Perioperative Management of Patients with Diabetes and Cancer: Challenges and Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
3. Epidemiology
4. Classification of Diabetes
5. Hyperglycemia Caused by Antineoplastic Agents
5.1. Corticosteroids
5.2. Targeted Therapies: PI3K/AKT/mTOR Pathway
5.3. Immune Checkpoint Inhibitors
6. Operative Complications in Diabetes
6.1. Cardiovascular Disease
6.2. Nephropathy
6.3. Neuropathy
6.4. Infection and Surgical Wound Complications
7. Perioperative Management of Patients with Diabetes and Cancer
7.1. Preoperative Optimization
7.2. Perioperative Management of Blood Glucose
7.3. Perioperative Management of Oral and Non-Insulin-Injectable Diabetes Medication
7.4. Perioperative Management of Insulin
7.5. Postoperative Management
8. Future Directions
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- The Lancet Diabetes Endocrinology. Undiagnosed type 2 diabetes: An invisible risk factor. Lancet Diabetes Endocrinol. 2024, 12, 215. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, A.; Cao, J.; Liu, Y.; Lou, J.; Li, H.; Ma, Y.; Song, Y.; Mi, W.; Liu, J. Association of Diabetes Mellitus with Postoperative Complications and Mortality After Non-Cardiac Surgery: A Meta-Analysis and Systematic Review. Front. Endocrinol. 2022, 13, 841256. [Google Scholar] [CrossRef]
- Shahid, R.K.; Ahmed, S.; Le, D.; Yadav, S. Diabetes and Cancer: Risk, Challenges, Management and Outcomes. Cancers 2021, 13, 5735. [Google Scholar] [CrossRef]
- Wu, B.C.; Wlodarczyk, J.; Abadchi, S.N.; Shababi, N.; Cameron, J.L.; Harmon, J.W. Revolutionary transformation lowering the mortality of pancreaticoduodenectomy: A historical review. eGastroenterology 2023, 1, e100014. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.K.; Gonzales, C.F. Preoperative considerations for patients with diabetes. Expert Rev. Endocrinol. Metab. 2023, 18, 503–512. [Google Scholar] [CrossRef]
- Crowley, K.; Scanaill, P.; Hermanides, J.; Buggy, D.J. Current practice in the perioperative management of patients with diabetes mellitus: A narrative review. Br. J. Anaesth. 2023, 131, 242–252. [Google Scholar] [CrossRef]
- Bain, C.R.; Myles, P.S.; Corcoran, T.; Dieleman, J.M. Postoperative systemic inflammatory dysregulation and corticosteroids: A narrative review. Anaesthesia 2023, 78, 356–370. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The surgically induced stress response. J. Parenter. Enter. Nutr. 2013, 37 (Suppl. S5), 21S–29S. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global CANCER Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. CA A Cancer J. Clin. 2010, 60, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Stuttard, J.; Papadimitriou, N.; Markozannes, G.; Cividini, S.; Kakourou, A.; Gill, D.; Rizos, E.C.; Monori, G.; Ward, H.A.; Kyrgiou, M.; et al. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P.A. Type 2 diabetes and cancer: Umbrella review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Qu, S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front. Endocrinol. 2022, 13, 800995. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.B.; Yeh, H.C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; Wolff, A.C.; Brancati, F.L. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: A systematic review and meta-analysis. JAMA 2008, 300, 2754–2764. [Google Scholar] [CrossRef] [PubMed]
- Barua, R.; Templeton, A.; Seruga, B.; Ocana, A.; Amir, E.; Ethier, J.-L. Hyperglycaemia and Survival in Solid Tumours: A Systematic Review and Meta-analysis. Clin. Oncol. 2018, 30, 215–224. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef]
- Heurtebize, M.-A.; Faillie, J.-L. Drug-induced hyperglycemia and diabetes. Therapies 2023, 79, 221–238. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Lee, E.K. Acute Hyperglycemia Associated with Anti-Cancer Medication. Endocrinol. Metab. 2017, 32, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Buffier, P.; Bouillet, B.; Smati, S.; Archambeaud, F.; Cariou, B.; Verges, B. Expert opinion on the metabolic complications of new anticancer therapies: Tyrosine kinase inhibitors. Ann. d‘Endocrinol. 2018, 79, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Yim, C.; Mansell, K.; Hussein, N.; Arnason, T. Current cancer therapies and their influence on glucose control. World J. Diabetes 2021, 12, 1010–1025. [Google Scholar] [CrossRef] [PubMed]
- Tamez-Pérez, H.E.; Quintanilla-Flores, D.L.; Rodríguez-Gutiérrez, R.; González-González, J.G.; Tamez-Peña, A.L. Steroid hypergly-cemia: Prevalence, early detection and therapeutic recommendations: A narrative review. World J. Diabetes 2015, 6, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.W.; Mendenhall, M.A.; Rettinger, S.R. Hyperglycemia Associated with Targeted Oncologic Treatment: Mechanisms and Management. Oncologist 2016, 21, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Busaidy, N.L.; Farooki, A.; Dowlati, A.; Perentesis, J.P.; Dancey, J.E.; Doyle, L.A.; Brell, J.M.; Siu, L.L. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J. Clin. Oncol. 2012, 30, 2919–2928. [Google Scholar] [CrossRef] [PubMed]
- Vergès, B.; Cariou, B. mTOR inhibitors and diabetes. Diabetes Res. Clin. Pract. 2015, 110, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Weintraub, M.A.; Garcia, C.; Goncalves, M.D.; Sisk, A.E.; Casas, A.; Harding, J.J.; Harnicar, S.; Drilon, A.; Jhaveri, K.; et al. Characterization, management, and risk factors of hyperglycemia during PI3K or AKT inhibitor treatment. Cancer Med. 2022, 11, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Mulla, K.; Farag, S.; Moore, B.; Matharu, S.; Young, K.; Larkin, J.; Popat, S.; Morganstein, D.L. Hyperglycaemia following immune checkpoint inhibitor therapy-Incidence, aetiology and assessment. Diabet. Med. 2023, 40, e15053. [Google Scholar] [CrossRef]
- Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef]
- Saberzadeh-Ardestani, B.; Karamzadeh, R.; Basiri, M.; Hajizadeh-Saffar, E.; Farhadi, A.; Shapiro, A.M.J.; Tahamtani, Y.; Baharvand, H. Type 1 Diabetes Mellitus: Cellular and Molecular Pathophysiology at A Glance. Cell J. 2018, 20, 294–301. [Google Scholar] [PubMed]
- Sudhakaran, S.; Surani, S.R. Guidelines for Perioperative Management of the Diabetic Patient. Surg. Res. Pract. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- GlobalSurg Collaborative and National Institute for Health Research Global Health Research Unit on Global Surgery. Global variation in postoperative mortality and complications after cancer surgery: A multicentre, prospective cohort study in 82 countries. Lancet 2021, 397, 387–397. [Google Scholar] [CrossRef]
- Vedantam, D.; Poman, D.S.; Motwani, L.; Asif, N.; Patel, A.; Anne, K.K. Stress-Induced Hyperglycemia: Consequences and Management. Cureus 2022, 14, e26714. [Google Scholar] [CrossRef] [PubMed]
- Yong, P.H.; Weinberg, L.; Torkamani, N.; Churilov, L.; Robbins, R.J.; Ma, R.; Bellomo, R.; Lam, Q.T.; Burns, J.D.; Hart, G.K.; et al. The Presence of Diabetes and Higher HbA1c Are Inde-pendently Associated with Adverse Outcomes After Surgery. Diabetes Care 2018, 41, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Halkos, M.E.; Lattouf, O.M.; Puskas, J.D.; Kilgo, P.; Cooper, W.A.; Morris, C.D.; Guyton, R.A.; Thourani, V.H. Elevated preoperative hemoglobin A1c level is associated with reduced long-term survival after coronary artery bypass surgery. Ann. Thorac. Surg. 2008, 86, 1431–1437. [Google Scholar] [CrossRef]
- Mohammadi, S.; Dagenais, F.; Mathieu, P.; Kingma, J.G.; Doyle, D.; Lopez, S.; Baillot, R.; Perron, J.; Charbonneau, E.; Dumont, E.; et al. Long-term impact of diabetes and its comorbidities in patients undergoing isolated primary coro-nary artery bypass graft surgery. Circulation 2007, 116 (Suppl. S11), I220–I225. [Google Scholar] [CrossRef] [PubMed]
- Thourani, V.H.; Weintraub, W.S.; Stein, B.; Gebhart, S.S.; Craver, J.M.; Jones, E.L.; Guyton, R.A. Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann. Thorac. Surg. 1999, 67, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.B.; Yeh, H.C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; Wolff, A.C.; Brancati, F.L. Postoperative mortality in cancer patients with preexisting diabetes: Systematic review and meta-analysis. Diabetes Care 2010, 33, 931–939. [Google Scholar] [CrossRef]
- Koperna, T.; Kisser, M.; Schulz, F. Emergency surgery for colon cancer in the aged. Arch. Surg. 1997, 132, 1032–1037. [Google Scholar] [CrossRef]
- Tsugawa, K.; Koyanagi, N.; Hashizume, M.; Akahoshi, K.; Wada, H.; Ayukawa, K.; Tomikawa, M.; Sugimachi, K. Therapeutic strategy of emergency surgery for colon cancer in 71 patients over 70 years of age in Japan. Hepato-Gastroenterol. 2002, 49, 393–398. [Google Scholar]
- Little, S.A.; Jarnagin, W.R.; DeMatteo, R.P.; Blumgart, L.H.; Fong, Y. Diabetes is associated with increased perioperative mortality but equivalent long-term outcome after hepatic resection for colorectal cancer. J. Gastrointest. Surg. 2002, 6, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Davila, J.A.; Rabeneck, L.; Berger, D.H.; El-Serag, H.B. Postoperative 30-day Mortality Following Surgical Resection for Colorectal Cancer in Veterans: Changes in the Right Direction. Dig. Dis. Sci. 2005, 50, 1722–1728. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Yaow, C.Y.L.; Mok, H.T.; Ng, C.H.; Tai, C.H.; Tham, H.Y.; Foo, F.J.; Chong, C.S. The influence of diabetes on postoperative complications following colorectal surgery. Tech. Coloproctol. 2021, 25, 267–278. [Google Scholar] [CrossRef]
- Godinjak, A.; Iglica, A.; Burekovic, A.; Jusufovic, S.; Ajanovic, A.; Tancica, I.; Kukuljac, A. Hyperglycemia in Critically Ill Patients: Management and Prognosis. Med. Arch. 2015, 69, 157–160. [Google Scholar] [CrossRef]
- Kerby, J.D.; Griffin, R.L.; MacLennan, P.; Rue, L.W.I. Stress-induced hyperglycemia, not diabetic hyperglycemia, is associated with higher mortality in trauma. Ann. Surg. 2012, 256, 446–452. [Google Scholar] [CrossRef]
- Rau, C.-S.; Wu, S.-C.; Chen, Y.-C.; Chien, P.-C.; Hsieh, H.-Y.; Kuo, P.-J.; Hsieh, C.-H. Higher Mortality in Trauma Patients Is Associated with Stress-Induced Hyperglycemia, but Not Diabetic Hyperglycemia: A Cross-Sectional Analysis Based on a Propensity-Score Matching Approach. Int. J. Environ. Res. Public Health 2017, 14, 1161. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Khalpey, Z.; Lipsitz, S.; Steinberg, J.; Panizales, M.T.; Zinner, M.; Rogers, S.O. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann. Surg. 2008, 248, 585–591. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Redel-Traub, G.; Berger, J.S. Microvascular Disease and Perioperative Outcomes of Non-Cardiac Surgery. Am. J. Cardiol. 2021, 139, 121–125. [Google Scholar] [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef]
- Huxley, R.; Barzi, F.; Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: Meta-analysis of 37 prospective cohort studies. BMJ 2006, 332, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [PubMed]
- Lenihan, D.J.; Oliva, S.; Chow, E.J.; Cardinale, D. Cardiac toxicity in cancer survivors. Cancer 2013, 119 (Suppl. S11), 2131–2142. [Google Scholar] [CrossRef]
- Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 2019, 40, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Pompeo, E.; Elia, S.; Pistolese, G.R.; Mineo, T.C. The impact of cardiovascular comorbidity on the outcome of surgery for stage I and II non-small-cell lung cancer. Eur. J. Cardio-Thoracic Surg. 2003, 23, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Shahbazian, H.; Rezaii, I. Diabetic kidney disease; review of the current knowledge. J. Ren. Inj. Prev. 2013, 2, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, A.K.; Doshi, S.M.; Pawar, T.; Nowshad, G.; Lahoti, A.; Shah, P. Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin. J. Am. Soc. Nephrol. 2013, 8, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Kitchlu, A.; McArthur, E.; Amir, E.; Booth, C.M.; Sutradhar, R.; Majeed, H.; Nash, D.M.; Silver, S.A.; Garg, A.X.; Chan, C.T.; et al. Acute Kidney Injury in Patients Receiving Systemic Treatment for Cancer: A Population-Based Cohort Study. JNCI J. Natl. Cancer Inst. 2019, 111, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Kildow, B.J.; Agaba, P.; Moore, B.F.; Hallows, R.K.; Bolognesi, M.P.; Seyler, T.M. Postoperative Impact of Diabetes, Chronic Kidney Disease, Hemodialysis, and Renal Transplant After Total Hip Arthroplasty. J. Arthroplast. 2017, 32, S135–S140.e1. [Google Scholar] [CrossRef]
- Kheterpal, S.; Tremper, K.K.; Heung, M.; Rosenberg, A.L.; Englesbe, M.; Shanks, A.M.; Campbell, D.A., Jr. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: Results from a national data set. Anesthesiology 2009, 110, 505–515. [Google Scholar] [CrossRef]
- Mathew, A.; Devereaux, P.; O‘Hare, A.; Tonelli, M.; Thiessen-Philbrook, H.; Nevis, I.; Iansavichus, A.; Garg, A. Chronic kidney disease and postoperative mortality: A systematic review and meta-analysis. Kidney Int. 2008, 73, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Choung, R.S.; Locke GR 3rd Schleck, C.D.; Zinsmeister, A.R.; Melton, L.J., III; Talley, N.J. Risk of gastroparesis in subjects with type 1 and 2 diabetes in the general population. Am. J. Gastroenterol. 2012, 107, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Nason, K.S. Acute Intraoperative Pulmonary Aspiration. Thorac. Surg. Clin. 2015, 25, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.G.; Shin, J.; Ryu, H.G. Pneumonitis and pneumonia after aspiration. J. Dent. Anesthesia Pain Med. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mandarino, F.V.; Sinagra, E.; Barchi, A.; Verga, M.C.; Brinch, D.; Raimondo, D.; Danese, S. Gastroparesis: The Complex Interplay with Microbiota and the Role of Exogenous Infections in the Pathogenesis of the Disease. Microorganisms 2023, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.P.; Weller, R.; Regel, S. Gastroparesis and cancer-related gastroparesis. In Textbook of Palliative Care; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 259–273. [Google Scholar]
- Meng, H.; Zhou, D.; Jiang, X.; Ding, W.; Lu, L. Incidence and risk factors for postsurgical gastroparesis syndrome after laparoscopic and open radical gastrectomy. World J. Surg. Oncol. 2013, 11, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Ditah, I.; Devaki, P.; Luma, H.N.; Ditah, C.; Njei, B.; Jaiyeoba, C.; Salami, A.; Ditah, C.; Ewelukwa, O.; Szarka, L. Prevalence, trends, and risk factors for fecal incontinence in United States adults, 2005–2010. Clin. Gastroenterol. Hepatol. 2014, 12, 636–643.e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Putta, S.; Andreyev, H. Faecal Incontinence: A late side-effect of pelvic radiotherapy. Clin. Oncol. 2005, 17, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- Galkowska, H.; Wojewodzka, U.; Olszewski, W.L. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006, 14, 558–565. [Google Scholar] [CrossRef]
- Alenzi, E.O.; Kelley, G.A. The association of hyperglycemia and diabetes mellitus and the risk of chemotherapy-induced neu-tropenia among cancer patients: A systematic review with metaanalysis. J. Diabetes Its Complicat. 2017, 31, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Lederer, A.-K.; Bartsch, F.; Moehler, M.; Gaßmann, P.; Lang, H. Morbidity and Mortality of Neutropenic Patients in Visceral Surgery: A Narrative Review. Cells 2022, 11, 3314. [Google Scholar] [CrossRef] [PubMed]
- Frisch, A.; Chandra, P.; Smiley, D.; Peng, L.; Rizzo, M.; Gatcliffe, C.; Hudson, M.; Mendoza, J.; Johnson, R.; Lin, E.; et al. Prev-alence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care 2010, 33, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Q.-J.; Wang, S.; Zeng, S.-X.; Zhang, Y.-P.; Bai, X.-J.; Hou, T.-Y. Diabetes mellitus is associated with increased risk of surgical site infections: A meta-analysis of prospective cohort studies. Am. J. Infect. Control. 2015, 43, 810–815. [Google Scholar] [CrossRef] [PubMed]
- King, J.T., Jr.; Goulet, J.L.; Perkal, M.F.; Rosenthal, R.A. Glycemic control and infections in patients with diabetes undergoing non-cardiac surgery. Ann. Surg. 2011, 253, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, F.; Santarpino, G.; Gatti, G.; Reichart, D.; Onorati, F.; Faggian, G.; Dalén, M.; Khodabandeh, S.; Fischlein, T.; Maselli, D.; et al. Utility of glycated hemoglobin screening in patients undergoing elective coronary artery surgery: Prospective, cohort study from the E-CABG registry. Int. J. Surg. 2018, 53, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Wukich, D.K.; Crim, B.E.; Frykberg, R.G.; Rosario, B.L. Neuropathy and poorly controlled diabetes increase the rate of surgical site infection after foot and ankle surgery. J. Bone Jt. Surg. 2014, 96, 832–839. [Google Scholar] [CrossRef] [PubMed]
- de Vries, F.E.; Gans, S.L.; Solomkin, J.S.; Allegranzi, B.; Egger, M.; Dellinger, E.P.; Boermeester, M.A. Meta-analysis of lower perioperative blood glucose target levels for reduction of surgical-site infection. Br. J. Surg. 2017, 104, e95–e105. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, S.Y.; Nam, S.Y.; Choi, S.H.; Choi, J.W.; Roh, J.L. Risk factors of surgical site infection in patients undergoing major oncological surgery for head and neck cancer. Oral. Oncol. 2011, 47, 528–531. [Google Scholar] [CrossRef]
- Caputo, M.P.; Shabani, S.; Mhaskar, R.; McMullen, C.; Padhya, T.A.; Mifsud, M.J. Diabetes mellitus in major head and neck cancer surgery: Systematic review and meta-analysis. Head Neck 2020, 42, 3031–3040. [Google Scholar] [CrossRef]
- Raikundalia, M.D.; Fang, C.H.; Spinazzi, E.F.; Vazquez, A.; Park, R.C.; Baredes, S.; Eloy, J.A. Impact of Diabetes Mellitus on Head and Neck Cancer Patients Undergoing Surgery. Otolaryngol. Head Neck Surg. 2016, 154, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Cheong, C.M.; Golder, A.M.; Horgan, P.G.; Roxburgh, C.S.D.; McMillan, D.C. Relationship between pre-operative glycated haemo-globin and surgical site infection in patients undergoing elective colon cancer surgery. Oncol. Lett. 2022, 24, 296. [Google Scholar] [CrossRef]
- Kwon, S.; Thompson, R.; Dellinger, P.; Rogers, T.; Flum, D. Importance of perioperative glycemic control in general surgery: A report from the surgical care and outcomes assessment program. J. Surg. Res. 2013, 172, 274. [Google Scholar] [CrossRef]
- Parker, W.P.; Toussi, A.; Tollefson, M.K.; Frank, I.; Thompson, R.H.; Zaid, H.B.; Thapa, P.; Boorjian, S.A. Risk Factors and Microbial Distribution of Urinary Tract Infections Following Radical Cystectomy. Urology 2016, 94, 96–101. [Google Scholar] [CrossRef]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 2012, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Huh, J.W.; Park, Y.A.; Cho, Y.B.; Yun, S.H.; Kim, H.C.; Lee, W.Y. Risk Factors of Anastomotic Leakage and Long-Term Survival After Colorectal Surgery. Medicine 2016, 95, e2890. [Google Scholar] [CrossRef]
- Ha, G.W.; Kim, J.H.; Lee, M.R. Oncologic Impact of Anastomotic Leakage Following Colorectal Cancer Surgery: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2017, 24, 3289–3299. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.A.; Catto, J.A.; Riggs, T.W.; Gates, E.R.; Grodsky, M.B.; Wasvary, H.J. Risk factors for anastomotic leak and mortality in diabetic patients undergoing colectomy: Analysis from a statewide surgical quality collaborative. Arch. Surg. 2012, 147, 600–605. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Chen, W.; Wei, F.; Ying, M.; Wei, W.; Xie, X. Diabetes and risk of anastomotic leakage after gastrointestinal surgery. J. Surg. Res. 2015, 196, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Galindo, R.J.; Fayfman, M.; Umpierrez, G.E. Perioperative Management of Hyperglycemia and Diabetes in Cardiac Surgery Patients. Endocrinol. Metab. Clin. North Am. 2018, 47, 203–222. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 16. Diabetes Care in the Hospital: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S295–S306. [Google Scholar] [CrossRef] [PubMed]
- Silvestris, N.; Franchina, T.; Gallo, M.; Argentiero, A.; Avogaro, A.; Cirino, G.; Colao, A.; Danesi, R.; Di Cianni, G.; D’oronzo, S.; et al. Diabetes management in cancer patients. An Italian Association of Medical Oncology, Italian Association of Medical Diabetologists, Italian Society of Diabetology, Italian Society of Endocrinology and Italian Society of Pharmacology multidisciplinary consensus position paper. ESMO Open 2023, 8, 102062. [Google Scholar] [CrossRef] [PubMed]
- The Management of Glycaemic Control in People with Cancer. Guidance for the Oncology and Diabetes Multidisciplinary Team. The Association of British Clinical Diabetologists. Available online: https://abcd.care/sites/default/files/site_uploads/JBDS_Guidelines_Archive/JBDS_17_Oncology_Guideline_Final_21052021_Archive.pdf (accessed on 2 March 2024).
- Guideline for Perioperative Care for People with Diabetes Mellitus Undergoing Elective and Emergency Surgery, 2021. Centre for Perioperative Care. Available online: https://www.cpoc.org.uk/guidelines-resources/guidelines (accessed on 2 March 2024).
- Lugli, A.K.; Marti, W.R.; Salm, L.; Mujagic, E.; Bundi, M.; von Strauss, M.; Laffer, E.B.; Landin, J.; Fux, C.A.; Coslovsky, M.; et al. The Role of HbA1c as a Positive Perioperative Predictor of Surgical Site and Other Postoperative Infections: An Explorative Analysis in Patients Undergoing Minor to Major Surgery. World J. Surg. 2022, 46, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.C.; Leopa, N.; Dumitru, E.; Mitroi, A.F.; Tocia, C.; Dumitru, A.; Brînzan, C.; Botea, F. Influence of type II diabetes mellitus on postoperative complications following colorectal cancer surgery. Exp. Ther. Med. 2022, 24, 1–7. [Google Scholar] [CrossRef]
- Bailey, C.E.; Parikh, A.A. Assessment of the risk of antiangiogenic agents before and after surgery. Cancer Treat. Rev. 2018, 68, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. Intensive insulin therapy in critically Ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Bellon, F.; Solà, I.; Gimenez-Perez, G.; Hernández, M.; Metzendorf, M.-I.; Rubinata, E.; Mauricioa, D. Perioperative glycaemic control for people with diabetes undergoing surgery. Cochrane Database Syst. Rev. 2023, 2023, CD007315. [Google Scholar] [CrossRef]
- Lipshutz, A.K.; Gropper, M.A. Perioperative glycemic control: An evidence-based review. Anesthesiology 2009, 110, 408–421. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings about too Much Acid in the Blood and Serious Urinary Tract Infections. FDA Drug Safety Communication. 2015. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious (accessed on 21 March 2024).
- Villasenor, M.; Selzer, A.R. Preoperative Patient Evaluation: Newer Hypoglycemic Agents. Anesthesiol. Clin. 2024, 42, 41–52. [Google Scholar] [CrossRef]
- Jones, P.M.; Hobai, I.A.; Murphy, P.M. Anesthesia and glucagon-like peptide-1 receptor agonists: Proceed with caution! Can. J. Anaesth. 2023, 70, 1281–1286. [Google Scholar] [CrossRef]
- Dixit, A.A.; Bateman, B.T.; Hawn, M.T.; Odden, M.C.; Sun, E.C. Preoperative GLP-1 Receptor Agonist Use and Risk of Postoperative Respiratory Complications. JAMA 2024, 331, 1672. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, S.; Chauhan, S.; Mehta, D.K.; Nitika Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Buggy, D.J.; Nolan, R.; Coburn, M.; Columb, M.; Hermanides, J.; Hollman, M.W.; Zarbock, A. Protocol for a prospective, international cohort study on the Management and Outcomes of Perioperative Care among European Diabetic Patients (MOPED). BMJ Open 2021, 11, e044394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Factors | Comments |
---|---|
Surgery-Related Factors | |
Type of surgery | Surgical approach and invasiveness influence perioperative risk and recovery. |
Emergency vs. elective | Emergent surgeries may carry higher risks and require immediate attention to perioperative management. |
Curative vs. palliative | The distinction between curative and palliative surgery guides treatment goals and long-term management strategies. |
Patient-Related Factors | |
Age | Increased age can lead to higher surgical risk due to frailty and comorbidities. |
Body mass index (BMI) | Higher BMI is associated with increased surgical complications such as infections and delayed wound healing. |
Comorbid illness | Comorbidities can complicate anesthesia and postoperative recovery. |
Functional and nutritional status | Poor functional and nutritional status may predict poor surgical outcomes and delayed recovery. |
Psychosocial factors | Social support, mental health status, and coping mechanisms impact postoperative recovery. |
Cancer-Related Factors | |
Type of cancer | Different cancers may have varying impacts on surgical risk and recovery. |
Stage of the cancer | Advanced stages can increase surgical complexity and risk. |
Disease burden in advanced cancer | High disease burden can lead to increased surgical risk and complications. |
Diabetes-Related Factors | |
Type of diabetes | Type 1 vs. type 2 diabetes may influence perioperative glucose management strategies. |
Duration | Longer duration of diabetes can lead to more complications such as cardiovascular disease and nephropathy, affecting surgery. |
Control | Poorly controlled diabetes increases the risk of infections, poor wound healing, and other complications. |
Insulin vs. oral hypoglycemic medication | Insulin-dependent patients may have more complex perioperative management compared to those on oral medications. |
Cancer Treatment-Related Factors | |
Timing of treatment | Recent treatments can affect immune response and healing capacity. |
Type of systemic therapy | Chemotherapy, targeted therapy, and immunotherapy have different impacts on surgical risk and recovery. |
Tendency to cause hyperglycemia | Some treatments, especially steroids, can increase blood glucose levels, complicating perioperative management. |
Intervention | Recommendation | Comments |
---|---|---|
Glucose target level | 6.0–10.0 mmol/L | A less stringent control will be appropriate for individuals with risk of hypoglycemia |
HbA1c target | <8% | |
Optimize concurrent illnesses | Includes hypertension, cardiovascular diseases, and renal function | |
Duration of fasting | Minimize preoperative fasting time | IV dextrose is recommended with basal insulin |
Nutrition | Provide adequate nutrition and manage enteral/parenteral feeding | Nutritional support should be tailored to individual patient needs |
Patient’s education | Educate patients on diabetes management during the perioperative period | Include information on medication adjustments, monitoring blood glucose, and recognizing signs of hypo/hyperglycemia |
Cancer treatment | ||
Chemotherapy | Stop 4 weeks before surgery | Coordination with oncology team |
Targeted therapy | Stop anti-VEGF (e.g., bevacizumab) 4–6 weeks before surgery; most other targeted therapies can be stopped 2 weeks before surgery | |
Diabetic medication | ||
Non-insulin diabetic medication | Stop SGLT2 3–4 days before surgery | Includes canagliflozin, dapagliflozin, and empagliflozin |
Short-acting GLP-1 receptor agonists | Short acting for one day before surgery | Includes exenatide and lixisenatide |
Long-acting GLP-1 receptor agonists | Stop one week before surgery | Includes dulaglutide and semaglutide |
All other oral medication held on surgery | Hold on the day of surgery | Includes metformin, sulfonylureas, DPP-4 inhibitors, etc. |
Long-acting insulin | Administer 75–80% of the usual dose on the morning of surgery | |
Premixed insulin two or three times per day | Administer 50% of the usual dose on the day of surgery | |
NPH insulin dose | 50% of the usual dose on the day of surgery | |
Feeding and mobilization | Initiate feeding and mobilization as soon as clinically feasible post-surgery | Early feeding and mobilization can help in faster recovery and better glucose control |
Self-management | Provide resources and support for self-management post-discharge | Follow-up appointments and ongoing diabetes education |
ID | Type | Title | Sample Size | Location | Time Period |
---|---|---|---|---|---|
NCT04511312 | Prospective observational study | Management and Outcomes of Perioperative Care Among European Diabetic Patients: (MOPED): A Prospective Observational, International Cohort Study | 5000 | Europe | 2021–2024 |
NCT06295289 | Open-label, randomized controlled trial | Hybrid Closed-loop Insulin Delivery System in Perioperative Diabetic Patients: an Open-label, Randomized Controlled Trial | 54 | China | 2023–2024 |
NCT05547594 | Prospective observational study | Impact of a Multimodal Prehabilitation Programme on Markers of Health, Quality of Life and the Short and Long Post-surgery Recovery Period in Cancer Patients With Type 2 Diabetes | 60 | United Kingdom | 2023–2024 |
NCT06314061 | Randomized controlled trial | The Effect of Continuous Glucose Monitoring With Real-time Alerts on Glycaemic Control in Surgical Patients With Diabetes: A Randomised, Clinical Multicentre Trial | 200 | Denmark | 2024–2026 |
NCT03945968 | Prospective observational study | The Role of Concomitant Diseases in Postoperative Complications Risk Stratification (STOPRISK) | 16,000 | Russia | 2019–2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shouman, M.; Brabant, M.; Rehman, N.; Ahmed, S.; Shahid, R.K. Perioperative Management of Patients with Diabetes and Cancer: Challenges and Opportunities. Cancers 2024, 16, 2821. https://doi.org/10.3390/cancers16162821
Shouman M, Brabant M, Rehman N, Ahmed S, Shahid RK. Perioperative Management of Patients with Diabetes and Cancer: Challenges and Opportunities. Cancers. 2024; 16(16):2821. https://doi.org/10.3390/cancers16162821
Chicago/Turabian StyleShouman, Mohamed, Michelle Brabant, Noor Rehman, Shahid Ahmed, and Rabia K. Shahid. 2024. "Perioperative Management of Patients with Diabetes and Cancer: Challenges and Opportunities" Cancers 16, no. 16: 2821. https://doi.org/10.3390/cancers16162821
APA StyleShouman, M., Brabant, M., Rehman, N., Ahmed, S., & Shahid, R. K. (2024). Perioperative Management of Patients with Diabetes and Cancer: Challenges and Opportunities. Cancers, 16(16), 2821. https://doi.org/10.3390/cancers16162821