Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Inclusion Criteria
2.2. Ethical Considerations
2.3. Laboratory Technique
2.4. Endpoints
2.5. Statistical Plan
3. Results
3.1. Subjects
3.2. Demographic and Clinical Data
3.3. Morphological and Immunohistochemical Aspects
3.4. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ascierto, P.A.; Accorona, R.; Botti, G.; Farina, D.; Fossati, P.; Gatta, G.; Gogas, H.; Lombardi, D.; Maroldi, R.; Nicolai, P.; et al. Mucosal melanoma of the head and neck. Crit. Rev. Oncol. Hematol. 2017, 112, 136–152. [Google Scholar] [CrossRef]
- Wahid, N.W.; Meghji, S.; Barnes, M. Nasal mucosal melanoma. Lancet Oncol. 2019, 20, 30179–30182. [Google Scholar] [CrossRef]
- Mikkelsen, L.H.; Larsen, A.C.; von Buchwald, C.; Drzewiecki, K.T.; Prause, J.U.; Heegaard, S. Mucosal malignant melanoma—A clinical, oncological, pathological and genetic survey. APMIS 2016, 124, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Carvajal, R.D.; Postow, M.A.; Callahan, M.K.; Shoushtari, A.N.; Patel, S.G.; Lee, N.Y.; Barker, C.A. Localized sinonasal mucosal melanoma: Outcomes and associations with stage, radiotherapy, and positron emission tomography response. Head Neck 2016, 38, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Bishop, K.D.; Olszewski, A.J. Epidemiology and survival outcomes of ocular and mucosal melanomas: A population-based analysis. Int. J. Cancer 2014, 134, 2961–2971. [Google Scholar] [CrossRef]
- Temmermand, D.; Kilic, S.; Mikhael, M.; Butler, J.; Unsal, A.A.; EUROCARE-5 Working Group. Sinonasal Mucosal Melanoma: A Population-based Comparison of the EUROCARE and SEER Registries. Int. Arch. Otorhinolaryngol. 2022, 26, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.M.; Marcus, R.P.; Prabhu, R.S.; Owonikoko, T.K.; Lawson, D.H.; Switchenko, J.; Beitler, J.J. Rising incidence of mucosal melanoma of the head and neck in the United States. J. Skin Cancer 2012, 2012, 231693. [Google Scholar] [CrossRef]
- Ma, Y.; Xia, R.; Ma, X.; Judson-Torres, R.L.; Zeng, H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front. Oncol. 2021, 11, 702287. [Google Scholar] [CrossRef] [PubMed]
- Andrianakis, A.; Kiss, P.; Pomberger, M.; Wolf, A.; Thurnher, D.; Tomazic, P.V. Sinonasal mucosal melanoma: Treatment strategies and survival rates for a rare disease entity: A single center experience and review of literature. Wien Klin. Wochenschr. 2021, 133, 1137–1147. [Google Scholar] [CrossRef]
- Chłopek, M.; Lasota, J.; Thompson, L.D.R.; Szczepaniak, M.; Kuźniacka, A.; Hińcza, K.; Kubicka, K.; Kaczorowski, M.; Newford, M.; Liu, Y.; et al. Alterations in key signaling pathways in sinonasal tract melanoma. A molecular genetics and immunohistochemical study of 90 cases and comprehensive review of the literature. Mod. Pathol. 2022, 35, 1609–1617. [Google Scholar] [CrossRef]
- Tajudeen, B.A.; Vorasubin, N.; Sanaiha, Y.; Palma-Diaz, M.F.; Suh, J.D.; Wang, M.B. Sinonasal mucosal melanoma: 20-year experience at a tertiary referral center. Int. Forum Allergy Rhinol. 2014, 4, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Konuthula, N.; Khan, M.N.; Parasher, A.; Del Signore, A.; Genden, E.M.; Govindaraj, S.; Iloreta, A.M. The presentation and outcomes of mucosal melanoma in 695 patients. Int. Forum Allergy Rhinol. 2017, 7, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Saidi, B.; Fallahi, B.; Fard-Esfahani, A.; Emami-Ardekani, A.; Eftekhari, M. Non-Cutaneous Melanoma, Findings and Prognostic Value of FDG PET/CT: A Case Series of 23 patients and review of the literature. Asia Ocean. J. Nucl. Med. Biol. 2022, 10, 91–99. [Google Scholar] [PubMed]
- Gilain, L.; Houette, A.; Montalban, A.; Mom, T.; Saroul, N. Mucosal melanoma of the nasal cavity and paranasal sinuses. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2014, 131, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.S.S.; Berriel, L.G.S.; Alves, R.T.; Pinto, M.B.; Oliveira, C.F.P.; Cazzotto, A.C.; Moura, W.V. Sinonasal melanoma: A case report and literature review. Case Rep. Oncol. Med. 2017, 2017, 8201301. [Google Scholar] [CrossRef]
- Amit, M.; Na’ara, S.; Hanna, E.Y. Contemporary treatment approaches to sinonasal mucosal melanoma. Curr. Oncol. Rep. 2018, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, S.; Gupta, V.; Hu, K.; Harrison, L.B.; Bakst, R. Mucosal Melanoma of the Head and Neck: A Systematic Review of the Literature. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1108–1118. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Lu, J.; Xiang, M. Sinonasal mucosal melanoma: A 10-year experience of 36 cases in China. Ann. Transl. Med. 2020, 8, 1022. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.A.; Closca, R.-M.; Marin, A.; Rakitovan, M.; Nicoara, A.; Poenaru, M.; Militaru, M.; Baderca, F. Clinical, Epidemiological, Morphological, and Immunohistochemical Aspects of Nasopharyngeal Carcinoma—4-Year Retrospective Study in the Western Part of Romania. Diagnostics 2024, 14, 722. [Google Scholar] [CrossRef] [PubMed]
- Brummel, K.; Eerkens, A.L.; de Bruyn, M.; Nijman, H.W. Tumour-infiltrating lymphocytes: From prognosis to treatment selection. Br. J. Cancer 2023, 128, 451–458. [Google Scholar] [CrossRef]
- Yin, G.; Guo, W.; Liu, H.; Huang, Z.; Chen, X. Characteristics of tumor infiltrating lymphocytes in sinonasal mucosal melanoma and prognosis for patients. Curr. Probl. Cancer 2022, 46, 100878. [Google Scholar] [CrossRef] [PubMed]
- Erdag, G.; Schaefer, J.T.; Smolkin, M.E.; Deacon, D.H.; Shea, S.M.; Dengel, L.T.; Patterson, J.W.; Slingluff, C.L., Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012, 72, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Quek, C. Understanding the Tumor Microenvironment in Melanoma Patients with In-Transit Metastases and Its Impacts on Immune Checkpoint Immunotherapy Responses. Int. J. Mol. Sci. 2024, 25, 4243. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, A.; Fiume, G.; Pelagalli, A.; Sanità, G.; Ruocco, M.R.; Montagnani, S.; Arcucci, A. Metabolic plasticity of melanoma cells and their crosstalk with tumor microenvironment. Front. Oncol. 2020, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Arozarena, I.; Wellbrock, C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer 2019, 19, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Baderca, F.; Cojocaru, S.; Lazăr, E.; Lăzureanu, C.; Lighezan, R.; Alexa, A.; Raica, M.; Nicola, T. Amelanotic vulvar melanoma: Case report and review of the literature. Rom. J. Morphol. Embryol. 2008, 49, 219–228. [Google Scholar]
- Alexa, A.; Baderca, F.; Zăhoi, D.E.; Lighezan, R.; Izvernariu, D.; Raica, M. Clinical significance of Her2/neu overexpression in urothelial carcinomas. Rom. J. Morphol. Embryol. 2010, 51, 277–282. [Google Scholar] [PubMed]
- Kharouf, N.; Flanagan, T.W.; Hassan, S.Y.; Shalaby, H.; Khabaz, M.; Hassan, S.L.; Megahed, M.; Haikel, Y.; Santourlidis, S.; Hassan, M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers 2023, 15, 3147. [Google Scholar] [CrossRef]
- Ledderose, S.; Ledderose, C.; Penkava, J.; Ledderose, G.J. Prognostic Value of Tumor-Infiltrating Lymphocytes in Sinonasal Mucosal Melanoma. Laryngoscope 2022, 132, 1334–1339. [Google Scholar] [CrossRef]
- Ledderose, S.; Schulz, H.; Paul, T.; Ledderose, C.; Ledderose, G.J. Characterization of the tumor-infiltrating lymphocyte landscape in sinonasal mucosal melanoma. Pathol. Res. Pract. 2023, 241, 154289. [Google Scholar] [CrossRef] [PubMed]
- Tarabay, J.; Ren, D.; Ifegu, I.; Zada, S.; Edwards, R.; Chan, J.; Kuan, E.C.; Wang, B. Prognostic Significance of Tumor-infiltrating Lymphocytes and Anti-programmed Death-ligand 1 Therapy in Sinonasal Mucosal Melanoma: A 10-year Experience at a Single Institution. JCTP 2023, 3, 115–119. [Google Scholar] [CrossRef]
- Wouters, M.C.A.; Nelson, B.H. Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clin. Cancer Res. 2018, 24, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Uryvaev, A.; Passhak, M.; Hershkovits, D.; Sabo, E.; Bar-Sela, G. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med. Oncol. 2018, 35, 25. [Google Scholar] [CrossRef] [PubMed]
- Griss, J.; Bauer, W.; Wagner, C.; Simon, M.; Chen, M.; Grabmeier-Pfistershammer, K.; Maurer-Granofszky, M.; Roka, F.; Penz, T.; Bock, C.; et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 2019, 10, 4186. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, R.; Zhang, G.; Fukunaga-Kalabis, M.; Perego, M.; Krepler, C.; Xu, X.; Wagner, C.; Hristova, D.; Zhang, J.; Tian, T.; et al. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat. Commun. 2017, 8, 607. [Google Scholar] [CrossRef]
- Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef]
- Willsmore, Z.N.; Harris, R.J.; Crescioli, S.; Hussein, K.; Kakkassery, H.; Thapa, D.; Cheung, A.; Chauhan, J.; Bax, H.J.; Chenoweth, A.; et al. B Cells in Patients with Melanoma: Implications for Treatment with Checkpoint Inhibitor Antibodies. Front. Immunol. 2021, 11, 622442. [Google Scholar] [CrossRef]
- Selitsky, S.R.; Mose, L.E.; Smith, C.C.; Chai, S.; Hoadley, K.A.; Dittmer, D.P.; Moschos, S.J.; Parker, J.S.; Vincent, B.G. Prognostic value of B cells in cutaneous melanoma. Genome Med. 2019, 11, 36. [Google Scholar] [CrossRef]
- Garg, K.; Maurer, M.; Griss, J.; Brüggen, M.C.; Wolf, I.H.; Wagner, C.; Willi, N.; Mertz, K.D.; Wagner, S.N. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum. Pathol. 2016, 54, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rodriguez, M.; Thompson, A.K.; Monteagudo, C. A significant percentage of CD20-positive TILs correlates with poor prognosis in patients with primary cutaneous malignant melanoma. Histopathology 2014, 65, 726–728. [Google Scholar] [CrossRef]
- Voskoboinik, I.; Whisstock, J.C.; Trapani, J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015, 15, 388–400. [Google Scholar] [CrossRef]
- Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 2020, 21, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Da Silva, I.P.; Palendira, U.; Scolyer, R.A.; Long, G.V.; Wilmott, J.S. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers 2021, 13, 1363. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.H.; Pisanti, S.; Ciaglia, E.; Mortarini, R.; Anichini, A.; Garofalo, C.; Tallerico, R.; Santinami, M.; Gulletta, E.; Ietto, C.; et al. Enrichment of CD56dimKIR+CD57+highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat. Commun. 2014, 5, 5639. [Google Scholar] [CrossRef]
- Lee, H.; Quek, C.; Silva, I.; Tasker, A.; Batten, M.; Rizos, H.; Lim, S.Y.; Nur Gide, T.; Shang, P.; Attrill, G.H.; et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. Oncoimmunology 2019, 8, 1537581. [Google Scholar] [CrossRef]
- Sconocchia, G.; Arriga, R.; Tornillo, L.; Terracciano, L.; Ferrone, S.; Spagnoli, G.C. Melanoma cells inhibit NK cell functions. Cancer Res. 2012, 72, 5428–5429. [Google Scholar] [CrossRef] [PubMed]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef]
- Lissoni, P.; Bucovec, R.; Meregalli, S.; Fumagalli, L.; Vigorè, L.; Ferrante, R.; Brivio, F. IL-2 Immunotherapy-Induced Increase in IL-12 Blood Concentrations May Depend on an Increase in Circulating Dendritic Cell Number. Int. J. Biol. Marker 1999, 14, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Diao, J.; Cattral, M.S. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell. Mol. Life Sci. 2017, 74, 761–776. [Google Scholar] [CrossRef]
- Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer. 2021, 21, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Laureano, R.S.; Sprooten, J.; Vanmeerbeerk, I.; Borras, D.M.; Govaerts, J.; Naulaerts, S.; Berneman, Z.N.; Beuselinck, B.; Bol, K.F.; Borst, J.; et al. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. OncoImmunology 2022, 11, 2096363. [Google Scholar] [CrossRef]
- Sosa Cuevas, E.; Saas, P.; Aspord, C. Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers 2023, 15, 2206. [Google Scholar] [CrossRef]
- Klarquist, J.S.; Janssen, E.M. Melanoma-infiltrating dendritic cells: Limitations and opportunities of mouse models. Oncoimmunology 2012, 1, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Fang, T.; Wei, S.; Chai, S.; Yang, H.; Tao, M.; Cao, Y. Macrophages in melanoma: A double-edged sword and targeted therapy strategies (Review). Exp. Ther. Med. 2022, 24, 640. [Google Scholar] [CrossRef]
- Fu, L.Q.; Du, W.L.; Cai, M.H.; Yao, J.Y.; Zhao, Y.Y.; Mou, X.Z. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell. Immunol. 2020, 353, 104119. [Google Scholar] [CrossRef]
- Falcone, I.; Conciatori, F.; Bazzichetto, C.; Ferretti, G.; Cognetti, F.; Ciuffreda, L.; Milella, M. Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers 2020, 12, 2870. [Google Scholar] [CrossRef] [PubMed]
- Masucci, M.T.; Minopoli, M.; Carriero, M.V. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front. Oncol. 2019, 9, 1146. [Google Scholar] [CrossRef] [PubMed]
- Lino-Silva, L.S.; Salcedo-Hernández, R.A.; García-Pérez, L.; Meneses-García, A.; Zepeda-Najar, C. Basal neutrophil-to-lymphocyte ratio is associated with overall survival in melanoma. Melanoma Res. 2017, 27, 140–144. [Google Scholar] [CrossRef]
- Ma, J.; Kuzman, J.; Ray, A.; Lawson, B.O.; Khong, B.; Xuan, S.; Hahn, A.W.; Khong, H.T. Neutrophil-to-lymphocyte Ratio (NLR) as a predictor for recurrence in patients with stage III melanoma. Sci. Rep. 2018, 8, 4044. [Google Scholar] [CrossRef]
- Turri-Zanoni, M.; Gravante, G.; Castelnuovo, P. Molecular Biomarkers in Sinonasal Cancers: New Frontiers in Diagnosis and Treatment. Curr. Oncol. Rep. 2022, 24, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Liu, J.; Lund, V.J. Novel Biomarkers in Sinonasal Cancers: From Bench to Bedside. Curr. Oncol. Rep. 2020, 29, 106. [Google Scholar] [CrossRef] [PubMed]
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef]
- Spiliopoulou, P.; Holanda Lopes, C.D.; Spreafico, A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2024, 13, 19. [Google Scholar] [CrossRef]
- De Simoni, E.; Spagnolo, F.; Gandini, S.; Gaeta, A.; Rizzetto, G.; Molinelli, E.; Simonetti, O.; Offidani, A.; Queirolo, P. Circulating tumor DNA-based assessment of molecular residual disease in non-metastatic melanoma. Cancer Treat. Rev. 2024, 129, 102788. [Google Scholar] [CrossRef] [PubMed]
Antibody | Substrate | Clone | Dilution |
---|---|---|---|
HMB45 1 | Monoclonal, mouse | HMB45 | 1:60 |
Melan A | Monoclonal, mouse | A103 | 1:50 |
S100 protein | Polyclonal, rabbit | EP32 | 1:100 |
SOX10 2 | Monoclonal, rabbit | SP267 | 1:100 |
CK AE1/AE3 3 | Monoclonal, mouse | AE1/AE3 | 1:100 |
Vimentin | Monoclonal, mouse | V9 | 1:800 |
Desmin | Monoclonal, mouse | DE-R-11 | 1:75 |
Smooth muscle actin | Monoclonal, mouse | Asn-1 | 1:50 |
Synaptophysin | Monoclonal, mouse | 27G12 | 1:200 |
Chromogranin | Monoclonal, mouse | 5H7 | 1:200 |
CD117 4 | Monoclonal, rabbit | EP10 | 1:200 |
LCA 5 | Monoclonal, mouse | X16/99 | 1:40 |
CD3 6 | Monoclonal, mouse | LN10 | 1:500 |
CD4 7 | Monoclonal, mouse | 4B12 | 1:100 |
CD8 8 | Monoclonal, mouse | 4B11 | 1:500 |
CD20 9 | Monoclonal, mouse | L26 | RTU 10 |
CD56 11 | Monoclonal, rabbit | MRQ-42 | RTU |
CD138 12 | Monoclonal, mouse | Mi15 | RTU |
CD68 13 | Monoclonal, mouse | 514H12 | 1:100 |
CD1a 14 | Monoclonal, mouse | MTB1 | RTU |
p53 protein | Monoclonal, mouse | DO-7 | 1:800 |
Ki67 index 15 | Monoclonal, mouse | MM1 | 1:200 |
Case | Age | Sex | Signs and Symptoms | Onset of Symptoms | Site | Size | Observations |
---|---|---|---|---|---|---|---|
1 | 67 | M | Epistaxis | 4 months | Left nasal fossa | 0.9 cm | Smoker |
2 | 74 | M | Nasal obstruction, hyposmia | 9 months | Right nasal fossa | 1.4 cm | Smoker |
3 | 69 | M | Epistaxis | 3 months | Right nasal fossa | 0.5 cm | Smoker |
4 | 73 | F | Epistaxis, nasal obstruction | 5 months | Right nasal fossa | 2 cm | Smoker |
5 | 59 | F | Epistaxis, nasal obstruction | 1 month | Left nasal fossa | 1.2 cm | Non-smoker |
6 | 67 | F | Epistaxis, hyposmia, nasal obstruction | 3 months | Right nasal fossa | 0.9 cm | Smoker |
7 | 77 | F | Nasal obstruction, nasal discharge | 4 months | Nasal septum | 1.6 cm | Smoker |
8 | 35 | F | Epistaxis, oral respiration, snoring | 2 weeks | Right nasal fossa | 1.1 cm | Smoker |
9 | 59 | M | Nasal obstruction, rhinorrhea, hyposmia | 12 months | Right naso-orbito-sphenoidal area | 2.3 cm | Smoker and Alcoholic |
Case | Cells | Pattern | Melanin |
---|---|---|---|
1 | Epithelioid | Nested | +++ 1 |
2 | Epithelioid | Nested | Absent |
3 | Epithelioid | Papillary | Absent |
4 | Epithelioid | Nested | +++ |
5 | Epithelioid and fusiform | Mixed: nested and fascicular | Absent |
6 | Epithelioid and plasmacytoid | Papillary | + 2 |
7 | Epithelioid | Peritheliomatous | Absent |
8 | Epithelioid | Nested | Absent |
9 | Epithelioid and plasmacytoid | Peritheliomatous | +++ |
Case | HMB45 | S100 Protein | Melan A | SOX 10 | ||||
---|---|---|---|---|---|---|---|---|
1 | Ratio | Intensity | Ratio | Intensity | Ratio | Intensity | Ratio | Intensity |
2 | 90% | ++ 1 | 90% | +++ 2 | 70% | ++/+++ 3 | 100% | +++ |
3 | 100% | +++ | 85% | ++/+++ | 95% | +++ | 100% | +++ |
5 | 50% | ++ | 80% | ++/+++ | 90% | ++/+++ | 90% | ++ |
7 | 90% | +++ | 50% | +++ | 70% | +++ | 30% | +/++ 4 |
8 | 45% | ++/+++ | 80% | +++ | 100% | +++ | 100% | +++ |
Case | Ulceration | Necrosis | Mitotic Index 1 | VL 2 | Pn 3 | Resection Margins | pTNM 4 |
---|---|---|---|---|---|---|---|
1 | Absent | Absent | 6 | V0L1 | Pn0 | Negative | pT3Nx |
2 | Absent | Absent | 5 | V0L0 | Pn0 | NA 5 | NA |
3 | Absent | Absent | 15 | V0L1 | Pn0 | NA | NA |
4 | Present | Present | 9 | V0L0 | Pn0 | Negative | pT3Nx |
5 | Present | Present | 5 | V0L1 | Pn0 | Negative | pT3Nx |
6 | Absent | Absent | 7 | V0L1 | Pn0 | Negative | pT3N1 |
7 | Absent | Absent | 7 | V0L1 | Pn0 | Negative | pT3Nx |
8 | Present | Present | 16 | V0L0 | Pn0 | NA | NA |
9 | Present | Present | 9 | V0L1 | Pn1 | Negative | pT4aNx |
Case | LCA * | CD20+ B Cells ** | CD3+ T Cells ** | CD4+ T Cells ** | CD8+ T Cells ** | CD56+ NK Cells ** | CD68+ Macrophages * | CD1a+APC * | CD117+ Mast Cells * | Other Inflammatory Cells | Immunotype |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 75% | 65% | 10% | 5% | 20% | <0.1% | 0.5% | <0.1% | <0.1% | 10% plasma cells, 10% neutrophils and eosinophils * | B |
2 | 70% | 75% | 4.5% | 5% | 15% | 0.5% | 10% | <0.1% | <0.1% | 15% plasma cells, 5% neutrophils and eosinophils * | B |
223 | 90% | 85% | <0.1% | 3% | 12% | 0% | 5% | <0.1% | 0% | 5% plasma cells | A |
4 | 95% | 70% | 5% | 5% | 20% | 0% | 5% | <0.1% | 0% | - | A |
5 | 70% | 70% | 4.5% | 5% | 20% | 0.5% | 10% | 0.5% | <0.5% | 15% plasma cells, 4% neutrophils and eosinophils * | B |
6 | 70% | 70% | 5% | 5% | 20% | 0.1% | 5% | <0.1% | 0.5% | 20% plasma cells, 4.5% neutrophils and eosinophils * | B |
7 | 70% | 70% | 5% | 5% | 20% | 0.1% | 10% | 0.5% | 0.5% | 15% plasma cells, 4% neutrophils and eosinophils * | B |
8 | 90% | 55% | <0.1% | 30% | 15% | <0.1% | 0.5% | <0.1% | <0.1% | 30% neutrophils, 0.5% plasma cells | C |
9 | 90% | 70% | 5% | 5% | 20% | 0% | 10% | 0% | 0% | - | A |
Variable | 1 Year OS | 3 Years OS | 5 Years OS | 10 Years OS |
---|---|---|---|---|
Pigmentation − | 60% | 40% | 20% | - |
Pigmentation + | 75% | 75% | 75% | 37.5% |
Eosinophiles − | 50% | 50% | - | - |
Eosinophiles + | 80% | 60% | 60% | 30% |
Macrophages − | 50% | 50% | - | - |
Macrophages + | 71% | 57% | 57% | 29% |
Plasmacytes − | 67% | 67% | - | - |
Plasmacytes + | 67% | 50% | 50% | 25% |
Dendritic cells − | 57% | 57% | 38% | 19% |
Dendritic cells + | 100% | 50% | 50% | - |
NK lymphocytes − | 57% | 43% | 21% | 21% |
NK lymphocytes + | 100% | 100% | 100% | - |
Immunotype A | 33.3% | 33.3% | - | - |
Immunotype B | 80% | 60% | 60% | 30% |
Immunotype C | 100% | 100% | - | - |
Immunotherapy − | 60% | 40% | 20% | 20% |
Immunotherapy + | 75% | 75% | 75% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trandafir, C.M.; Closca, R.M.; Poenaru, M.; Sarau, O.S.; Sarau, C.A.; Rakitovan, M.; Baderca, F.; Sima, L.V. Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers 2024, 16, 2863. https://doi.org/10.3390/cancers16162863
Trandafir CM, Closca RM, Poenaru M, Sarau OS, Sarau CA, Rakitovan M, Baderca F, Sima LV. Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers. 2024; 16(16):2863. https://doi.org/10.3390/cancers16162863
Chicago/Turabian StyleTrandafir, Cornelia Marina, Raluca Maria Closca, Marioara Poenaru, Oana Silvana Sarau, Cristian Andrei Sarau, Marina Rakitovan, Flavia Baderca, and Laurentiu Vasile Sima. 2024. "Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study" Cancers 16, no. 16: 2863. https://doi.org/10.3390/cancers16162863
APA StyleTrandafir, C. M., Closca, R. M., Poenaru, M., Sarau, O. S., Sarau, C. A., Rakitovan, M., Baderca, F., & Sima, L. V. (2024). Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers, 16(16), 2863. https://doi.org/10.3390/cancers16162863