Prevalence of Germline Pathogenic Variants in Renal Cancer Predisposition Genes in a Population-Based Study of Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data and Biological Sample Collection
2.3. Mutation Screening
2.4. Variant Prioritisation and Classification
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Monda, S.M.; Lui, H.T.; Pratsinis, M.A.; Chandrasekar, T.; Evans, C.P.; Dall’Era, M.A. The Metastatic Risk of Renal Cell Carcinoma by Primary Tumor Size and Subtype. Eur. Urol. Open Sci. 2023, 52, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Clague, J.; Lin, J.; Cassidy, A.; Matin, S.; Tannir, N.M.; Tamboli, P.; Wood, C.G.; Wu, X. Family history and risk of renal cell carcinoma: Results from a case-control study and systematic meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 801–807. [Google Scholar] [CrossRef]
- Carlo, M.I.; Mukherjee, S.; Mandelker, D.; Vijai, J.; Kemel, Y.; Zhang, L.; Knezevic, A.; Patil, S.; Ceyhan-Birsoy, O.; Huang, K.-C.; et al. Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients With Advanced Renal Cell Carcinoma. JAMA Oncol. 2018, 4, 1228–1235. [Google Scholar] [CrossRef]
- Han, S.H.; Camp, S.Y.; Chu, H.; Collins, R.; Gillani, R.; Park, J.; Bakouny, Z.; Ricker, C.A.; Reardon, B.; Moore, N.; et al. Integrative Analysis of Germline Rare Variants in Clear and Non–Clear Cell Renal Cell Carcinoma. Eur. Urol. Open Sci. 2024, 62, 107–122. [Google Scholar] [CrossRef]
- Sekine, Y.; Iwasaki, Y.; Aoi, T.; Endo, M.; Hirata, M.; Kamatani, Y.; Matsuda, K.; Sugano, K.; Yoshida, T.; Murakami, Y.; et al. Different risk genes contribute to clear cell and non-clear cell renal cell carcinoma in 1532 Japanese patients and 5996 controls. Hum. Mol. Genet. 2022, 31, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, S.E.; Nussbaum, R.L.; Kurian, A.W.; Nielsen, S.M.; Das, K.; Michalski, S.; Yang, S.; Ngo, N.; Blanco, A.; Esplin, E.D. Yield and Utility of Germline Testing Following Tumor Sequencing in Patients With Cancer. JAMA Netw. Open 2020, 3, e2019452. [Google Scholar] [CrossRef]
- Hartman, T.R.; Demidova, E.V.; Lesh, R.W.; Hoang, L.; Richardson, M.; Forman, A.; Kessler, L.; Speare, V.; Golemis, E.A.; Hall, M.J.; et al. Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. Sci. Rep. 2020, 10, 13518. [Google Scholar] [CrossRef]
- Smith, P.S.; West, H.; Whitworth, J.; Castle, B.; Sansbury, F.H.; Warren, A.Y.; Woodward, E.R.; Tischkowitz, M.; Maher, E.R. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosom. Cancer 2021, 60, 5–16. [Google Scholar] [CrossRef]
- Meng, H.; Jiang, X.; Cui, J.; Yin, G.; Shi, B.; Liu, Q.; Xuan, H.; Wang, Y. Genomic Analysis Reveals Novel Specific Metastatic Mutations in Chinese Clear Cell Renal Cell Carcinoma. BioMed Res. Int. 2020, 2020, 2495157. [Google Scholar] [CrossRef]
- Kong, W.; Yang, T.; Wen, X.; Mu, Z.; Zhao, C.; Han, S.; Tian, J.; Zhang, X.; Zhou, T.; Zhang, Y.; et al. Germline Mutation Landscape and Associated Clinical Characteristics in Chinese Patients With Renal Cell Carcinoma. Front. Oncol. 2021, 11, 737547. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Syed, J.S.; Espenschied, C.R.; LaDuca, H.; Bhagat, A.M.; Suarez-Sarmiento, A.; O’Rourke, T.K.; Brierley, K.L.; Hofstatter, E.W.; Shuch, B. Advances in the diagnosis of hereditary kidney cancer: Initial results of a multigene panel test. Cancer 2017, 123, 4363–4371. [Google Scholar] [CrossRef]
- Bruinsma, F.; Jordan, S.; Bassett, J.; Severi, G.; MacInnis, R.; Walsh, J.; Aitken, T.; Jenkins, M.; Carroll, R.; Jefford, M.; et al. Analgesic use and the risk of renal cell carcinoma–Findings from the Consortium for the Investigation of Renal Malignancies (CONFIRM) study. Cancer Epidemiol. 2021, 75, 102036. [Google Scholar] [CrossRef]
- Nguyen-Dumont, T.; Hammet, F.; Mahmoodi, M.; Tsimiklis, H.; Teo, Z.L.; Li, R.; Pope, B.J.; Terry, M.B.; Buys, S.S.; Daly, M.; et al. Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Res. Treat. 2015, 149, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Ellard, S.; Baple, E.L.; Callaway, A.; Berry, I.; Forrester, N.; Turnbull, C.; Owens, M.; Eccles, D.M.; Abbs, S.; Scott, R.; et al. ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020. Available online: https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf (accessed on 2 November 2023).
- Garrett, A.; Callaway, A.; Durkie, M.; Cubuk, C.; Alikian, M.; Burghel, G.J.; Robinson, R.; Izatt, L.; Talukdar, S.; Side, L.; et al. Cancer Variant Interpretation Group UK (CanVIG-UK): An exemplar national subspecialty multidisciplinary network. J. Med. Genet. 2020, 57, 829–834. [Google Scholar] [CrossRef]
- Brnich, S.E.; Abou Tayoun, A.N.; Couch, F.J.; Cutting, G.R.; Greenblatt, M.S.; Heinen, C.D.; Kanavy, D.M.; Luo, X.; McNulty, S.M.; Starita, L.M.; et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Harrison, S.M.; Rehm, H.L.; Plon, S.E.; Biesecker, L.G.; ClinGen Sequence Variant Interpretation Working Group. Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum. Mutat. 2018, 39, 1525–1530. [Google Scholar] [CrossRef]
- Abou Tayoun, A.N.; Pesaran, T.; DiStefano, M.T.; Oza, A.; Rehm, H.L.; Biesecker, L.G.; Harrison, S.M.; ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI). Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 2018, 39, 1517–1524. [Google Scholar] [CrossRef]
- Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; De Lichy, M.; Bille, K.; Dessen, P.; D’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011, 480, 94–98. [Google Scholar] [CrossRef]
- Yngvadottir, B.; Andreou, A.; Bassaganyas, L.; Larionov, A.; Cornish, A.J.; Chubb, D.; Saunders, C.N.; Smith, P.S.; Zhang, H.; Cole, Y.; et al. Frequency of pathogenic germline variants in cancer susceptibility genes in 1336 renal cell carcinoma cases. Hum. Mol. Genet. 2022, 31, 3001–3011. [Google Scholar] [CrossRef]
- Lin, J.; Tang, X.; Boulling, A.; Zou, W.; Masson, E.; Fichou, Y.; Raud, L.; Le Tertre, M.; Deng, S.; Berlivet, I.; et al. First estimate of the scale of canonical 5′ splice site GT>GC variants capable of generating wild-type transcripts. Hum. Mutat. 2019, 40, 1856–1873. [Google Scholar] [CrossRef]
PLP Variant Carriers | Non-Carriers | All Tested Individuals (100%) | |
---|---|---|---|
Participants: N (%) | 18 (1.7%) | 1011 (98.3%) | 1029 |
Sex: N (%) | |||
Male | 11 (2%) | 679 (98%) | 690 |
Female | 7 (2%) | 332 (98%) | 339 |
Age at diagnosis: mean ± SD | 58 ± 10 | 60 ± 10 | 60 ± 10 |
Histology: N (%) | |||
Clear cell | 7 (1%) | 606 (99%) | 613 |
Chromophobe | 4 (4%) | 96 (96%) | 100 |
Papillary | 3 (3%) | 107 (97%) | 110 |
Not otherwise specified | 4 (2%) | 186 (98%) | 190 |
Other | 0 | 15 (100%) | 15 |
Unknown | 0 | 1 (100%) | 1 |
Family history: N (%) | p-value | ||
First-degree relative with RCC | p = 0.59 | ||
Yes | 1 (2%) | 54 (98%) | |
No | 11 (2%) | 703 (98%) | |
Missing | 6 (2%) | 254 (98%) | |
Second-degree relative with RCC | p = 0.44 | ||
Yes | 1 (3%) | 34 (97%) | |
No | 11 (2%) | 706 (98%) | |
Missing | 6 (2%) | 271 (98%) |
Carrier | Gene | HGVS c. b | HGVS p. b | Sex | Age of Diagnosis (Years) | Affected First-Degree Relative | Affected Second-Degree Relative | Histology |
---|---|---|---|---|---|---|---|---|
1 | BAP1 | NM_004656.4:c.783+2T>C | Female | 54 | Unknown | Unknown | clear cell | |
2 | FH | NM_000143.4:c.698G>A | p.Arg233His | Male | 54 | No | No | NOS |
3 | FH | NM_000143.4:c.575C>T | p.Pro192Leu | Male | 56 | Unknown | Unknown | clear cell |
4 a | FLCN | NM_144997.7:c.1432+1G>A | Male | 66 | Yes | Unknown | papillary | |
5 a | FLCN | NM_144997.7:c.1432+1G>A | Male | 47 | Unknown | Unknown | chromophobe | |
6 | FLCN | NM_144997.7:c.1318_1334dup | p.Leu449Glnfs*25 | Female | 62 | No | No | NOS |
7 | FLCN | NM_144997.7:c.469_471delTTC | p.Phe157del | Female | 62 | No | Yes | chromophobe |
8 | MITF | NM_000248.4:c.952G>A | p.Glu318Lys | Male | 63 | Unknown | No | papillary |
9 | MITF | NM_000248.4:c.952G>A | p.Glu318Lys | Male | 74 | No | No | clear cell |
10 | MITF | NM_000248.4:c.952G>A | p.Glu318Lys | Male | 60 | Unknown | No | clear cell |
11 | MITF | NM_000248.4:c.952G>A | p.Glu318Lys | Male | 72 | No | No | clear cell |
12 | MITF | NM_000248.4:c.952G>A | p.Glu318Lys | Female | 73 | No | Unknown | NOS |
13 | MSH6 | NM_000179.3:c.3469G>A | p.Gly1157Ser | Male | 56 | Unknown | No | chromophobe |
14 | MSH6 | NM_000179.3:c.2057G>A | p.Gly686Asp | Female | 45 | No | No | papillary |
15 | SDHB | NM_003000.3:c.505C>T | p.Gln169Ter | Male | 47 | No | Unknown | NOS |
16 | TSC1 | NM_000368.5:c.589delT | p.Cys197Alafs*13 | Female | 58 | No | No | chromophobe |
17 | VHL | NM_000551.4:c.548C>A | p.Ser183Ter | Female | 67 | No | No | clear cell |
18 | VHL | NM_000551.4:c.556G>T | p.Glu186Ter | Male | 35 | No | No | clear cell |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruinsma, F.; Harraka, P.; Jordan, S.; Park, D.J.; Pope, B.; Steen, J.; Milne, R.L.; Giles, G.G.; Winship, I.; Tucker, K.M.; et al. Prevalence of Germline Pathogenic Variants in Renal Cancer Predisposition Genes in a Population-Based Study of Renal Cell Carcinoma. Cancers 2024, 16, 2985. https://doi.org/10.3390/cancers16172985
Bruinsma F, Harraka P, Jordan S, Park DJ, Pope B, Steen J, Milne RL, Giles GG, Winship I, Tucker KM, et al. Prevalence of Germline Pathogenic Variants in Renal Cancer Predisposition Genes in a Population-Based Study of Renal Cell Carcinoma. Cancers. 2024; 16(17):2985. https://doi.org/10.3390/cancers16172985
Chicago/Turabian StyleBruinsma, Fiona, Philip Harraka, Susan Jordan, Daniel J. Park, Bernard Pope, Jason Steen, Roger L. Milne, Graham G. Giles, Ingrid Winship, Katherine M. Tucker, and et al. 2024. "Prevalence of Germline Pathogenic Variants in Renal Cancer Predisposition Genes in a Population-Based Study of Renal Cell Carcinoma" Cancers 16, no. 17: 2985. https://doi.org/10.3390/cancers16172985
APA StyleBruinsma, F., Harraka, P., Jordan, S., Park, D. J., Pope, B., Steen, J., Milne, R. L., Giles, G. G., Winship, I., Tucker, K. M., Southey, M. C., & Nguyen-Dumont, T. (2024). Prevalence of Germline Pathogenic Variants in Renal Cancer Predisposition Genes in a Population-Based Study of Renal Cell Carcinoma. Cancers, 16(17), 2985. https://doi.org/10.3390/cancers16172985