Machine Learning versus Cox Models for Predicting Overall Survival in Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Consort Diagram
2.3. Survival Outcome and Relevant Predictors
2.4. Statistical Analysis
2.4.1. Hyperparameter Tuning of the ML Methods
2.4.2. Model Estimation
2.4.3. Model Validation
3. Results
3.1. Cohort Descriptives
3.2. Results from the Training Cohort
3.2.1. Hyperparameter Tuning for ML Methods
3.2.2. Variable Importance
3.3. Results from the Validation Cohort
3.3.1. Performance Measures and Goodness of Fit
3.3.2. Predicted Survival Curves
3.4. Patient-Specific Survival Curves
- 1.
- reference (green): patient with reference values for all categorical predictors and mean values for the continuous predictors (see Table 1), i.e., a 15 year-old female patient with a good histological response, no lung metastases or other metastases, a radical/wide surgical exicison, and a tumor absolute volume equal to 200 cm3, located at any site except axial skeleton and proximal femur/humerus;
- 2.
- lung mets (blue): patient with reference/mean values for all predictors, but with the presence of lung metastases at surgery;
- 3.
- intralesional (brown): patient with reference/mean values for all predictors, but with an intralesional/unknown surgical excision;
- 4.
- poor hist (orange): patient with reference/mean values for all predictors, but with a poor histological response;
- 5.
- lung mets + poor hist (purple): patient with reference/mean values for all predictors, but with a poor histological response and lung metastases;
- 6.
- intralesional + poor hist (gold): patient with reference/mean values for all predictors, but with an intralesional/unknown surgical excision and a poor histological response.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence interval |
EURAMOS | European and American Osteosarcoma Studies |
KL | Kullback–Leibler score |
HR | Hazard ratio |
ML | Machine learning |
PH | Proportional hazard |
OS | Overall survival |
RSF | Random survival forest |
SM | Statistical modelling |
SNN | Survival neural network |
References
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef]
- Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol. 2010, 21, vii320–vii325. [Google Scholar] [CrossRef]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef]
- Van Ewijk, R.; Herold, N.; Baecklund, F.; Baumhoer, D.; Boye, K.; Gaspar, N.; Harrabi, S.B.; Haveman, L.M.; Hecker-Nolting, S.; Hiemcke-Jiwa, L.; et al. European standard clinical practice recommendations for children and adolescents with primary and recurrent osteosarcoma. EJC Pediatr. Oncol. 2023, 2, 100029. [Google Scholar] [CrossRef]
- Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol. 2015, 33, 3029–3035. [Google Scholar] [CrossRef] [PubMed]
- Bielack, S.S.; Smeland, S.; Whelan, J.S.; Marina, N.; Jovic, G.; Hook, J.M.; Krailo, M.D.; Gebhardt, M.; Pápai, Z.; Meyer, J.; et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: First results of the EURAMOS-1 good response randomized controlled trial. J. Clin. Oncol. 2015, 33, 2279–2287. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.M.; Smeland, S.; Bielack, S.S.B.M.; Jovic, G.; Krailo, M.D.; Hook, J.M.; Arndt, C.; van den Berg, H.; Brennan, B.; Brichard, B.; et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial. Lancet Oncol. 2016, 17, 1396–1408. [Google Scholar] [CrossRef]
- Piperno-Neumann, S.; Le Deley, M.C.; Rédini, F.; Pacquement, H.; Marec-Bérard, P.; Petit, P.; Brisse, H.; Lervat, C.; Gentet, J.C.; Entz-Werlé, N.; et al. Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1070–1080. [Google Scholar] [CrossRef]
- Gaspar, N.; Occean, B.V.; Pacquement, H.; Bompas, E.; Bouvier, C.; Brisse, H.J.; Castex, M.P.; Cheurfa, N.; Corradini, N.; Delaye, J.; et al. Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur. J. Cancer 2018, 88, 57–66. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Shahid, N.; Rappon, T.; Berta, W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS ONE 2019, 14, e0212356. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Harrell, F.E. Road Map for Choosing between Statistical Modeling and Machine Learning|Statistical Thinking. 2018. Available online: https://www.fharrell.com/post/stat-ml/ (accessed on 27 November 2023).
- Kantidakis, G.; Hazewinkel, A.D.; Fiocco, M. Neural networks for survival prediction in medicine using prognostic factors: A review and critical appraisal. Comput. Math. Methods Med. 2022, 2022, 1176060. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.S.; Bielack, S.S.; Marina, N.; Smeland, S.; Jovic, G.; Hook, J.M.; Krailo, M.; Anninga, J.; Butterfass-Bahloul, T.; Böhling, T.; et al. EURAMOS-1, an international randomised study for osteosarcoma: Results from pre-randomisation treatment. Ann. Oncol. 2015, 26, 407–414. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). R Package Version 3.2.2. 2023. Available online: https://cran.r-project.org/package=randomForestSRC (accessed on 24 November 2023).
- Ripley, B.D.; Ripley, R.M. Neural networks as statistical methods in survival analysis. In Clinical Applications of Artificial Neural Networks; Dybowski, R., Gant, V., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 237–255. [Google Scholar]
- Biganzoli, E.; Boracchi, P.; Mariani, L.; Marubini, E. Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Stat. Med. 1998, 17, 1169–1186. [Google Scholar] [CrossRef]
- Cox, D. Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Therneau, T.; Grambsch, P. Modeling Survival Data: Extending the Cox Model, 1st ed.; Statistics for Biology and Health; Springer: New York, NY, USA, 2010. [Google Scholar]
- Marina, N.; Bielack, S.; Whelan, J.; Smeland, S.; Krailo, M.; Sydes, M.R.; Butterfass-Bahloul, T.; Calaminus, G.; Bernstein, M. International collaboration is feasible in trials for rare conditions: The EURAMOS experience. In Cancer Treatment and Research; Springer: Boston, MA, USA, 2009; pp. 339–353. [Google Scholar] [CrossRef]
- Rosen, G.; Murphy, M.L.; Huvos, A.G.; Gutierrez, M.; Marcove, R.C. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer 1976, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bacci, G.; Picci, P.; Ruggieri, P.; Mercuri, M.; Avella, M.; Capanna, R.; Brach Del Prever, A.; Mancini, A.; Gherlinzoni, F.; Padovani, G. Primary chemotherapy and delayed surgery (neoadjuvant chemotherapy) for osteosarcoma of the extremities. The Istituto Rizzoli Experience in 127 patients treated preoperatively with intravenous methotrexate (high versus moderate doses) and intraarterial cisplatin. Cancer 1990, 65, 2539–2553. [Google Scholar] [CrossRef]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
- Whelan, J.S.; Jinks, R.C.; McTiernan, A.; Sydes, M.R.; Hook, J.M.; Trani, L.; Uscinska, B.; Bramwell, V.; Lewis, I.J.; Nooij, M.A.; et al. Survival from high-grade localised extremity osteosarcoma: Combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann. Oncol. 2012, 23, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.W.; Chang, Y.C.; Krailo, M.D.; Meyers, P.A.; Provisor, A.J.; Schwartz, C.L.; Marina, N.M.; Teot, L.A.; Gebhardt, M.C.; Gorlick, R.; et al. Assessing the prognostic significance of histologic response in osteosarcoma: A comparison of outcomes on CCG-782 and INT0133-A report from the children’s oncology group bone tumor committee. Pediatr. Blood Cancer 2016, 63, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Hazewinkel, A.D.; Lancia, C.; Anninga, J.; van de Sande, M.; Whelan, J.; Gelderblom, H.; Fiocco, M. Disease progression in osteosarcoma: A multistate model for the EURAMOS-1 (European and American Osteosarcoma Study) randomised clinical trial. BMJ Open 2022, 12, e053083. [Google Scholar] [CrossRef] [PubMed]
- Schemper, M.; Smith, T.L. A note on quantifying follow-up in studies of failure time. Control. Clin. Trials 1996, 17, 343–346. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 27 June 2024).
- Therneau, T. A Package for Survival Analysis in R. R Package Version 3.5-7. 2023. Available online: https://cran.r-project.org/web/packages/survival/ (accessed on 24 November 2023).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. Available online: https://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 27 June 2024).
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. Available online: http://jmlr.org/papers/v13/bergstra12a.html (accessed on 6 May 2024).
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Rubin, D.B. Multiple imputation after 18+ years. J. Am. Stat. Assoc. 1996, 91, 473–489. [Google Scholar] [CrossRef]
- Heller, G. A measure of explained risk in the proportional hazards model. Biostatistics 2012, 13, 315–325. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Modell. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Van Houwelingen, H.; Putter, H. Dynamic Prediction in Clinical Survival Analysis; Chapman & Hall/CRC Monographs on Statistics & Applied Probability; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Van Houwelingen, H.C. Validation, calibration, revision and combination of prognostic survival models. Stat. Med. 2000, 19, 3401–3415. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457. [Google Scholar] [CrossRef]
Training | Validation | Total | |
---|---|---|---|
Cohort | = 1572 | = 393 | |
Age (in years). | |||
mean (s.d.) | 15.1 (5.2) | 15.8 (5.6) | 15.3 (5.3) |
min/max | 4.3/40.7 | 5.3/40.5 | 4.3/40.7 |
Sex | |||
Female | 646 (41.1%) | 164 (41.7%) | 810 (41.2%) |
Male | 926 (58.9%) | 229 (58.3%) | 1155 (58.8%) |
Tumor location 1 | |||
Other | 1316 (83.7%) | 325 (82.7%) | 1641 (83.5%) |
Axial | 52 (3.3%) | 12 (3.1%) | 64 (3.3%) |
Proximal femur/humerus | 204 (13%) | 56 (14.2%) | 260 (13.2%) |
Absolute tumor volume (cm3 × 0.54) | |||
mean (s.d.) | 202.1 (268.6) | 193.3 (242.7) | 200.3 (263.6) |
min/max | 0.0052/2604 | 0.637/1870 | 0.0052/2604 |
Missing | 278 (17.7%) | 69 (17.6%) | 347 (17.7%) |
Surgical excision | |||
Radical/wide | 1280 (81.4%) | 326 (83%) | 1606 (81.7%) |
Marginal | 185 (11.8%) | 53 (13.5%) | 238 (12.1%) |
Other | 107 (6.8%) | 14 (3.6%) | 121 (6.2%) |
Lung metastases | |||
No | 1266 (80.5%) | 321 (81.7%) | 1587 (80.8%) |
Yes/Possible | 306 (19.5%) | 72 (18.3%) | 378 (19.2%) |
Other metastases | |||
No | 1508 (95.9%) | 381 (96.9%) | 1889 (96.1%) |
Yes/Possible | 64 (4.1%) | 12 (3.1%) | 76 (3.9%) |
Histological Response | |||
Good (<10% viable tumor) | 792 (50.4%) | 204 (51.9%) | 996 (50.7%) |
Poor (≥10% viable tumor) | 734 (46.7%) | 181 (46.1%) | 915 (46.6%) |
Missing | 46 (2.9%) | 8 (2%) | 54 (2.7%) |
Death status | |||
Censored | 1199 (76.3%) | 300 (76.3%) | 1499 (76.3%) |
Dead | 373 (23.7%) | 93 (23.7%) | 466 (23.7%) |
Follow-up time 1 (in years since surgery) | |||
median (95% CI) | 5.01 (4.89–5.17) | 4.87 (4.65–5.09) | 4.96 (4.87–5.09) |
RSF Hyperparameters | |
---|---|
(i) number of tree estimators | 100, 200, 500, 750 |
(ii) maximum tree depth | 2, 3, 4, …, 18, 19, 20 |
(iii) minimum leaf samples | 10, 20, 40, 60, …, 160, 180, 200 |
(iv) maximum splitting features | 2, 3, 4, 5, 6, 7, 8 |
SNN Hyperparameters | |
(i) number of nodes in the hidden layer | 1, 2, 3, …, 8, 9, 10 |
(ii) weight decay parameter | 0.0001, 0.001, 0.01, 0.05, 0.1 |
Random Survival Forests | |||||
---|---|---|---|---|---|
Top 5 Ranked Configurations | RSF-1 | RSF-2 | RSF-3 | RSF-4 | RSF-5 |
RSF hyperparameters | |||||
(i) number of tree estimators | 750 | 500 | 500 | 750 | 500 |
(ii) maximum tree depth | 4 | 5 | 7 | 7 | 6 |
(iii) minimum leaf samples | 60 | 60 | 80 | 60 | 80 |
(iv) maximum splitting features | 2 | 2 | 2 | 2 | 2 |
Averaged cross-validated C-index 1 | 0.70964 | 0.70956 | 0.70955 | 0.70952 | 0.70951 |
Survival Neural Networks | |||||
Top 5 Ranked Configurations | SNN-1 | SNN-2 | SNN-3 | SNN-4 | SNN-5 |
SNN hyperparameters | |||||
(i) number of nodes in the hidden layer | 1 | 1 | 1 | 2 | 2 |
(ii) weight decay parameter | 0.10 | 0.05 | 0.05 | 0.1 | 0.01 |
Averaged cross-validated C-index 1 | 0.70312 | 0.70277 | 0.70245 | 0.70192 | 0.70165 |
Cox PH Model | Extended Cox Model | |||
---|---|---|---|---|
HR | 95% CI | HR | 95% CI | |
Age (years at surgery) | ||||
Constant | 0.994 | 0.974–1.015 | 0.942 | 0.908–0.977 |
Time-varying 1 | 1.022 | 1.010–1.034 | ||
Sex | ||||
Female | 1 | 1 | ||
Male | 1.264 | 1.018–1.570 | 1.244 | 1.028–1.504 |
Tumor location | ||||
Other | 1 | 1 | ||
Axial | 1.899 | 1.224–2.947 | 1.966 | 1.338–2.888 |
Proximal femur/humerus— Constant | 1.389 | 1.051–1.837 | 2.756 | 1.700–4.468 |
Proximal femur/humerus—Time-varying 1 | 0.737 | 0.603–0.901 | ||
Absolute tumor volume (cm3) | ||||
Constant effect | 1.0007 | 1.0004–1.001 | 1.0007 | 1.0004–1.001 |
Surgical excision | ||||
Wide/Radical | 1 | 1 | ||
Marginal | 0.879 | 0.641–1.206 | 0.876 | 0.664–1.156 |
Intralesional/Unknown | 1.434 | 1.002–2.052 | 1.386 | 1.010–1.900 |
Presence of lung metastases | ||||
No | 1 | 1 | ||
Yes/Possible | 2.422 | 1.945–3.015 | 2.435 | 2.009–2.952 |
Presence of other metastases | ||||
No | 1 | 1 | ||
Yes/Possible | 1.954 | 1.319–2.896 | 1.941 | 1.370–2.750 |
Histological Response | ||||
Good | 1 | 1 | ||
Poor—Constant | 2.147 | 1.719–2.682 | 4.777 | 3.125–7.303 |
Poor—Time-varying 1 | 0.729 | 0.632–0.841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spreafico, M.; Hazewinkel, A.-D.; van de Sande, M.A.J.; Gelderblom, H.; Fiocco, M. Machine Learning versus Cox Models for Predicting Overall Survival in Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data. Cancers 2024, 16, 2880. https://doi.org/10.3390/cancers16162880
Spreafico M, Hazewinkel A-D, van de Sande MAJ, Gelderblom H, Fiocco M. Machine Learning versus Cox Models for Predicting Overall Survival in Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data. Cancers. 2024; 16(16):2880. https://doi.org/10.3390/cancers16162880
Chicago/Turabian StyleSpreafico, Marta, Audinga-Dea Hazewinkel, Michiel A. J. van de Sande, Hans Gelderblom, and Marta Fiocco. 2024. "Machine Learning versus Cox Models for Predicting Overall Survival in Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data" Cancers 16, no. 16: 2880. https://doi.org/10.3390/cancers16162880
APA StyleSpreafico, M., Hazewinkel, A.-D., van de Sande, M. A. J., Gelderblom, H., & Fiocco, M. (2024). Machine Learning versus Cox Models for Predicting Overall Survival in Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data. Cancers, 16(16), 2880. https://doi.org/10.3390/cancers16162880