The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cohort Selection
2.2. PET/CT and PET/MR Imaging
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. ROC Curve Analysis
3.3. Survival Curve Analysis for PFS in PET/CT and PET/MR Cohorts
3.4. Survival Curve Analysis for OS in PET/CT and PET/MR Cohorts
3.5. Univariate and Multivariate Analysis for PFS and OS in PET/CT and PET/MR Cohorts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrabba, M.G.; Reni, M.; Foppoli, M.; Chiara, A.; Franzin, A.; Politi, L.S.; Villa, E.; Ciceri, F.; Ferreri, A.J. Treatment approaches for primary CNS lymphomas. Expert Opin. Pharmacother. 2010, 11, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology 2017, 19, v1–v88. [Google Scholar] [CrossRef] [PubMed]
- Mendez, J.S.; Ostrom, Q.T.; Gittleman, H.; Kruchko, C.; DeAngelis, L.M.; Barnholtz-Sloan, J.S.; Grommes, C. The elderly left behind-changes in survival trends of primary central nervous system lymphoma over the past 4 decades. Neuro-Oncology 2018, 20, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Verdin, I.; Kirasic, E.; Wienand, K.; Mokhtari, K.; Eimer, S.; Loiseau, H.; Rousseau, A.; Paillassa, J.; Ahle, G.; Lerintiu, F.; et al. Molecular and clinical diversity in primary central nervous system lymphoma. Ann. Oncol. 2023, 34, 186–199. [Google Scholar] [CrossRef]
- Alcantara, M.; Fuentealba, J.; Soussain, C. Emerging Landscape of Immunotherapy for Primary Central Nervous System Lymphoma. Cancers 2021, 13, 5061. [Google Scholar] [CrossRef]
- Calimeri, T.; Steffanoni, S.; Gagliardi, F.; Chiara, A.; Ferreri, A.J.M. How we treat primary central nervous system lymphoma. ESMO Open 2021, 6, 100213. [Google Scholar] [CrossRef]
- Schaff, L.R.; Grommes, C. Primary central nervous system lymphoma. Blood 2022, 140, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, Y.; Wang, Y.; Chang, Q.; Wu, J.; Wang, Z.; Geng, D.; Yu, J.T.; Li, Y.; Li, X.Q.; et al. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China. J. Hematol. Oncol. 2022, 15, 136. [Google Scholar] [CrossRef]
- Hoang-Xuan, K.; Bessell, E.; Bromberg, J.; Hottinger, A.F.; Preusser, M.; Rudà, R.; Schlegel, U.; Siegal, T.; Soussain, C.; Abacioglu, U.; et al. Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: Guidelines from the European Association for Neuro-Oncology. Lancet Oncol. 2015, 16, e322–e332. [Google Scholar] [CrossRef]
- Tateishi, K.; Miyake, Y.; Nakamura, T.; Yamamoto, T. Primary central nervous system lymphoma: Clinicopathological and genomic insights for therapeutic development. Brain Tumor Pathol. 2021, 38, 173–182. [Google Scholar] [CrossRef]
- Grommes, C.; DeAngelis, L.M. Primary CNS Lymphoma. J. Clin. Oncol. 2017, 35, 2410–2418. [Google Scholar] [CrossRef] [PubMed]
- Rozenblum, L.; Houillier, C.; Soussain, C.; Bertaux, M.; Choquet, S.; Galanaud, D.; Hoang-Xuan, K.; Kas, A. Role of Positron Emission Tomography in Primary Central Nervous System Lymphoma. Cancers 2022, 14, 4071. [Google Scholar] [CrossRef] [PubMed]
- Krebs, S.; Mauguen, A.; Yildirim, O.; Hatzoglou, V.; Francis, J.H.; Schaff, L.R.; Mellinghoff, I.K.; Schöder, H.; Grommes, C. Prognostic value of [18F]FDG PET/CT in patients with CNS lymphoma receiving ibrutinib-based therapies. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3940–3950. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Bosio, G.; Bertoli, M.; Giubbini, R.; Bertagna, F. 18F-FDG PET/CT in primary brain lymphoma. J. Neurooncol. 2018, 136, 577–583. [Google Scholar] [CrossRef]
- Albano, D.; Bertoli, M.; Battistotti, M.; Rodella, C.; Statuto, M.; Giubbini, R.; Bertagna, F. Prognostic role of pretreatment 18F-FDG PET/CT in primary brain lymphoma. Ann. Nucl. Med. 2018, 32, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Bertaux, M.; Houillier, C.; Edeline, V.; Habert, M.O.; Mokhtari, K.; Giron, A.; Bergeret, S.; Hoang-Xuan, K.; Cassoux, N.; Touitou, V.; et al. Use of FDG-PET/CT for systemic assessment of suspected primary central nervous system lymphoma: A LOC study. J. Neurooncol. 2020, 148, 343–352. [Google Scholar] [CrossRef]
- Kawai, N.; Zhen, H.N.; Miyake, K.; Yamamaoto, Y.; Nishiyama, Y.; Tamiya, T. Prognostic value of pretreatment 18F-FDG PET in patients with primary central nervous system lymphoma: SUV-based assessment. J. Neurooncol. 2010, 100, 225–232. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Hirata, K.; Kobayashi, H.; Shiga, T.; Manabe, O.; Kobayashi, K.; Motegi, H.; Terasaka, S.; Houkin, K. The diagnostic role of (18)F-FDG PET for primary central nervous system lymphoma. Ann. Nucl. Med. 2014, 28, 603–609. [Google Scholar] [CrossRef]
- Krebs, S.; Barasch, J.G.; Young, R.J.; Grommes, C.; Schöder, H. Positron emission tomography and magnetic resonance imaging in primary central nervous system lymphoma-a narrative review. Ann. Lymphoma 2021, 5, 15. [Google Scholar] [CrossRef]
- Barajas, R.F.; Politi, L.S.; Anzalone, N.; Schöder, H.; Fox, C.P.; Boxerman, J.L.; Kaufmann, T.J.; Quarles, C.C.; Ellingson, B.M.; Auer, D.; et al. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: Guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro-Oncology 2021, 23, 1056–1071. [Google Scholar] [CrossRef]
- Sprinz, C.; Zanon, M.; Altmayer, S.; Watte, G.; Irion, K.; Marchiori, E.; Hochhegger, B. Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: An analysis on 5623 patients. Sci. Rep. 2018, 8, 2126. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, H.; Fan, C. Impacts of time interval on 18F-FDG uptake for PET/CT in normal organs: A systematic review. Medicine 2018, 97, e13122. [Google Scholar] [CrossRef] [PubMed]
- Berti, V.; Mosconi, L.; Pupi, A. Brain: Normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014, 9, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Aiello, M.; Cavaliere, C.; Salvatore, M. Hybrid PET/MR Imaging and Brain Connectivity. Front. Neurosci. 2016, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Cecchin, D.; Palombit, A.; Castellaro, M.; Silvestri, E.; Bui, F.; Barthel, H.; Sabri, O.; Corbetta, M.; Bertoldo, A. Brain PET and functional MRI: Why simultaneously using hybrid PET/MR systems? Q. J. Nucl. Med. Mol. Imaging 2017, 61, 345–359. [Google Scholar] [CrossRef]
- Kasenda, B.; Haug, V.; Schorb, E.; Fritsch, K.; Finke, J.; Mix, M.; Hader, C.; Weber, W.A.; Illerhaus, G.; Meyer, P.T. 18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma. J. Nucl. Med. 2013, 54, 184–191. [Google Scholar] [CrossRef]
Variables | PET/CT Cohort (%) | PET/MR Cohort (%) | |
---|---|---|---|
Total number | 41 (100) | 49 (100) | |
Gender | Male | 21 (51.2) | 26 (53.1) |
Female | 20 (48.8) | 23 (46.9) | |
Age | ≥60 | 19 (46.3) | 29 (59.2) |
<60 | 22 (53.7) | 20 (40.8) | |
Number of tumor lesions | Multiple | 22 (53.7) | 31 (63.3) |
Single | 19 (46.3) | 18 (36.7) | |
Pathology | DLBLC | 38 (92.7) | 48 (98.0) |
HDBLC | 3 (7.3) | 1 (2.0) | |
Radiotherapy | Yes | 19 (46.3) | 7 (14.3) |
No | 22 (53.7) | 42 (85.7) | |
ASCT | Yes | 7 (17.1) | 10 (20.4) |
No | 34 (82.9) | 39 (79.6) | |
ECGO | 0–1 | 20 (48.8) | 27 (55.1) |
2–3 | 21 (51.2) | 22 (44.9) | |
PW Score | 0 | 28 (68.3) | 30 (61.2) |
1 | 8 (19.5) | 15 (30.6) | |
2 | 5 (12.2) | 4 (8.2) | |
Progression | Absence | 29 (70.7) | 41 (83.7) |
Presence | 12 (29.3) | 8 (16.3) | |
Survival | Alive | 34 (82.9) | 46 (93.9) |
Dead | 7 (17.1) | 3 (6.1) |
Variables | Univariate Analysis | ||
---|---|---|---|
HR | 95% CI | p-Value | |
PET/CT cohort (Progression-free survival) | |||
Age (≥60 vs. <60) | 1.06 | 0.32–3.47 | 0.930 |
Gender (Male vs. Female) | 0.82 | 0.25–2.69 | 0.745 |
Lesion number (Multiple vs. Single) | 2.91 | 0.79–10.76 | 0.110 |
ECGO (2–3 vs. 0–1) | 1.45 | 0.46–4.60 | 0.530 |
Radiotherapy | 0.77 | 0.23–2.55 | 0.673 |
ASCT | 0.94 | 0.20–4.37 | 0.940 |
PW Score | 5.34 | 2.48–11.49 | <0.001 * |
PET/MR cohort (Progression-free survival) | |||
Age (≥ 60 vs. <60) | 0.48 | 0.11–2.15 | 0.338 |
Gender (Male vs. Female) | 0.66 | 0.15–2.96 | 0.590 |
Lesion number (Multiple vs. Single) | 1.94 | 0.39–9.68 | 0.417 |
ECGO (2–3 vs. 0–1) | 1.25 | 0.31–5.01 | 0.753 |
Radiotherapy | 5.53 | 1.23–24.82 | 0.026 * |
ASCT | 2.77 | 0.62–12.38 | 0.183 |
PW Score | 32.80 | 4.06–265.34 | 0.001 * |
Variables | Univariate Analysis | ||
---|---|---|---|
HR | 95% CI | p-Value | |
PET/CT cohort (Overall survival) | |||
Age (≥60 vs. <60) | 0.48 | 0.09–2.49 | 0.382 |
Gender (Male vs. Female) | 1.36 | 0.30–6.07 | 0.690 |
Lesion number (Multiple vs. Single) | 6.48 | 0.78–53.98 | 0.084 |
ECGO (2–3 vs. 0–1) | 0.86 | 0.19–3.87 | 0.845 |
Radiotherapy | 1.12 | 0.25–5.08 | 0.875 |
ASCT | 0.59 | 0.07–4.92 | 0.622 |
PW Score | 10.20 | 2.74–37.90 | 0.001 * |
PET/MR cohort (Overall survival) | |||
Age (≥60 vs. <60) | N/A | 0.401 | |
Gender (Male vs. Female) | 0.56 | 0.05–6.21 | 0.639 |
Lesion number (Multiple vs. Single) | N/A | 0.477 | |
ECGO (2–3 vs. 0–1) | N/A | 0.419 | |
Radiotherapy | 3.67 | 0.32–41.95 | 0.295 |
ASCT | 6.17 | 0.56–68.17 | 0.137 |
PW Score | 3.33 | 0.69–16.05 | 0.134 |
Variables | Multivariate Analysis | ||
---|---|---|---|
HR | 95% CI | p-Value | |
Progression-free survival | |||
PET/CT cohort | |||
PW Score | 5.34 | 2.48–11.49 | <0.001 * |
PET/MR cohort | |||
Radiotherapy | 1.55 | 0.11–21.26 | 0.742 |
PW Score | 25.66 | 2.21–297.78 | 0.009 * |
Overall survival | |||
PET/CT cohort | |||
Lesion number | 2.94 | 0.34–25.73 | 0.329 |
PW Score | 9.01 | 2.37–34.23 | 0.001 * |
PET/MR cohort | |||
No candidate indicators available. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mo, Y.; Chen, M.; Zhang, W.; Li, S.; Zhang, X. The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients. Cancers 2024, 16, 2708. https://doi.org/10.3390/cancers16152708
Li Y, Mo Y, Chen M, Zhang W, Li S, Zhang X. The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients. Cancers. 2024; 16(15):2708. https://doi.org/10.3390/cancers16152708
Chicago/Turabian StyleLi, Yongjiang, Yiwen Mo, Mingshi Chen, Wenbiao Zhang, Shuangjiang Li, and Xu Zhang. 2024. "The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients" Cancers 16, no. 15: 2708. https://doi.org/10.3390/cancers16152708
APA StyleLi, Y., Mo, Y., Chen, M., Zhang, W., Li, S., & Zhang, X. (2024). The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients. Cancers, 16(15), 2708. https://doi.org/10.3390/cancers16152708