Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Surgical Procedure
2.3. Data Collection
2.4. CONUT Score Calculation
2.5. Study Endpoints
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, Y.; Richards, A.; Liauw, W.; Morris, D. Hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery (crs) in ovarian cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2015, 41, 1578–1589. [Google Scholar] [CrossRef]
- Spiliotis, J.; Halkia, E.; Lianos, E.; Kalantzi, N.; Grivas, A.; Efstathiou, E.; Giassas, S. Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: A prospective randomized phase iii study. Ann. Surg. Oncol. 2015, 22, 1570–1575. [Google Scholar] [CrossRef]
- Gill, R.S.; Al-Adra, D.P.; Nagendran, J.; Campbell, S.; Shi, X.; Haase, E.; Schiller, D. Treatment of gastric cancer with peritoneal carcinomatosis by cytoreductive surgery and HIPEC: A systematic review of survival, mortality, and morbidity. J. Surg. Oncol. 2011, 104, 692–698. [Google Scholar] [CrossRef]
- Ong, X.-Y.S.; Sultana, R.; Tan, J.W.-S.; Tan, Q.X.; Wong, J.S.M.; Chia, C.S.; Ong, C.-A.J. The role of total parenteral nutrition in patients with peritoneal carcinomatosis: A systematic review and meta-analysis. Cancers 2021, 13, 4156. [Google Scholar] [CrossRef]
- Laval, G.; Marcelin-Benazech, B.; Guirimand, F.; Chauvenet, L.; Copel, L.; Durand, A.; Francois, E.; Gabolde, M.; Mariani, P.; Rebischung, C.; et al. Recommendations for bowel obstruction with peritoneal carcinomatosis. J. Pain Symptom Manag. 2014, 48, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Raspé, C.; Flöther, L.; Schneider, R.; Bucher, M.; Piso, P. Best practice for perioperative management of patients with cytoreductive surgery and HIPEC. Eur. J. Surg. Oncol. 2017, 43, 1013–1027. [Google Scholar] [CrossRef] [PubMed]
- Gearing, P.F.; Hawke, J.A.; Mohan, H.; Heriot, A.G.; Khan, A.; Beaumont, A.; Laing, E.; Waters, P.S. Perioperative nutritional assessment and interventions in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC): A systematic review. Eur. J. Surg. Oncol. 2023, 49, 902–917. [Google Scholar] [CrossRef]
- Reece, L.; Dragicevich, H.; Lewis, C.; Rothwell, C.; Fisher, O.M.; Carey, S.; Alzahrani, N.A.; Liauw, W.; Morris, D.L. Preoperative nutrition status and postoperative outcomes in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 2019, 26, 2622–2630. [Google Scholar] [CrossRef] [PubMed]
- Cardi, M.; Sibio, S.; Di Marzo, F.; Lefoche, F.; d’Agostino, C.; Fonsi, G.B.; La Torre, G.; Carbonari, L.; Sammartino, P. Prognostic factors influencing infectious complications after cytoreductive surgery and HIPEC: Results from a tertiary referral center. Gastroenterol. Res. Pract. 2019, 2019, 2824073. [Google Scholar] [CrossRef]
- Banaste, N.; Rousset, P.; Mercier, F.; Rieussec, C.; Valette, P.-J.; Glehen, O.; Passot, G. Preoperative nutritional risk assessment in patients undergoing cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for colorectal carcinomatosis. Int. J. Hyperth. 2018, 34, 589–594. [Google Scholar] [CrossRef]
- de Ulíbarri Pérez, J.I.; Fernández, G.; Rodríguez Salvanés, F.; Díaz López, A.M. Nutritional screening; control of clinical undernutrition with analytical parameters. Nutr. Hosp. 2014, 29, 797–811. [Google Scholar] [PubMed]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.; de Barros, A.J. Subjective nutrition assessment: Part 1—A review of its validity after two decades of use. Arq. Gastroenterol. 2002, 39, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.G.; Barros, A.J. Indications and limitations of the use of subjective global assessment in clinical practice: An update. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K.; Kumari, S. Effects of nutrition on the immune system. Nutrition 1994, 10, 207–210. [Google Scholar] [PubMed]
- Wolfson, M.; Strong, C.J.; Minturn, D.; Gray, D.K.; Kopple, J.D. Nutritional status and lymphocyte function in maintenance hemodialysis patients. Am. J. Clin. Nutr. 1984, 39, 547–555. [Google Scholar] [CrossRef] [PubMed]
- De Ulíbarri, J.I.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Cho, J.S.; Shim, J.-K.; Kim, K.-S.; Lee, S.; Kwak, Y.-L. Impact of preoperative nutritional scores on 1-year postoperative mortality in patients undergoing valvular heart surgery. J. Thorac. Cardiovasc. Surg. 2022, 164, 1140–1149.e3. [Google Scholar] [CrossRef]
- Spoletini, G.; Ferri, F.; Mauro, A.; Mennini, G.; Bianco, G.; Cardinale, V.; Agnes, S.; Rossi, M.; Avolio, A.W.; Lai, Q. CONUT score predicts early morbidity after liver transplantation: A collaborative study. Front. Nutr. 2022, 8, 793885. [Google Scholar] [CrossRef]
- Takagi, K.; Buettner, S.; Ijzermans, J.N. Prognostic significance of the controlling nutritional status (CONUT) score in patients with colorectal cancer: A systematic review and meta-analysis. Int. J. Surg. 2020, 78, 91–96. [Google Scholar] [CrossRef]
- Takagi, K.; Domagala, P.; Polak, W.G.; Buettner, S.; Ijzermans, J.N. The controlling nutritional status score and postoperative complication risk in gastrointestinal and hepatopancreatobiliary surgical oncology: A systematic review and meta-analysis. Ann. Nutr. Metab. 2019, 74, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, P.; Peng, Z.; Liu, Z.; Yang, L.; Wang, L.; Zhou, J.; Dong, Q. The controlling nutritional status (CONUT) score and prognosis in malignant tumors: A systematic review and meta-analysis. Nutr. Cancer 2022, 74, 3146–3163. [Google Scholar] [CrossRef]
- Niu, Z.; Yan, B. Prognostic and clinicopathological impacts of controlling nutritional status (CONUT) score on patients with gynecological cancer: A meta-analysis. Nutr. J. 2023, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; David, V.; Bardet, M.S.; Auditeau, E.; Durand Fontanier, S.; Taibi, A. Predictive value of C-reactive protein levels for the early and later detection of postoperative complications after cytoreductive surgery and HIPEC. Front. Oncol. 2022, 12, 943522. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Chun, D.-H.; Kim, S.Y.; Kim, N.K.; Baik, S.H.; Hong, J.H.; Kim, K.S.; Shin, C.-S. Prognostic value of systemic inflammatory indices, nlr, plr, and mpv, for predicting 1-year survival of patients undergoing cytoreductive surgery with HIPEC. J. Clin. Med. 2019, 8, 589. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Baik, S.H.; Hur, H.; Min, B.S.; Kang, J.; Han, Y.D.; Cho, M.S.; Lee, K.Y.; Kim, N.K. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for appendiceal and colorectal cancer with peritoneal carcinomatosis: Clinical outcomes at 2 tertiary referral centers in korea. Medicine 2017, 96, e6632. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Kinugasa, Y.; Kato, M.; Sugihara, S.; Hirai, M.; Yamada, K.; Yanagihara, K.; Yamamoto, K. Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ. J. 2013, 77, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Successful management of microscopic residual disease in large bowel cancer. Cancer Chemother. Pharmacol. 1999, 43, S15–S25. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Kuroda, D.; Sawayama, H.; Kurashige, J.; Iwatsuki, M.; Eto, T.; Tokunaga, R.; Kitano, Y.; Yamamura, K.; Ouchi, M.; Nakamura, K.; et al. Controlling nutritional status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer 2018, 21, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, N.; Yoshizumi, T.; Inokuchi, S.; Itoh, S.; Adachi, E.; Ikeda, Y.; Uchiyama, H.; Utsunomiya, T.; Kajiyama, K.; Kimura, K.; et al. Prognostic significance of preoperative controlling nutritional status (CONUT) score in patients undergoing hepatic resection for hepatocellular carcinoma: A multi-institutional study. Ann. Surg. Oncol. 2018, 25, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Ahiko, Y.; Shida, D.; Horie, T.; Tanabe, T.; Takamizawa, Y.; Sakamoto, R.; Moritani, K.; Tsukamoto, S.; Kanemitsu, Y. Controlling nutritional status (CONUT) score as a preoperative risk assessment index for older patients with colorectal cancer. BMC Cancer 2019, 19, 946. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, F.; Sugiura, T.; Okamura, Y.; Ito, T.; Yamamoto, Y.; Ashida, R.; Ohgi, K.; Uesaka, K. The preoperative controlling nutritional status (CONUT) score is an independent prognostic marker for pancreatic ductal adenocarcinoma. Updates Surg. 2021, 73, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Furukawa, K.; Ohkuma, M.; Nakano, T.; Yoshioka, S.; Imaizumi, Y.; Sugano, H.; Takeda, Y.; Kosuge, M.; Eto, K. Clinical significance of controlling nutritional status (CONUT) score in patients with colorectal liver metastases after hepatectomy. In Vivo 2023, 37, 2678–2686. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 5526–5534. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Bao, L.; Wang, W.; Wang, Q.; Pan, Y.; Gao, X. Prognostic impact of the controlling nutritional status score following curative nephrectomy for patients with renal cell carcinoma. Medicine 2018, 97, e13409. [Google Scholar] [CrossRef]
- Song, F.; Ma, H.; Wang, S.; Qin, T.; Xu, Q.; Yuan, H.; Li, F.; Wang, Z.; Liao, Y.; Tan, X.; et al. Nutritional screening based on objective indices at admission predicts in-hospital mortality in patients with Covid-19. Nutr. J. 2021, 20, 46. [Google Scholar] [CrossRef]
- Cabré, M.; Ferreiro, C.; Arus, M.; Roca, M.; Palomera, E.; Serra-Prat, M. Evaluation of CONUT for clinical malnutrition detection and short-term prognostic assessment in hospitalized elderly people. J. Nutr. Health Aging 2015, 19, 729–733. [Google Scholar] [CrossRef]
- Toyokawa, T.; Kubo, N.; Tamura, T.; Sakurai, K.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Hirakawa, K.; Ohira, M. The pretreatment controlling nutritional status (CONUT) score is an independent prognostic factor in patients with resectable thoracic esophageal squamous cell carcinoma: Results from a retrospective study. BMC Cancer 2016, 16, 722. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, R.W.; Wentworth, D.N.; Cutler, J.A.; Hulley, S.B.; Kuller, L.H.; Stamler, J. Serum cholesterol levels and cancer mortality in 361662 men screened for the multiple risk factor intervention trial. JAMA 1987, 257, 943–948. [Google Scholar] [CrossRef]
- Nago, N.; Ishikawa, S.; Goto, T.; Kayaba, K. Low cholesterol is associated with mortality from stroke, heart disease, and cancer: The jichi medical school cohort study. J. Epidemiol. 2011, 21, 67–74. [Google Scholar] [CrossRef]
- Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.-L.; Schulze, A. Srebp activity is regulated by mtorc1 and contributes to akt-dependent cell growth. Cell Metab. 2008, 8, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012, 148, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Kuzu, O.F.; Noory, M.A.; Robertson, G.P. The role of cholesterol in cancer. Cancer Res. 2016, 76, 2063–2070. [Google Scholar] [CrossRef]
- Girardi, M.; Oppenheim, D.E.; Steele, C.R.; Lewis, J.M.; Glusac, E.; Filler, R.; Hobby, P.; Sutton, B.; Tigelaar, R.E.; Hayday, A.C. Regulation of cutaneous malignancy by γδ t cells. Science 2001, 294, 605–609. [Google Scholar] [CrossRef]
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N. Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef]
- Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.; Hoang, C.D.; et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015, 21, 938–945. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef]
- Roth, L.; Eshmuminov, D.; Laminger, F.; Koppitsch, C.; Schneider, M.; Graf, T.R.; Gupta, A.; Kober, F.; Roka, S.; Gertsch, P.; et al. Systemic inflammatory response after hyperthermic intraperitoneal chemotherapy (HIPEC): The perfusion protocol matters! Eur. J. Surg. Oncol. 2019, 45, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, F.; Keller, B.; Gressies, C.; Schuetz, P. Inflammation and nutrition: Friend or foe? Nutrients 2023, 15, 1159. [Google Scholar] [CrossRef]
- Hallam, S.; Tyler, R.; Price, M.; Beggs, A.; Youssef, H. Meta-analysis of prognostic factors for patients with colorectal peritoneal metastasis undergoing cytoreductive surgery and heated intraperitoneal chemotherapy. BJS Open 2019, 3, 585–594. [Google Scholar] [CrossRef]
- Coccolini, F.; Catena, F.; Glehen, O.; Yonemura, Y.; Sugarbaker, P.; Piso, P.; Montori, G.; Ansaloni, L. Complete versus incomplete cytoreduction in peritoneal carcinosis from gastric cancer, with consideration to PCI cut-off. Systematic review and meta-analysis. Eur. J. Surg. Oncol. 2015, 41, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Passot, G.; Vaudoyer, D.; Villeneuve, L.; Wallet, F.; Beaujard, A.C.; Boschetti, G.; Rousset, P.; Bakrin, N.; Cotte, E.; Glehen, O. A perioperative clinical pathway can dramatically reduce failure-to-rescue rates after cytoreductive surgery for peritoneal carcinomatosis: A retrospective study of 666 consecutive cytoreductions. Ann. Surg. 2017, 265, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.M.; Kwong, T.G.; Ma, G.L.; Messer, K.; Kelly, K.J.; Lowy, A.M. A novel tool for predicting major complications after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 2016, 23, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Malfroy, S.; Wallet, F.; Maucort-Boulch, D.; Chardonnal, L.; Sens, N.; Friggeri, A.; Passot, G.; Glehen, O.; Piriou, V. Complications after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis: Risk factors for icu admission and morbidity prognostic score. Surg. Oncol. 2016, 25, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Katona, P.; Katona-Apte, J. The interaction between nutrition and infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Waitzberg, D.L.; Saito, H.; Plank, L.D.; Jamieson, G.G.; Jagannath, P.; Hwang, T.L.; Mijares, J.M.; Bihari, D. Postsurgical infections are reduced with specialized nutrition support. World J. Surg. 2006, 30, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.A.; Kerr, J.S. Nutritional aspects of collagen metabolism. Annu. Rev. Nutr. 1992, 12, 369–390. [Google Scholar] [CrossRef]
- Wild, T.; Rahbarnia, A.; Kellner, M.; Sobotka, L.; Eberlein, T. Basics in nutrition and wound healing. Nutrition 2010, 26, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Miyata, H.; Yano, M.; Yasuda, T.; Hamano, R.; Yamasaki, M.; Hou, E.; Motoori, M.; Shiraishi, O.; Tanaka, K.; Mori, M.; et al. Randomized study of clinical effect of enteral nutrition support during neoadjuvant chemotherapy on chemotherapy-related toxicity in patients with esophageal cancer. Clin. Nutr. 2012, 31, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Chemama, S.; Bayar, M.A.; Lanoy, E.; Ammari, S.; Stoclin, A.; Goéré, D.; Elias, D.; Raynard, B.; Antoun, S. Sarcopenia is associated with chemotherapy toxicity in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal cancer. Ann. Surg. Oncol. 2016, 23, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Benizri, E.I.; Bereder, J.M.; Rahili, A.; Bernard, J.L.; Benchimol, D. Ascites and malnutrition are predictive factors for incomplete cytoreductive surgery for peritoneal carcinomatosis from gastric cancer. Am. J. Surg. 2013, 205, 668–673. [Google Scholar] [CrossRef] [PubMed]
Total | Low CONUT (n = 385) | High CONUT (n = 51) | p-Value | |
---|---|---|---|---|
Age (years) | 55 (46, 62) | 54 (46, 62) | 59 (50, 66) | 0.022 |
Sex (Female) | 231 (53.0%) | 205 (53.2%) | 26 (51.0%) | 0.761 |
BMI (kg/m2) | 22.9 (20.8, 25.5) | 23.1 (20.9, 25.6) | 21.7 (20.2, 23.9) | 0.020 |
ASA PS class | 2 (2, 3) | 2 (2, 3) | 3 (2, 3) | <0.001 |
Comorbidities | ||||
Hypertension | 115 (26.4%) | 100 (26.0%) | 15 (29.4%) | 0.601 |
DM | 57 (13.1%) | 52 (13.5%) | 5 (9.8%) | 0.461 |
CAOD | 9 (2.1%) | 5 (1.3%) | 4 (7.8%) | 0.013 |
COPD | 14 (3.2%) | 12 (3.1%) | 2 (3.9%) | 0.673 |
Old tuberculosis | 14 (3.2%) | 13 (3.4%) | 1 (2.0%) | >0.999 |
Hepatitis | 12 (2.8%) | 10 (2.6%) | 2 (3.9%) | 0.640 |
CKD | 8 (1.8%) | 6 (1.6%) | 2 (3.9%) | 0.238 |
Anemia | 197 (45.2%) | 153 (39.7%) | 44 (86.3%) | <0.001 |
Primary origin | ||||
Colorectal | 255 (58.5%) | 234 (60.8%) | 21 (41.2%) | 0.008 |
Gastric | 34 (7.8%) | 28 (7.3%) | 6 (11.8%) | 0.265 |
Appendiceal/PMP | 121 (27.8%) | 101 (26.2%) | 20 (39.2%) | 0.052 |
Mesothelioma | 5 (1.1%) | 4 (1.0%) | 1 (2.0%) | 0.465 |
Pancreatic | 2 (0.5%) | 2 (0.5%) | 0 (0%) | >0.999 |
Small bowel | 4 (0.9%) | 3 (0.8%) | 1 (2.0%) | 0.393 |
Others | 15 (3.4%) | 13 (3.4%) | 2 (3.9%) | 0.691 |
Preoperative lab data | ||||
CONUT score | 1 (0, 2) | 1 (0, 2) | 5 (4, 7) | <0.001 |
Albumin (g/dL) | 4.1 (3.8, 4.4) | 4.2 (3.9, 4.4) | 3.2 (2.9, 3.5) | <0.001 |
Lymphocyte (/μL) | 1655 (1303, 2150) | 1740 (1425, 2225) | 1020 (760, 1400) | <0.001 |
Cholesterol (mg/dL) | 177 (150, 205) | 181 (158, 208) | 131 (111, 148) | <0.001 |
Glucose (mg/dL) | 101 (93, 111) | 101 (93, 111) | 102 (94, 119) | 0.394 |
Creatinine (mg/dL) | 0.68 (0.57, 0.85) | 0.68 (0.58, 0.85) | 0.66 (0.50, 0.83) | 0.112 |
Hemoglobin (g/dL) | 12.6 (11.2, 13.8) | 12.8 (11.4, 13.9) | 10.4 (9.3, 11.4) | <0.001 |
Intraoperative data | ||||
Operation Time (min) | 505 (378, 676) | 505 (380, 675) | 493 (354, 713) | 0.859 |
Fluid input (mL/h) | 739 (633, 859) | 743 (640, 856) | 697 (625, 888) | 0.537 |
Urine output (mL/h) | 115 (77, 162) | 115 (79, 162) | 100 (63, 162) | 0.365 |
Bleeding (mL) | 900 (400, 1600) | 900 (400, 1600) | 700 (300, 1600) | 0.574 |
Transfused packed RBC (mL) | 0 (0, 365) | 0 (0, 262) | 0 (0, 716) | 0.008 |
PCI score | 14 (5, 26) | 14 (5, 26) | 18 (8, 39) | 0.022 |
CC score | 0 (0, 1) | 0 (0, 1) | 1 (0, 2) | 0.003 |
Total | Low CONUT (n = 385) | High CONUT (n = 51) | p-Value | |
---|---|---|---|---|
ICU length of stay (days) | 1 (0, 1) | 1 (0, 1) | 1 (1, 2) | 0.116 |
Hospital length of stay (days) | 14 (11, 19) | 14 (11, 18) | 16 (12, 23) | 0.032 |
Postoperative complications | ||||
Anastomotic leakage | 19 (4.4%) | 15 (3.9%) | 4 (7.8%) | 0.260 |
Abscess | 1 (0.2%) | 1 (0.3%) | 0 (0%) | >0.999 |
Gastrointestinal obstruction | 8 (1.8%) | 6 (1.6%) | 2 (3.9%) | 0.238 |
Fistula | 4 (0.9%) | 3 (0.8%) | 1 (2.0%) | 0.393 |
Surgical site infection | 15 (3.4%) | 10 (2.6%) | 5 (9.8%) | 0.022 |
Ascites | 29 (6.7%) | 24 (6.2%) | 5 (9.8%) | 0.364 |
Urinary tract infection | 15 (3.4%) | 12 (3.1%) | 3 (5.9%) | 0.401 |
Pneumonia | 19 (4.4%) | 14 (3.6%) | 5 (9.8%) | 0.058 |
Re-intubation | 7 (1.6%) | 4 (1.0%) | 3 (5.9%) | 0.038 |
Cardiac complication | 15 (3.4%) | 10 (2.6%) | 5 (9.8%) | 0.022 |
Acute kidney injury | 14 (3.2%) | 12 (3.1%) | 2 (3.9%) | 0.673 |
Morbidity composite | 90 (20.6%) | 70 (18.2%) | 20 (39.2%) | <0.001 |
Reoperation within 30 days | 29 (6.7%) | 27 (7.0%) | 2 (3.9%) | 0.557 |
In-hospital mortality | 10 (2.3%) | 6 (1.6%) | 4 (7.8%) | 0.021 |
1-year mortality | 102 (23.4%) | 78 (20.3%) | 24 (47.1%) | <0.001 |
Overall mortality | 269 (61.7%) | 233 (60.5%) | 36 (70.6%) | 0.165 |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
Crude OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
High CONUT | 3.499 (1.914, 6.397) | <0.001 | 2.253 (1.014, 5.005) | 0.046 |
Age (years) | 1.012 (0.994, 1.030) | 0.188 | ||
BMI (kg/m2) | 0.906 (0.851, 0.965) | 0.002 | 0.948 (0.874, 1.029) | 0.204 |
ASA PS class ≥ 3 | 2.380 (1.516, 3.737) | <0.001 | 2.138 (1.199, 3.809) | 0.010 |
CKD | 5.687 (1.335, 24.225) | 0.019 | 12.936 (2.190, 76.404) | 0.005 |
Anemia | 1.503 (0.963, 2.345) | 0.073 | ||
Transfused packed RBC (mL) | 1.001 (1.000, 1.001) | 0.011 | 1.000 (1.000, 1.001) | 0.193 |
PCI score ≥ 20 | 4.402 (2.720, 7.125) | <0.001 | 2.992 (1.574, 5.688) | 0.001 |
CC score ≥ 2 | 6.166 (3.738, 10.171) | <0.001 | 4.757 (2.391, 9.461) | <0.001 |
Pathology | ||||
Colorectal | Reference | Reference | ||
Gastric | 4.302 (2.058, 8.995) | <0.001 | 2.783 (1.078, 7.183) | 0.034 |
Appendiceal/PMP | 0.518 (0.283, 0.945) | 0.032 | 0.182 (0.083, 0.399) | <0.001 |
Others | 1.798 (0.761, 4.247) | 0.181 | 1.015 (0.309, 3.333) | 0.980 |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
Crude HR (95% CI) | p-Value | Adjusted HR (95% CI) | p-Value | |
High CONUT | 1.645 (1.157, 2.340) | 0.006 | 1.777 (1.182, 2.669) | 0.006 |
Age (years) | 1.000 (0.991, 1.010) | 0.998 | ||
Sex (Female) | 0.906 (0.713, 1.151) | 0.418 | ||
BMI (kg/m2) | 0.951 (0.919, 0.984) | 0.004 | 0.985 (0.949, 1.022) | 0.416 |
ASA PS class ≥ 3 | 1.314 (1.031, 1.675) | 0.027 | 1.120 (0.857, 1.463) | 0.408 |
Hypertension | 1.073 (0.819, 1.405) | 0.611 | ||
DM | 0.883 (0.610, 1.277) | 0.507 | ||
CAOD | 0.839 (0.346, 2.033) | 0.697 | ||
COPD | 0.446 (0.184, 1.081) | 0.074 | ||
Old tuberculosis | 0.920 (0.455, 1.860) | 0.817 | ||
Hepatitis | 0.884 (0.417, 1.872) | 0.747 | ||
CKD | 1.302 (0.537, 3.160) | 0.559 | ||
Anemia | 1.340 (1.055, 1.703) | 0.017 | 1.046 (0.801, 1.366) | 0.742 |
Glucose (mg/dL) | 1.001 (0.996, 1.006) | 0.624 | ||
Creatinine (mg/dL) | 1.155 (0.820, 1.629) | 0.410 | ||
Operation Time (h) | 1.043 (1.006, 1.082) | 0.023 | 1.054 (1.004, 1.106) | 0.033 |
Fluid input (mL/h) | 1.000 (0.999, 1.000) | 0.297 | ||
Urine output (mL/h) | 0.999 (0.997, 1.000) | 0.088 | ||
Transfused packed RBC (mL) | 1.000 (1.000, 1.001) | 0.011 | 1.000 (1.000, 1.000) | 0.790 |
PCI score ≥ 20 | 2.200 (1.719, 2.815) | <0.001 | 1.829 (1.315, 2.543) | <0.001 |
CC score ≥ 2 | 2.724 (2.069, 3.586) | <0.001 | 2.931 (2.039, 4.212) | <0.001 |
Pathology | ||||
Colorectal | Reference | Reference | ||
Gastric | 2.022 (1.385, 2.951) | <0.001 | 1.571 (1.038, 2.379) | 0.033 |
Appendiceal/PMP | 0.418 (0.298, 0.588) | <0.001 | 0.227 (0.156, 0.331) | <0.001 |
Others | 1.012 (0.629, 1.629) | 0.959 | 0.477 (0.275, 0.827) | 0.008 |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
Crude OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
High CONUT | 2.903 (1.563, 5.391) | 0.001 | 2.201 (1.066, 4.547) | 0.033 |
Age (years) | 1.024 (1.005, 1.044) | 0.015 | 1.015 (0.993, 1.038) | 0.171 |
ASA PS class ≥ 3 | 2.021 (1.265, 3.228) | 0.003 | 1.438 (0.827, 2.501) | 0.198 |
DM | 1.782 (0.956, 3.319) | 0.069 | ||
CKD | 6.725 (1.576, 28.698) | 0.010 | 1.352 (0.171, 10.671) | 0.775 |
Anemia | 1.511 (0.949, 2.407) | 0.082 | ||
Creatinine (mg/dL) | 3.103 (1.361, 7.077) | 0.007 | 2.632 (0.807, 8.586) | 0.109 |
Operation Time (h) | 1.177 (1.099, 1.260) | <0.001 | 1.130 (1.034, 1.233) | 0.007 |
Transfused packed RBC (mL) | 1.001 (1.001, 1.002) | <0.001 | 1.000 (1.000, 1.001) | 0.162 |
PCI score ≥ 20 | 1.425 (0.886, 2.290) | 0.144 | ||
CC score ≥ 2 | 1.281 (0.746, 2.201) | 0.369 | ||
Pathology | ||||
Colorectal | Reference | Reference | ||
Gastric | 1.152 (0.448, 2.961) | 0.769 | 1.574 (0.584, 4.241) | 0.370 |
Appendiceal/PMP | 2.016 (1.194, 3.402) | 0.009 | 1.600 (0.902, 2.838) | 0.108 |
Others | 3.942 (1.688, 9.204) | 0.002 | 3.794 (1.507, 9.554) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, M.I.; Jung, H.; Park, E.J.; Kwak, Y.L.; Song, Y. Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy. Cancers 2024, 16, 2727. https://doi.org/10.3390/cancers16152727
Bae MI, Jung H, Park EJ, Kwak YL, Song Y. Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy. Cancers. 2024; 16(15):2727. https://doi.org/10.3390/cancers16152727
Chicago/Turabian StyleBae, Myung Il, Hyunjoo Jung, Eun Jung Park, Young Lan Kwak, and Young Song. 2024. "Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy" Cancers 16, no. 15: 2727. https://doi.org/10.3390/cancers16152727
APA StyleBae, M. I., Jung, H., Park, E. J., Kwak, Y. L., & Song, Y. (2024). Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy. Cancers, 16(15), 2727. https://doi.org/10.3390/cancers16152727