Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Scaffolds
2.2. Cells and Reagents
2.3. Cell Seeding
2.4. Irradiations
2.5. Post-Irradiation
2.6. Statistical Analysis
3. Results
3.1. Cell Repopulation within the Scaffolds
- (i)
- In HMV II scaffolds stained with H&E, we observed the cellular and tissue pattern coherent with the foreseen histology. We assessed an infiltrative attitude of the cells within the scaffolds that were large and epithelioid, with prominent nucleoli and abundant eosinophilic cytoplasm, the latter characterized by a granular feature (expression of melanin in the melanosomes that are about to fall apart). These aspects increased over the time of observation (Figure 3).
- (ii)
- In PANC-1-scaffold sections, H&E staining documented the organization of the cells into ducts, which showed evident PAS+ and Alcian-blue, and an infiltrative behavior by PSR. Over time, tumor cells increased in number and size and displayed aggressive features (Figure 4).
3.2. Analysis after Low and High LET Irradiation
3.2.1. HMV-II Cell Line
3.2.2. PANC-1 Cell Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Daunys, S.; Janonienė, A.; Januškevičienė, I.; Paškevičiūtė, M.; Petrikaitė, V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. Adv. Exp. Med. Biol. 2021, 1295, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int. J. Mol. Sci. 2023, 24, 10620. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, A. In-vitro 3D modelling for charged particle therapy—Uncertainties and opportunities. Adv. Drug Deliv. Rev. 2021, 179, 114018. [Google Scholar] [CrossRef] [PubMed]
- Cobianchi, L.; Peloso, A. Editorial: Scaffold Technology, Tissue and Organ Engineering: New Horizons in Surgery. Front. Surg. 2022, 9, 914080. [Google Scholar] [CrossRef] [PubMed]
- Croce, S.; Peloso, A.; Zoro, T.; Avanzini, M.A.; Cobianchi, L. A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, M.; Katari, R.; Patel, T.; Peloso, A.; Mugweru, J.; Owusu, K.; Orlando, G. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges. J. Diabetes Sci. Technol. 2014, 8, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Muncie, J.M.; Weaver, V.M. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr. Top. Dev. Biol. 2018, 130, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Peloso, A.; Citro, A.; Corradetti, V.; Brambilla, S.; Oldani, G.; Calabrese, F.; Dominioni, T.; Maestri, M. In-Lab Manufacturing of Decellularized Rat Renal Scaffold for Kidney Bioengineering. Methods Mol. Biol. 2018, 1577, 103–110. [Google Scholar] [CrossRef]
- Zambon, J.P.; Magalhaes, R.S.; Ko, I.; Ross, C.L.; Orlando, G.; Peloso, A.; Atala, A.; Yoo, J.J. Kidney regeneration: Where we are and future perspectives. World J. Nephrol. 2014, 3, 24–30. [Google Scholar] [CrossRef]
- Roobol, S.J.; van den Bent, I.; Van Cappellen, W.A.; Abraham, T.E.; Paul, M.W.; Kanaar, R.; Houtsmuller, A.B.; Van Gent, D.C.; Essers, J. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Int. J. Mol. Sci. 2020, 21, 6602. [Google Scholar] [CrossRef]
- Tinganelli, W.; Durante, M. Carbon Ion Radiobiology. Cancers 2020, 12, 3022. [Google Scholar] [CrossRef]
- Barcellini, A.; Peloso, A.; Pugliese, L.; Vitolo, V.; Cobianchi, L. Locally Advanced Pancreatic Ductal Adenocarcinoma: Challenges and Progress. Onco Targets Ther. 2020, 13, 12705–12720. [Google Scholar] [CrossRef]
- Gadducci, A.; Carinelli, S.; Guerrieri, M.E.; Aletti, G.D. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. Gynecol. Oncol. 2018, 150, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.; Beltran, C.; Sarkaria, J.; Herman, M.G. Characterization of relative biological effectiveness for conventional radiation therapy: A comparison of clinical 6 MV X-rays and 137Cs. J. Radiat. Res. 2017, 58, 608–613. [Google Scholar] [CrossRef]
- Wang, D.; Liu, R.; Zhang, Q.; Luo, H.; Chen, J.; Dong, M.; Wang, Y.; Ou, Y.; Liu, Z.; Sun, S.; et al. Charged Particle Irradiation for Pancreatic Cancer: A Systematic Review of In Vitro Studies. Front. Oncol. 2021, 11, 775597. [Google Scholar] [CrossRef]
- Charalampopoulou, A.; Barcellini, A.; Ciocca, M.; Di Liberto, R.; Pasi, F.; Pullia, M.G.; Orlandi, E.; Facoetti, A. Factors released by low and high-LET irradiated fibroblasts modulate migration and invasiveness of pancreatic cancer cells. Front. Oncol. 2022, 12, 1003494. [Google Scholar] [CrossRef] [PubMed]
- Facoetti, A.; DI Gioia, C.; Pasi, F.; DI Liberto, R.; Corbella, F.; Nano, R.; Ciocca, M.; Valvo, F.; Orecchia, R. Morphological Analysis of Amoeboid-Mesenchymal Transition Plasticity After Low and High LET Radiation on Migrating and Invading Pancreatic Cancer Cells. Anticancer. Res. 2018, 38, 4585–4591. [Google Scholar] [CrossRef] [PubMed]
- Croce, S.; Cobianchi, L.; Zoro, T.; Mas, F.D.; Cornaglia, A.I.; Lenta, E.; Acquafredda, G.; De Silvestri, A.; Avanzini, M.A.; Visai, L.; et al. Mesenchymal Stromal Cell on Liver Decellularised Extracellular Matrix for Tissue Engineering. Biomedicines 2022, 10, 2817. [Google Scholar] [CrossRef]
- Moran, E.C.; Baptista, P.M.; Evans, D.W.; Soker, S.; Sparks, J.L. Evaluation of parenchymal fluid pressure in native and decellularized liver tissue. Biomed. Sci. Instrum. 2012, 48, 303–309. [Google Scholar]
- Evans, D.W.; Moran, E.C.; Baptista, P.M.; Soker, S.; Sparks, J.L. Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech. Model. Mechanobiol. 2013, 12, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [PubMed]
- Uygun, B.E.; Soto-Gutierrez, A.; Yagi, H.; Izamis, M.-L.; Guzzardi, M.A.; Shulman, C.; Milwid, J.; Kobayashi, N.; Tilles, A.; Berthiaume, F.; et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010, 16, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Sokol, O.; Durante, M. Carbon. Ions for Hypoxic Tumors: Are We Making the Most. of Them? Cancers 2023, 15, 4494. [Google Scholar] [CrossRef] [PubMed]
- Falcicchio, G.; Vinci, L.; Cicinelli, E.; Loizzi, V.; Arezzo, F.; Silvestris, E.; Resta, L.; Serio, G.; Cazzato, G.; Mastronardi, M.; et al. Vulvar Malignant Melanoma: A Narrative Review. Cancers 2022, 14, 5217. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Okonogi, N.; Wakatsuki, M.; Kato, S.; Kiyohara, H.; Karasawa, K.; Ohno, T.; Nakano, T.; Kamada, T.; Shozu, M.; et al. Long-Term Outcomes of Carbon-Ion Radiotherapy for Malignant Gynecological Melanoma. Cancers 2019, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Barcellini, A.; Vitolo, V.; Facoetti, A.; Fossati, P.; Preda, L.; Fiore, M.R.; Vischioni, B.; Iannalfi, A.; Bonora, M.; Ronchi, S.; et al. Feasibility of carbon ion radiotherapy in the treatment of gynecological melanoma. In Vivo 2019, 33, 473–476. [Google Scholar] [CrossRef]
- Ronchi, S.; Cicchetti, A.; Bonora, M.; Ingargiola, R.; Camarda, A.M.; Russo, S.; Imparato, S.; Castelnuovo, P.; Pasquini, E.; Nicolai, P.; et al. Curative carbon ion radiotherapy in a head and neck mucosal melanoma series: Facing the future within multidisciplinarity. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2023, 190, 110003. [Google Scholar] [CrossRef]
- Charalampopoulou, A.; Barcellini, A.; Frittitta, G.E.; Fulgini, G.; Ivaldi, G.B.; Magro, G.; Liotta, M.; Orlandi, E.; Pullia, M.G.; de Fatis, P.T.; et al. In Vitro Effects of Photon Beam and Carbon Ion Radiotherapy on the Perineural Invasion of Two Cell Lines of Neurotropic Tumours. Life 2023, 13, 794. [Google Scholar] [CrossRef]
- Sini, M.C.; Doneddu, V.; Paliogiannis, P.; Casula, M.; Colombino, M.; Manca, A.; Botti, G.; Ascierto, P.A.; Lissia, A.; Cossu, A.; et al. Genetic alterations in main candidate genes during melanoma progression. Oncotarget 2018, 9, 8531–8541. [Google Scholar] [CrossRef]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef] [PubMed]
- Brożyna, A.A.; Jóźwicki, W.; Roszkowski, K.; Filipiak, J.; Slominski, A.T. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 2016, 7, 17844–17853. [Google Scholar] [CrossRef]
- Kawashiro, S.; Yamada, S.; Okamoto, M.; Ohno, T.; Nakano, T.; Shinoto, M.; Shioyama, Y.; Nemoto, K.; Isozaki, Y.; Tsuji, H.; et al. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Shinoto, M.; Yamada, S.; Yasuda, S.; Imada, H.; Shioyama, Y.; Honda, H.; Kamada, T.; Tsujii, H.; Saisho, H.; Working Group for Pancreas Cancer. Phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer 2013, 119, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Seshacharyulu, P.; Baine, M.J.; Souchek, J.J.; Menning, M.; Kaur, S.; Yan, Y.; Ouellette, M.M.; Jain, M.; Lin, C.; Batra, S.K. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Barcellini, A.; Vitolo, V.; Cobianchi, L.; Vanoli, A.; Butturini, G.; Brugnatelli, S.; Pagani, A.; Fossati, P.; Preda, L.; Peloso, A.; et al. Preoperative Carbon Ion Radiotherapy (CIRT) with Chemotherapy in Resectable and Borderline Resectable Pancreatic Adenocarcinoma (PCa): A Multicenter Prospective Phase II Clinical Study (Pioppo Study NCT 03822936). Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e347–e348. [Google Scholar] [CrossRef]
- Shinoto, M.; Yamada, S.; Terashima, K.; Yasuda, S.; Shioyama, Y.; Honda, H.; Kamada, T.; Tsujii, H.; Saisho, H.; Asano, T.; et al. Carbon Ion Radiation Therapy with Concurrent Gemcitabine for Patients with Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 498–504. [Google Scholar] [CrossRef]
0 Gy | 2 Gy | 4 Gy | |||
---|---|---|---|---|---|
Control Condition | Photons Irradiation | Carbon Ions Irradiation | Photons Irradiation | Carbon Ions Irradiation | |
7 days | The cells infiltrated the scaffolds | No significant variation compared to the control | No significant variation compared to the control | No significant variation compared to the control | No significant variation compared to the control |
14 days | Granular cytoplasm and larger nuclei (indicating the expression of melanin in the imploding melanosomes). | No significant variation compared to the control | No significant variation compared to the control | Cytoplasm desegregation coupled with melanin release. | Increased nucleus size, cytoplasm desegregation, and binucleations. |
21 days | Increased the previous evidence | No significant variation compared to the control | No significant variation compared to the control | Morphological cell’s shape changes (epithelia-morphic), foamy cytoplasm | Foamy cytoplasm, starting melanin production |
28 days | Increased the previous evidence | No significant variation compared to the control | No significant variation compared to the control | Polynucleated cells, tripled size, cytoplasm dissociation, higher melanin production. | Altered nuclei, significant binucleations. Higher cytoplasm desegregation and increased melanin production. |
0 Gy | 2 Gy | 4 Gy | |||
---|---|---|---|---|---|
Control Condition | Photons Irradiation | Carbon Ions Irradiation | Photons Irradiation | Carbon Ions Irradiation | |
7 days | Pancreatic cells infiltrate the scaffolds | No significant variation compared to the control | No significant variation compared to the control | No significant variation compared to the control | Atypical and hyperchromatic nuclei, cell volume increase, multinucleation. |
14 days | Pancreatic cells arrange themselves into the typical architecture of neoplastic tissue. | No significant variation compared to the control | Atypical nuclei, overall cell volume increase. | No significant variation compared to the control | More atypical cells, triplicated nucleus size |
21 days | There are ducts visible, and as the cancerous cells become larger and more aggressive | No significant variation compared to the control | Reduction in cell number | No significant variation compared to the control | Significant reduction in cell number |
28 days | Increased the previous evidence | More atypical cells, no actinic damage | Clear cell deterioration | More atypical cells, no actinic damage | Pronounced cell deterioration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulou, A.; Barcellini, A.; Peloso, A.; Vanoli, A.; Cesari, S.; Icaro Cornaglia, A.; Bistika, M.; Croce, S.; Cobianchi, L.; Ivaldi, G.B.; et al. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers 2024, 16, 2582. https://doi.org/10.3390/cancers16142582
Charalampopoulou A, Barcellini A, Peloso A, Vanoli A, Cesari S, Icaro Cornaglia A, Bistika M, Croce S, Cobianchi L, Ivaldi GB, et al. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers. 2024; 16(14):2582. https://doi.org/10.3390/cancers16142582
Chicago/Turabian StyleCharalampopoulou, Alexandra, Amelia Barcellini, Andrea Peloso, Alessandro Vanoli, Stefania Cesari, Antonia Icaro Cornaglia, Margarita Bistika, Stefania Croce, Lorenzo Cobianchi, Giovanni Battista Ivaldi, and et al. 2024. "Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation" Cancers 16, no. 14: 2582. https://doi.org/10.3390/cancers16142582
APA StyleCharalampopoulou, A., Barcellini, A., Peloso, A., Vanoli, A., Cesari, S., Icaro Cornaglia, A., Bistika, M., Croce, S., Cobianchi, L., Ivaldi, G. B., Locati, L. D., Magro, G., Tabarelli de Fatis, P., Pullia, M. G., Orlandi, E., & Facoetti, A. (2024). Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers, 16(14), 2582. https://doi.org/10.3390/cancers16142582