, A.; Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Ho, C.Y.S.; Au, C.H.; Chan, K.K.L.; Ngan, H.Y.S.; Chan, T.L.; Ford, J.M.; et al. Germline Mutation in 1338 BRCA-Negative Chinese Hereditary Breast and/or Ovarian Cancer Patients: Clinical Testing with a Multigene Test Panel. J. Mol. Diagn. 2020, 22, 544–554. [Google Scholar] [CrossRef] [PubMed]
- King, M.C.; Levy-Lahad, E.; Lahad, A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker Award. JAMA 2014, 312, 1091–1092. [Google Scholar] [CrossRef] [PubMed]
- Manahan, E.R.; Kuerer, H.M.; Sebastian, M.; Hughes, K.S.; Boughey, J.C.; Euhus, D.M.; Boolbol, S.K.; Taylor, W.A. Consensus Guidelines on Genetic Testing for Hereditary Breast Cancer from the American Society of Breast Surgeons. Ann. Surg. Oncol. 2019, 26, 3025–3031. [Google Scholar] [CrossRef]
- Pal, T.; Agnese, D.; Daly, M.; La Spada, A.; Litton, J.; Wick, M.; Klugman, S.; Esplin, E.D.; Jarvik, G.P.; Professional Practice and Guidelines Committee. Points to consider: Is there evidence to support BRCA1/2 and other inherited breast cancer genetic testing for all breast cancer patients? A statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 681–685. [Google Scholar] [CrossRef]
- Desai, N.V.; Yadav, S.; Batalini, F.; Couch, F.J.; Tung, N.M. Germline genetic testing in breast cancer: Rationale for the testing of all women diagnosed by the age of 60 years and for risk-based testing of those older than 60 years. Cancer 2021, 127, 828–833. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Genetic/Familial High-risk Assessment: Breast and Ovarian. Version 2.2021, 1.2022, 2.2022, 1.2023 and 3.2023. Available online: https://www.nccn.org/home (accessed on 17 April 2023).
- Kwong, A.; Ho, C.Y.S.; Luk, W.-P.; Fung, L.-H.; Au, C.-H.; Ma, E.S.K. Effect on Germline Mutation Rate in a High-Risk Chinese Breast Cancer Cohort after Compliance with The National Comprehensive Cancer Network (NCCN) 2023 v.1 Testing Criteria. Cancers 2023, 15, 2635. [Google Scholar] [CrossRef]
- Bedrosian, I.; Somerfield, M.R.; Achatz, M.I.; Boughey, J.C.; Curigliano, G.; Friedman, S.; Kohlmann, W.K.; Kurian, A.W.; Laronga, C.; Lynce, F.; et al. Germline Testing in Patients With Breast Cancer: ASCO-Society of Surgical Oncology Guideline. J. Clin. Oncol. 2024, 42, 584–604. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.; Shin, V.Y.; Au, C.H.; Law, F.B.; Ho, D.N.; Ip, B.K.; Wong, A.T.; Lau, S.S.; To, R.M.; Choy, G.; et al. Detection of Germline Mutation in Hereditary Breast and/or Ovarian Cancers by Next-Generation Sequencing on a Four-Gene Panel. J. Mol. Diagn. 2016, 18, 580–594. [Google Scholar] [CrossRef]
- Neben, C.L.; Zimmer, A.D.; Stedden, W.; van den Akker, J.; O’Connor, R.; Chan, R.C.; Chen, E.; Tan, Z.; Leon, A.; Ji, J.; et al. Multi-Gene Panel Testing of 23,179 Individuals for Hereditary Cancer Risk Identifies Pathogenic Variant Carriers Missed by Current Genetic Testing Guidelines. J. Mol. Diagn. 2019, 21, 646–657. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.R-project.org/ (accessed on 2 February 2024).
- Buys, S.S.; Sandbach, J.F.; Gammon, A.; Patel, G.; Kidd, J.; Brown, K.L.; Sharma, L.; Saam, J.; Lancaster, J.; Daly, M.B. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017, 123, 1721–1730. [Google Scholar] [CrossRef]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Vogel Postula, K.J.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L.; et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet. Med. 2016, 18, 823–832. [Google Scholar] [CrossRef]
- Samadder, N.J.; Riegert-Johnson, D.; Boardman, L.; Rhodes, D.; Wick, M.; Okuno, S.; Kunze, K.L.; Golafshar, M.; Uson, P.L.S., Jr.; Mountjoy, L.; et al. Comparison of Universal Genetic Testing vs Guideline-Directed Targeted Testing for Patients With Hereditary Cancer Syndrome. JAMA Oncol. 2021, 7, 230–237. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, M.; Zhang, L.; Hemminki, K.; Wang, X.J.; Chen, T. Overview on population screening for carriers with germline BRCA mutation in China. Front. Oncol. 2022, 12, 1002360. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Zhang, D.; Hu, L.; Sundaram, S.; Ying, D.; Zhang, Y.; Fu, S.; Zhang, J.; Yao, L.; Xu, Y.; et al. Association between 15 known or potential breast cancer susceptibility genes and breast cancer risks in Chinese women. Cancer Biol. Med. 2021, 19, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Meng, H.; Yao, L.; Lv, M.; Bai, J.; Zhang, J.; Wang, L.; Ouyang, T.; Li, J.; Wang, T.; et al. Germline Mutations in Cancer Susceptibility Genes in a Large Series of Unselected Breast Cancer Patients. Clin. Cancer Res. 2017, 23, 6113–6119. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, M.; Vafaei, M.; Khani, P.; Soheili, M.; Nedaeinia, R.; Manian, M.; Moradi, Y.; Sohrabi, E. The prevalence of ataxia telangiectasia mutated (ATM) variants in patients with breast cancer patients: A systematic review and meta-analysis. Cancer Cell Int. 2021, 21, 474. [Google Scholar] [CrossRef]
- Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Tagle, D.A.; Smith, S.; Uziel, T.; Sfez, S.; et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995, 268, 1749–1753. [Google Scholar] [CrossRef]
- Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R., 3rd; Hurov, K.E.; Luo, J.; Bakalarski, C.E.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; et al. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science 2007, 316, 1160–1166. [Google Scholar] [CrossRef]
- Thompson, D.; Duedal, S.; Kirner, J.; McGuffog, L.; Last, J.; Reiman, A.; Byrd, P.; Taylor, M.; Easton, D.F. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Natl. Cancer Inst. 2005, 97, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Goldgar, D.E.; Healey, S.; Dowty, J.G.; Da Silva, L.; Chen, X.; Spurdle, A.B.; Terry, M.B.; Daly, M.J.; Buys, S.M.; Southey, M.C.; et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011, 13, R73. [Google Scholar] [CrossRef]
- Angèle, S.; Hall, J. The ATM gene and breast cancer: Is it really a risk factor? Mutat. Res. 2000, 462, 167–178. [Google Scholar] [CrossRef]
- Xie, S.N.; Cai, Y.J.; Ma, B.; Xu, Y.; Qian, P.; Zhou, J.D.; Zhao, F.G.; Chen, J. The genomic mutation spectrums of breast fibroadenomas in Chinese population by whole exome sequencing analysis. Cancer Med. 2019, 8, 2372–2379. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Chen, S.Y.; Ren, J.X.; Pei, Y.C.; Jiang, C.W.; Zhao, S.; Xiao, Y.; Xu, X.E.; Liu, G.Y.; Hu, X.; et al. Molecular Features and Functional Implications of Germline Variants in Triple-Negative Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 884–892. [Google Scholar] [CrossRef]
- Yao, H.; Li, N.; Yuan, H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer 2022, 22, 1337. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2022, 24, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.; Cheng, K.D.; Hsue, C.V.; Hui, S.K.; Leung, C.R.; Leung, K.A.; Ngan, K.R.; Soong, S.I. BRCA mutation testing for ovarian cancer in the context of available targeted therapy: Survey and consensus of Hong Kong specialists. Asia Pac. J. Clin. Oncol. 2019, 15 (Suppl. 2), 20–31. [Google Scholar] [CrossRef]
- Kaneyasu, T.; Mori, S.; Yamauchi, H.; Ohsumi, S.; Ohno, S.; Aoki, D.; Baba, S.; Kawano, J.; Miki, Y.; Matsumoto, N.; et al. Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome. npj Breast Cancer 2020, 6, 25. [Google Scholar] [CrossRef]
- Wang, Y.A.; Jian, J.W.; Hung, C.F.; Peng, H.P.; Yang, C.F.; Cheng, H.S.; Yang, A.S. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer 2018, 18, 315. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Shi, Y.; Huang, Y.; Sun, T.; Tang, L.; Lu, Q.; Lei, Q.; Liao, N.; Jin, F.; et al. Germline mutation landscape of Chinese patients with familial breast/ovarian cancer in a panel of 22 susceptibility genes. Cancer Med. 2019, 8, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Ow, S.G.W.; Ong, P.Y.; Lee, S.C. Discoveries beyond BRCA1/2: Multigene testing in an Asian multi-ethnic cohort suspected of hereditary breast cancer syndrome in the real world. PLoS ONE 2019, 14, e0213746. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, S.T.; Nam, E.J.; Han, J.W.; Lee, J.Y.; Kim, J.; Kim, T.I.; Park, H.S. Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer. BMC Cancer 2018, 18, 83. [Google Scholar] [CrossRef] [PubMed]
High-Risk (HR) Cancer Patient | Unselected Cancer Control (CC) Patient | Benign Disease (NC) Patient | p-Value | |||
---|---|---|---|---|---|---|
Fulfill NCCN Testing Criteria | Not Fulfill NCCN Testing Criteria | |||||
n = 3935 | n = 90 | n = 217 | n = 99 | |||
Age at recruitment (Median/Range) | ||||||
Mean | 49.4 | 55.7 | 60.9 | 45.9 | - | |
Median | 47.6 | 55.3 | 59.8 | 47.0 | - | |
Range | 19.3–95.8 | 32.1–90.6 | 45.0–82.5 | 20.8–84.9 | - | |
No. of patients identified P/LP (30 genes) | 463 ^ | 10 | 10 * | 8 | - | |
Overall mutation % | 11.9% (469/3935) | 6.5% (20/307) | 8.1% (8/99) | 0.0174 | ||
11.1% | 4.6% | |||||
Mutation % in high penetrance genes (BRCA1/2, PALB2, CDH1, PTEN, TP53) | 10.4% (410/3935) | 6.7% (6/90) | 1.8% (4/217) | 0% | <0.0001 | |
Mutation % in moderate and low penetrance genes | 1.5% (59/3935) | 4.4% (4/90) | 2.8% (6/217) | 8.1% (8/99) | <0.0001 | |
Personal breast disease | ||||||
Breast cancer | 3935 | 90 | 217 | - | - | |
Fibro-epithelial tumors | - | - | - | 55 (55.6%) | - | |
Other benign tumors | 14 (14.1%) | |||||
Fibrocystic changes | 11 (11.1%) | |||||
Other non-neoplastic | 8 (8.1%) | |||||
Inflammatory | 6 (6.1%) | |||||
Undefined | 3 (3.0%) | |||||
Congenital anomalies | 2 (2.0%) | |||||
Histology | ||||||
Ductal | 3312 (70.4%) | 81 (90%) | 179 (82.5%) | - | - | |
In situ | 771 (16.4%) | 1 (1.1%) | 2 (0.9%) | - | ||
Other | 446 (9.5%) | 8 (8. 9%) | 35 (16.1%) | - | ||
Unclassified | 174 (3.7%) | 0 (0%) | 1 (0.5%) | - | ||
Molecular subtypes | ||||||
Luminal A (Her2−) | 2080 (52.9%) | 51 (57.3%) | 202 (94%) | - | - | |
Luminal B (Her2+) | 476 (12.1%) | 0 (0%) | 9 (4.2%) | - | ||
Luminal A/B (Her2 unknown/equivocal) | 221 (5.6%) | 0 (0%) | 1 (0.5%) | - | ||
TNBC | 593 (15.1%) | 20 (22.5%) | - | - | ||
Histology (invasive) grade | ||||||
Low | 2078 (63.9%) | 49 (57.0%) | 151 (73.7%) | - | - | |
High | 1174 (36.1%) | 37 (43.0%) | 54 (26.3%) | - | ||
No information | 680 | 3 | 9 | - | ||
Stage of breast | ||||||
0 | 824 (18.6%) | 0 (0%) | 0 (0%) | - | - | |
1 | 1643 (37.1%) | 40 (45.5%) | 83 (38.6%) | - | ||
2 | 1332 (30.0%) | 31 (35.2%) | 104 (48.4%) | - | ||
3 | 483 (10.9%) | 17 (19.3%) | 24 (11.2%) | - | ||
4 | 151 (3.4%) | 0 (0%) | 4 (1.9%) | - | ||
No information | 270 | 2 | 2 | - | ||
Family history (1st or 2nd degree) | ||||||
Breast cancer | 1604 (40.8%) | 33 (36.7%) | 15 (6.9%) | 6 (6.1%) | <0.0001 | |
Ovarian cancer | 195 (5.0%) | 5 (5.6%) | 0 (0.0%) | 1 (1.1%) | 0.0047 | |
Other BRCA related cancer $ | 1208 (30.7%) | 13 (14.4%) | 29 (13.4%) | 19 (19.2%) | <0.0001 |
High-Risk Breast Cancer Patient (HR) | Unselected Cancer Cohort (CC) | Patient with Benign Breast Disease (NC) | ||
---|---|---|---|---|
High-Risk Breast Cancer Patient (Met NCCN 2022 v2 Criteria) | Non High-Risk Breast Cancer Patient (Not Met NCCN 2022 v2 Criteria) | Not in NCCN 2022 v2 Criteria Based on FH | ||
n | 3935 | 90 | 217 | 99 |
Identified P/LP | 463 ^ | 10 | 10 * | 8 |
Overall mutation (%) | 11.9% (469/3935) | 6.5% (20/307) | 8.1% | |
11.1% | 4.6% | |||
High penetrance (%) | 10.6% (417/3935) | 3.3% (10/307) | 0% | |
6.7% (6/90) | 1.8% (4/217) | |||
BRCA1 | 3.6% | 2.2% | 1.4% | 0% |
BRCA2 | 5.0% | 3.3% | 0.5% | 0% |
CDH1 | 0% | 0% | 0% | 0% |
PALB2 | 1.2% | 0% | 0% | 0% |
PTEN | 0.1% | 0% | 0% | 0% |
TP53 | 0.6% | 1.1% | 0% | 0% |
Moderate & low penetrance (%) | 1.3% (52/3935) | 3.3% (10/307) | 8.1% | |
4.4% (4/90) | 2.8% (6/217) | |||
RAD51C | 0.1% | 0% | 0% | 1% |
RAD51D | 0.2% | 0% | 0.5% | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwong, A.; Ho, C.Y.S.; Leung, H.C.M.; Leung, A.W.S.; Au, C.-H.; Ma, E.S.K. Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort. Cancers 2024, 16, 3066. https://doi.org/10.3390/cancers16173066
Kwong A, Ho CYS, Leung HCM, Leung AWS, Au C-H, Ma ESK. Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort. Cancers. 2024; 16(17):3066. https://doi.org/10.3390/cancers16173066
Chicago/Turabian StyleKwong, Ava, Cecilia Y. S. Ho, Henry C. M. Leung, Amy W. S. Leung, Chun-Hang Au, and Edmond S. K. Ma. 2024. "Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort" Cancers 16, no. 17: 3066. https://doi.org/10.3390/cancers16173066
APA StyleKwong, A., Ho, C. Y. S., Leung, H. C. M., Leung, A. W. S., Au, C. -H., & Ma, E. S. K. (2024). Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort. Cancers, 16(17), 3066. https://doi.org/10.3390/cancers16173066