Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma
Abstract
Simple Summary
Abstract
1. Introduction
2. Health Disparities in HCC
2.1. Disparities in the Incidence of HCC
2.2. Disparities in Treatment Outcomes
2.3. Underrepresentation of Racial/Ethnic Minorities in Clinical Research
2.4. Biomarkers
2.5. Risk Factors for Racial/Ethnic Disparities in HCC
3. Treatments for Hepatocellular Carcinoma
3.1. Radiofrequency Ablation
3.2. TAE/TACE
3.3. TACE Combination Therapies
3.4. Immune Checkpoint Inhibitors
3.4.1. Anti-VEGF Therapy
3.4.2. Anti PD-1/Anti PD-L1 Therapy
3.4.3. Anti-CTLA-4 Therapy
3.4.4. Immune Checkpoint Resistance
3.5. Adoptive Cell Transfer (ACT)
3.5.1. CAR-T Cells
3.5.2. NK Cell Therapies
3.5.3. CAR-NK/T Therapies
3.5.4. Dendritic Cell Therapies
3.6. Therapeutic Vaccines
3.7. Nanotechnology
3.8. Cytokines
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global Burden of Primary Liver Cancer in 2020 and Predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in Liver Cancer and Possible Treatment Approaches. Biochim. Biophys. Acta. Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, X.; Liang, J.; Liu, Y.; Hou, X.; Zhang, M.; Li, Y.; Jiang, X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front. Immunol. 2021, 12, 765101. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular Carcinoma (Hcc): Epidemiology, Etiology and Molecular Classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar]
- Niemeyer, D.J.; Simo, K.A.; Iannitti, D.A.; McKillop, I.H. Ablation Therapy for Hepatocellular Carcinoma: Past, Present and Future Perspectives. Hepat. Oncol. 2014, 1, 67–79. [Google Scholar] [CrossRef]
- Costentin, C.E.; Mourad, A.; Lahmek, P.; Causse, X.; Pariente, A.; Hagege, H.; Dobrin, A.S.; Becker, C.; Marks, B.; Bader, R.; et al. Hepatocellular Carcinoma Is Diagnosed at a Later Stage in Alcoholic Patients: Results of a Prospective, Nationwide Study. Cancer 2018, 124, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Gosalia, A.J.; Martin, P.; Jones, P.D. Advances and Future Directions in the Treatment of Hepatocellular Carcinoma. Gastroenterol. Hepatol. 2017, 13, 398–410. [Google Scholar]
- Li, S.; Zhang, Z.; Wang, Z.; Wang, K.; Sui, M.; Liu, D.; Liang, K. Lenvatinib-Based Treatment Regimens in Conversion Therapy of Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Oncol. Lett. 2024, 27, 265. [Google Scholar] [CrossRef]
- Chavda, V.; Zajac, K.K.; Gunn, J.L.; Balar, P.; Khadela, A.; Vaghela, D.; Soni, S.; Ashby, C.R., Jr.; Tiwari, A.K. Ethnic Differences in Hepatocellular Carcinoma Prevalence and Therapeutic Outcomes. Cancer Rep. 2023, 6 (Suppl. S1), e1821. [Google Scholar] [CrossRef]
- Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and Safety of Radiotherapy for Primary Liver Cancer. Chin. Clin. Oncol. 2021, 10, 9. [Google Scholar] [CrossRef]
- Barnard Giustini, A.; Ioannou, G.N.; Sirlin, C.; Loomba, R. Review Article: Available Modalities for Screening and Imaging Diagnosis of Hepatocellular Carcinoma-Current Gaps and Challenges. Aliment. Pharmacol. Ther. 2023, 57, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Chaiteerakij, R.; Addissie, B.D.; Roberts, L.R. Update on Biomarkers of Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2015, 13, 237–245. [Google Scholar] [CrossRef]
- Ma, J.; Jin, J.; Lu, H.; Zhang, J.; Li, Y.; Cai, X. Exonuclease 1 Is a Potential Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma. Front. Mol. Biosci. 2022, 9, 889414. [Google Scholar] [CrossRef]
- Fares, S.; Wehrle, C.J.; Hong, H.; Sun, K.; Jiao, C.; Zhang, M.; Gross, A.; Allkushi, E.; Uysal, M.; Kamath, S.; et al. Emerging and Clinically Accepted Biomarkers for Hepatocellular Carcinoma. Cancers 2024, 16, 1453. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Mitra, A. An Overview of Effective Therapies and Recent Advances in Biomarkers for Chronic Liver Diseases and Associated Liver Cancer. Int. Immunopharmacol. 2015, 24, 335–345. [Google Scholar] [CrossRef]
- Miller, K.D.; Ortiz, A.P.; Pinheiro, P.S.; Bandi, P.; Minihan, A.; Fuchs, H.E.; Tyson, D.M.; Tortolero-Luna, G.; Fedewa, S.A.; Jemal, A.M.; et al. Cancer Statistics for the Us Hispanic/Latino Population, 2021. CA Cancer J. Clin. 2021, 71, 466–487. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Pomenti, S.; Wattacheril, J. Health Disparities in Screening, Diagnosis, and Treatment of Hepatocellular Carcinoma. Clin. Liver Dis. 2021, 17, 353–358. [Google Scholar] [CrossRef]
- Li, D.Y.; VoPham, T.; Tang, M.C.; Li, C.I. Disparities in Risk of Advanced-Stage Liver Cancer and Mortality by Race and Ethnicity. J. Natl. Cancer Inst. 2022, 114, 1238–1245. [Google Scholar] [CrossRef]
- Zavala, V.A.; Bracci, P.M.; Carethers, J.M.; Carvajal-Carmona, L.; Coggins, N.B.; Cruz-Correa, M.R.; Davis, M.; de Smith, A.J.; Dutil, J.; Figueiredo, J.C.; et al. Cancer Health Disparities in Racial/Ethnic Minorities in the United States. Br. J. Cancer 2021, 124, 315–332. [Google Scholar] [CrossRef]
- Kim, N.J.; Cravero, A.; VoPham, T.; Vutien, P.; Carr, R.; Issaka, R.B.; Johnston, J.; McMahon, B.; Mera, J.; Ioannou, G.N. Addressing Racial and Ethnic Disparities in Us Liver Cancer Care. Hepatol. Commun. 2023, 7, e00190. [Google Scholar] [CrossRef] [PubMed]
- Barzi, A.; Zhou, K.; Wang, S.; Dodge, J.L.; El-Khoueiry, A.; Setiawan, V.W. Etiology and Outcomes of Hepatocellular Carcinoma in an Ethnically Diverse Population: The Multiethnic Cohort. Cancers 2021, 13, 3476. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.; Ohri, A.; Wong, R.J. Disparities in Hepatocellular Carcinoma Surveillance: Dissecting the Roles of Patient, Provider, and Health System Factors. J. Clin. Gastroenterol. 2020, 54, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.S.; Hansen, R.M.; Gray, M.E.; Massoud, O.I.; McGuire, B.M.; Shoreibah, M.G. Hepatocellular Carcinoma Surveillance: An Evidence-Based Approach. World J. Gastroenterol. 2019, 25, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Maldonado, J.A.; McGlynn, K.A.; Greten, T.F. Hispanic Individuals Are Underrepresented in Phase Iii Clinical Trials for Advanced Liver Cancer in the United States. J. Hepatocell. Carcinoma 2023, 10, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Bteich, F.; Desai, K.; Zhang, C.; Kaur, A.; Levy, R.A.; Bioh, L.; Wang, A.; Sultana, S.; Kaubisch, A.; Kinkhabwala, M.; et al. Tow, and Y. Saenger. Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma in a Diverse and Underserved Population in the United States. J. Hepatocell. Carcinoma 2024, 11, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Khamis, Z.I.; Pang, X.; Cui, Z.; Sang, Q.A.; Zhang, J. Cytochrome P450-2d6: A Novel Biomarker in Liver Cancer Health Disparity. PLoS ONE 2021, 16, e0257072. [Google Scholar] [CrossRef]
- Jiao, J.; Sanchez, J.I.; Thompson, E.J.; Mao, X.; McCormick, J.B.; Fisher-Hoch, S.P.; Futreal, P.A.; Zhang, J.; Beretta, L. Somatic Mutations in Circulating Cell-Free DNA and Risk for Hepatocellular Carcinoma in Hispanics. Int. J. Mol. Sci. 2021, 22, 7411. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Wang, Y.; Wang, P.; Chen, K.; Wang, M.; Zeng, H.; Lu, J.; Song, Q.; Diplas, B.H.; Tan, D. Detection of Early-Stage Hepatocellular Carcinoma in Asymptomatic Hbsag-Seropositive Individuals by Liquid Biopsy. Proc. Natl. Acad. Sci. USA 2019, 116, 6308–6312. [Google Scholar] [CrossRef]
- Vidal, A.C.; Moylan, C.A.; Wilder, J.; Grant, D.J.; Murphy, S.K.; Hoyo, C. Racial Disparities in Liver Cancer: Evidence for a Role of Environmental Contaminants and the Epigenome. Front. Oncol. 2022, 12, 959852. [Google Scholar] [CrossRef]
- Rodriguez, J.E.; Campbell, K.M. Racial and Ethnic Disparities in Prevalence and Care of Patients with Type 2 Diabetes. Clin. Diabetes 2017, 35, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Tufano, A.; Perdona, S.; Viscuso, P.; Frisenda, M.; Canale, V.; Rossi, A.; Del Prete, P.; Passaro, F.; Calarco, A. The Impact of Ethnicity and Age on Distribution of Metastases in Patients with Upper Tract Urothelial Carcinoma: Analysis of Seer Data. Biomedicines 2023, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Chen, K.; Liang, Z.; Qu, S.; Li, L.; Chen, L.; Yang, Y.; Wu, C.; Liang, X.; Zhu, X. Survival Benefit of Higher Fraction Dose Delivered by Three-Dimensional Conformal Radiotherapy in Hepatocellular Carcinoma Smaller Than 10 Cm in Size. Cancer Manag. Res. 2019, 11, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Ulger, S.; Cetin, E.; Catli, S.; Sarac, H.; Kilic, D.; Bora, H. Intensity-Modulated Radiation Therapy Improves the Target Coverage over 3-D Planning While Meeting Lung Tolerance Doses for All Patients with Malignant Pleural Mesothelioma. Technol. Cancer Res. Treat 2017, 16, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.M.; Hsu, W.C.; Chung, N.N.; Chang, F.L.; Fogliata, A.; Cozzi, L. Radiotherapy with Volumetric Modulated Arc Therapy for Hepatocellular Carcinoma Patients Ineligible for Surgery or Ablative Treatments. Strahlenther. Onkol. 2013, 189, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.R.; Stenmark, M.H.; Tao, Y.; Pollom, E.L.; Caoili, E.M.; Lawrence, T.S.; Schipper, M.J.; Feng, M. Outcomes after Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J. Clin. Oncol. 2016, 34, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Rangamuwa, K.; Leong, T.; Weeden, C.; Asselin-Labat, M.L.; Bozinovski, S.; Christie, M.; John, T.; Antippa, P.; Irving, L.; Steinfort, D. Thermal Ablation in Non-Small Cell Lung Cancer: A Review of Treatment Modalities and the Evidence for Combination with Immune Checkpoint Inhibitors. Transl. Lung Cancer Res. 2021, 10, 2842–2857. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Yang, H.; Xu, X.; Ruan, J.; Liang, M.; Wu, J.; Luo, B. Effect of a Hypoxic Microenvironment after Radiofrequency Ablation on Residual Hepatocellular Cell Migration and Invasion. Cancer Sci. 2017, 108, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Ghanaati, H.; Mohammadifard, M.; Mohammadifard, M. A Review of Applying Transarterial Chemoembolization (Tace) Method for Management of Hepatocellular Carcinoma. J. Fam. Med. Prim. Care 2021, 10, 3553–3560. [Google Scholar]
- Chuang, V.P.; Wallace, S.; Soo, C.S.; Charnsangavej, C.; Bowers, T. Therapeutic Ivalon Embolization of Hepatic Tumors. Am. J. Roentgenol. 1982, 138, 289–294. [Google Scholar] [CrossRef]
- Gunji, T.; Kawauchi, N.; Ohnishi, S.; Ishikawa, T.; Nakagama, H.; Kaneko, T.; Moriyama, T.; Matsuhashi, N.; Yazaki, Y.; Imawari, M. Treatment of Hepatocellular Carcinoma Associated with Advanced Cirrhosis by Transcatheter Arterial Chemoembolization Using Autologous Blood Clot: A Preliminary Report. Hepatology 1992, 15, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Elshaarawy, O.; Gomaa, A.; Omar, H.; Rewisha, E.; Waked, I. Intermediate Stage Hepatocellular Carcinoma: A Summary Review. J. Hepatocell. Carcinoma 2019, 6, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jeong, S.W.; Jang, J.Y.; Kim, Y.J. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 8165. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.M.; Lim, Y.S.; Won, H.J.; Kim, J.H.; Kim, K.M.; Lee, H.C.; Chung, Y.H.; Lee, Y.S.; Lee, S.G.; Park, J.H.; et al. Radiotherapy Plus Transarterial Chemoembolization for Hepatocellular Carcinoma Invading the Portal Vein: Long-Term Patient Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.H.; Irvine, A.F.; Jones, R.L.; Samson, A. Immunotherapies for Hepatocellular Carcinoma. Cancer Med. 2022, 11, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.; Lim, H.Y.; Yau, T.; et al. Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/Ii Study. J. Clin. Oncol. 2021, 39, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kang, Y.K.; Kim, T.Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The Checkmate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab Versus Sorafenib in Advanced Hepatocellular Carcinoma (Checkmate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.S.; Cheung, N.V. Immunotherapy of Hepatocellular Carcinoma Using Chimeric Antigen Receptors and Bispecific Antibodies. Cancer Lett. 2017, 399, 44–52. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Mbrave150 Investigators. Atezolizumab Plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Perspectives. World J. Gastroenterol. 2023, 29, 1054–1075. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Graziani, G.; Tentori, L.; Navarra, P. Ipilimumab: A Novel Immunostimulatory Monoclonal Antibody for the Treatment of Cancer. Pharmacol. Res. 2012, 65, 9–22. [Google Scholar] [CrossRef]
- Oweida, A.; Hararah, M.K.; Phan, A.; Binder, D.; Bhatia, S.; Lennon, S.; Bukkapatnam, S.; Van Court, B.; Uyanga, N.; Darragh, L.; et al. Resistance to Radiotherapy and Pd-L1 Blockade Is Mediated by Tim-3 Upregulation and Regulatory T-Cell Infiltration. Clin. Cancer Res. 2018, 24, 5368–5380. [Google Scholar] [CrossRef]
- Huang, R.Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory Upregulation of Pd-1, Lag-3, and Ctla-4 Limits the Efficacy of Single-Agent Checkpoint Blockade in Metastatic Ovarian Cancer. Oncoimmunology 2017, 6, e1249561. [Google Scholar] [CrossRef]
- Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; et al. Oxidative Stress Controls Regulatory T Cell Apoptosis and Suppressor Activity and Pd-L1-Blockade Resistance in Tumor. Nat. Immunol. 2017, 18, 1332–1341. [Google Scholar] [CrossRef]
- Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Kudriaeva, A.; Miftakhova, R.; Rybalov, A.; Bulatov, E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. Bioengineering 2022, 9, 808. [Google Scholar] [CrossRef]
- Ma, W.; Wu, L.; Zhou, F.; Hong, Z.; Yuan, Y.; Liu, Z. T Cell-Associated Immunotherapy for Hepatocellular Carcinoma. Cell. Physiol. Biochem. 2017, 41, 609–622. [Google Scholar] [CrossRef]
- Li, D.; Qin, J.; Zhou, T.; Li, Y.; Cheng, X.; Chen, Z.; Chen, J.; Zheng, W.V. Bispecific Gpc3/Pd-1 Car-T Cells for the Treatment of Hcc. Int. J. Oncol. 2023, 62, 53. [Google Scholar] [CrossRef]
- Sun, B.; Yang, D.; Dai, H.; Liu, X.; Jia, R.; Cui, X.; Li, W.; Cai, C.; Xu, J.; Zhao, X. Eradication of Hepatocellular Carcinoma by Nkg2d-Based Car-T Cells. Cancer Immunol. Res. 2019, 7, 1813–1823. [Google Scholar] [CrossRef]
- Zhang, G.; Ji, G.; Liu, L.; Wang, H.; Ren, Z.; Sun, R.; Yu, Z. The Tumor Microenvironment of Hepatocellular Carcinoma and Its Targeting Strategy by Car-T Cell Immunotherapy. Front. Endocrinol. 2022, 13, 918869. [Google Scholar]
- Manfredi, G.F.; Celsa, C.; John, C.; Jones, C.; Acuti, N.; Scheiner, B.; Fulgenzi, C.A.M.; Korolewicz, J.; Pinter, M.; Gennari, A.; et al. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2023, 10, 1955–1971. [Google Scholar] [CrossRef]
- Myers, J.A.; Miller, J.S. Exploring the Nk Cell Platform for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef]
- Boles, K.S.; Nakajima, H.; Colonna, M.; Chuang, S.S.; Stepp, S.E.; Bennett, M.; Kumar, V.; Mathew, P.A. Molecular Characterization of a Novel Human Natural Killer Cell Receptor Homologous to Mouse 2b4. Tissue Antigens 1999, 54, 27–34. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. Nk Cell-Based Immunotherapy for Malignant Diseases. Cell Mol. Immunol. 2013, 10, 230–252. [Google Scholar] [CrossRef]
- Boles, K.S.; Stepp, S.E.; Bennett, M.; Kumar, V.; Mathew, P.A. 2b4 (Cd244) and Cs1: Novel Members of the Cd2 Subset of the Immunoglobulin Superfamily Molecules Expressed on Natural Killer Cells and Other Leukocytes. Immunol. Rev. 2001, 181, 234–249. [Google Scholar] [CrossRef]
- Buller, C.W.; Mathew, P.A.; Mathew, S.O. Roles of Nk Cell Receptors 2b4 (Cd244), Cs1 (Cd319), and Llt1 (Clec2d) in Cancer. Cancers 2020, 12, 1755. [Google Scholar] [CrossRef]
- Allison, M.; Mathews, J.; Gilliland, T.; Mathew, S.O. Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers 2022, 14, 843. [Google Scholar] [CrossRef]
- Powers, S.B.; Ahmed, N.G.; Jose, R.; Brezgiel, M.; Aryal, S.; Bowman, W.P.; Mathew, P.A.; Mathew, S.O. Differential Expression of Llt1, Slam Receptors Cs1 and 2b4 and Ncr Receptors Nkp46 and Nkp30 in Pediatric Acute Lymphoblastic Leukemia (All). Int. J. Mol. Sci. 2023, 24, 3860. [Google Scholar] [CrossRef]
- Sung, P.S.; Jang, J.W. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int. J. Mol. Sci. 2018, 19, 3648. [Google Scholar] [CrossRef]
- Wagner, J.; Pfannenstiel, V.; Waldmann, A.; Bergs, J.W.J.; Brill, B.; Huenecke, S.; Klingebiel, T.; Rodel, F.; Buchholz, C.J.; Wels, W.S.; et al. A Two-Phase Expansion Protocol Combining Interleukin (Il)-15 and Il-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Front. Immunol. 2017, 8, 676. [Google Scholar] [CrossRef]
- Saetersmoen, M.L.; Hammer, Q.; Valamehr, B.; Kaufman, D.S.; Malmberg, K.J. Off-the-Shelf Cell Therapy with Induced Pluripotent Stem Cell-Derived Natural Killer Cells. Semin. Immunopathol. 2019, 41, 59–68. [Google Scholar] [CrossRef]
- Niu, Z.; Wu, J.; Zhao, Q.; Zhang, J.; Zhang, P.; Yang, Y. Car-Based Immunotherapy for Breast Cancer: Peculiarities, Ongoing Investigations, and Future Strategies. Front. Immunol. 2024, 15, 1385571. [Google Scholar] [CrossRef]
- Portillo, A.L.; Hogg, R.; Poznanski, S.M.; Rojas, E.A.; Cashell, N.J.; Hammill, J.A.; Chew, M.V.; Shenouda, M.M.; Ritchie, T.M.; Cao, Q.T.; et al. Expanded Human Nk Cells Armed with Car Uncouple Potent Anti-Tumor Activity from Off-Tumor Toxicity against Solid Tumors. iScience 2021, 24, 102619. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yoon, H.N.; Kang, H.J.; Yoo, H.; Choi, M.J.; Chung, J.Y.; Seo, M.; Kim, M.; Lim, S.O.; Kim, Y.J.; et al. Empowering Pancreatic Tumor Homing with Augmented Anti-Tumor Potency of Cxcr2-Tethered Car-Nk Cells. Mol. Ther. Oncol. 2024, 32, 200777. [Google Scholar] [CrossRef]
- Hadiloo, K.; Tahmasebi, S.; Esmaeilzadeh, A. Car-Nkt Cell Therapy: A New Promising Paradigm of Cancer Immunotherapy. Cancer Cell Int. 2023, 23, 86. [Google Scholar] [CrossRef]
- Wolf, B.J.; Choi, J.E.; Exley, M.A. Novel Approaches to Exploiting Invariant Nkt Cells in Cancer Immunotherapy. Front. Immunol. 2018, 9, 384. [Google Scholar] [CrossRef]
- Lee, P.T.; Benlagha, K.; Teyton, L.; Bendelac, A. Distinct Functional Lineages of Human V(Alpha)24 Natural Killer T Cells. J. Exp. Med. 2002, 195, 637–641. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, L. Challenges of Inkt Cell-Based Antitumor Immunotherapies. Cell. Mol. Immunol. 2021, 18, 1077–1078. [Google Scholar] [CrossRef]
- Fu, S.; He, K.; Tian, C.; Sun, H.; Zhu, C.; Bai, S.; Liu, J.; Wu, Q.; Xie, D.; Yue, T.; et al. Impaired Lipid Biosynthesis Hinders Anti-Tumor Efficacy of Intratumoral Inkt Cells. Nat. Commun. 2020, 11, 438. [Google Scholar] [CrossRef]
- Simon, B.; Wiesinger, M.; Marz, J.; Wistuba-Hamprecht, K.; Weide, B.; Schuler-Thurner, B.; Schuler, G.; Dorrie, J.; Uslu, U. The Generation of Car-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. Int. J. Mol. Sci. 2018, 19, 2365. [Google Scholar] [CrossRef]
- Heczey, A.; Liu, D.; Tian, G.; Courtney, A.N.; Wei, J.; Marinova, E.; Gao, X.; Guo, L.; Yvon, E.; Hicks, J.; et al. Metelitsa. Invariant Nkt Cells with Chimeric Antigen Receptor Provide a Novel Platform for Safe and Effective Cancer Immunotherapy. Blood 2014, 124, 2824–2833. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhou, Y.; Yu, J.; Zhu, Y.; Lee, D.; Zhu, E.; Li, Z.; Kim, Y.J.; Zhou, K.; Fang, Y.; et al. Engineering Allorejection-Resistant Car-Nkt Cells from Hematopoietic Stem Cells for Off-the-Shelf Cancer Immunotherapy. Mol. Ther. 2024, 32, 1849–1874. [Google Scholar] [CrossRef]
- Fasano, R.; Shadbad, M.A.; Brunetti, O.; Argentiero, A.; Calabrese, A.; Nardulli, P.; Calbi, R.; Baradaran, B.; Silvestris, N. Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Life 2021, 11, 1355. [Google Scholar] [CrossRef]
- Lurje, I.; Hammerich, L.; Tacke, F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int. J. Mol. Sci. 2020, 21, 7378. [Google Scholar] [CrossRef]
- Bachem, A.; Guttler, S.; Hartung, E.; Ebstein, F.; Schaefer, M.; Tannert, A.; Salama, A.; Movassaghi, K.; Opitz, C.; Mages, H.W.; et al. Superior Antigen Cross-Presentation and Xcr1 Expression Define Human Cd11c+Cd141+ Cells as Homologues of Mouse Cd8+ Dendritic Cells. J. Exp. Med. 2010, 207, 1273–1281. [Google Scholar] [CrossRef]
- He, G.; Zheng, C.; Huo, H.; Zhang, H.; Zhu, Z.; Li, J.; Zhang, H. Tace Combined with Dendritic Cells and Cytokine-Induced Killer Cells in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Int. Immunopharmacol. 2016, 40, 436–442. [Google Scholar] [CrossRef]
- Heo, J.; Reid, T.; Ruo, L.; Breitbach, C.J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H.Y.; Chung, H.C.; Kim, C.W.; et al. Randomized Dose-Finding Clinical Trial of Oncolytic Immunotherapeutic Vaccinia Jx-594 in Liver Cancer. Nat. Med. 2013, 19, 329–336. [Google Scholar] [CrossRef]
- Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M.; et al. Phase I Trial of a Glypican-3-Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall Survival. Clin. Cancer Res. 2012, 18, 3686–3696. [Google Scholar] [CrossRef]
- Tojjari, A.; Saeed, A.; Singh, M.; Cavalcante, L.; Sahin, I.H.; Saeed, A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines 2023, 11, 1357. [Google Scholar] [CrossRef]
- Jeng, L.B.; Liao, L.Y.; Shih, F.Y.; Teng, C.F. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers 2022, 14, 4380. [Google Scholar] [CrossRef]
- Wang, X.; Bayer, M.E.; Chen, X.; Fredrickson, C.; Cornforth, A.N.; Liang, G.; Cannon, J.; He, J.; Fu, Q.; Liu, J.; et al. Phase I Trial of Active Specific Immunotherapy with Autologous Dendritic Cells Pulsed with Autologous Irradiated Tumor Stem Cells in Hepatitis B-Positive Patients with Hepatocellular Carcinoma. J. Surg. Oncol. 2015, 111, 862–867. [Google Scholar] [CrossRef]
- Yang, M.; Chen, W.; Gupta, D.; Mei, C.; Yang, Y.; Zhao, B.; Qiu, L.; Chen, J. Nanoparticle/Engineered Bacteria Based Triple-Strategy Delivery System for Enhanced Hepatocellular Carcinoma Cancer Therapy. Int. J. Nanomed. 2024, 19, 3827–3846. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Li, J.; Liu, Z.; Xie, H.; Wei, X.; Lu, D.; Zhuang, R.; Xu, X.; Zheng, S. Irgd-Decorated Polymeric Nanoparticles for the Efficient Delivery of Vandetanib to Hepatocellular Carcinoma: Preparation and in Vitro and in Vivo Evaluation. ACS Appl. Mater Interfaces 2016, 8, 19228–19237. [Google Scholar] [CrossRef]
- Chau, N.G.; Haddad, R.I. Vandetanib for the Treatment of Medullary Thyroid Cancer. Clin. Cancer Res. 2013, 19, 524–529. [Google Scholar] [CrossRef]
- Ghazarian, M.; Revelo, X.S.; Nohr, M.K.; Luck, H.; Zeng, K.; Lei, H.; Tsai, S.; Schroer, S.A.; Park, Y.J.; Chng, M.H.Y.; et al. Type I Interferon Responses Drive Intrahepatic T Cells to Promote Metabolic Syndrome. Sci. Immunol. 2017, 2, eaai7616. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, S.; Yang, M. Regulatory T Cells and Their Associated Factors in Hepatocellular Carcinoma Development and Therapy. World J. Gastroenterol. 2022, 28, 3346–3358. [Google Scholar] [CrossRef]
- He, B.; Wu, L.; Xie, W.; Shao, Y.; Jiang, J.; Zhao, Z.; Yan, M.; Chen, Z.; Cui, D. The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunol. 2017, 18, 33. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Chen, J.; Chen, X.; Huang, L.; Zhang, X.; Huang, X.; Ma, N.; Xu, W.; Yi, X.; et al. A Novel Engineered Il-21 Receptor Arms T-Cell Receptor-Engineered T Cells (Tcr-T Cells) against Hepatocellular Carcinoma. Signal. Transduct. Target Ther. 2024, 9, 101. [Google Scholar] [CrossRef]
- Sadagopan, N.; He, A.R. Recent Progress in Systemic Therapy for Advanced Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 1259. [Google Scholar] [CrossRef]
Ongoing Clinical Trials of Immune Checkpoint Inhibitors | |||
---|---|---|---|
NCT Number | Immune Checkpoint Inhibitors | Phase | Recruitment Status |
NCT04696055 | Pembrolizumab + Regorafenib | Completed | Completed |
NCT05178043 | Nivolumab + GT90001 | Phase II | Active; Not recruiting |
NCT05048017 | Regorafenib + PDL1 inhibitor | Phase II | Recruiting |
NCT04183088 | Tislelizumab + Regorafenib | Phase II | Recruiting |
NCT05086692 | MDNA11 + ICI | Phase I & II | Recruiting |
NCT04050462 | Nivolumab + Cabiralizumab + BMS-986253 | Phase II | Active; Not recruiting |
NCT03893695 | GT90001 + Nivolumab | Completed | Completed |
NCT03682276 | Ipilimumab + Nivolumab | Phase I & II | Recruiting |
NCT05257590 | Nivolumab + CVM-1118 | Phase II | Recruiting |
NCT04567615 | Nivolumab + Relatlimab | Phase II | Active; Not recruiting |
NCT03841201 | Lenvatinib + Nivolumab | Completed | Completed |
NCT01658878 | Nivolumab + Ipilimumab + Sorafenib + Cabozantinib | Phase I & II | Active; Not recruiting |
NCT04039607 | Nivolumab + Ipilimumab + Sorafenib + Lentvatinib | Phase III | Active; Not recruiting |
NCT04170556 | Regorafenib + Nivolumab | Phase I & II | Active; Not recruiting |
NCT03539822 | Cabozantinib + Durvalumab + Tremelimumab | Phase I & II | Active; Not recruiting |
NCT04102098 | Atezolizumab + Bevacizumab | Phase III | Active; Not recruiting |
NCT04912765 | Neoantigen + Dendritic cell vector + Nivolumab | Phase II | Recruiting |
NCT03829436 | TPST-1120 + Nivolumab | Phase I & II | Completed |
NCT03170960 | Cabozantinib + Atezolizumab | Phase I & II | Active; Not recruiting |
NCT05176483 | XL092 + Nivolumab + Ipilimumab + Relatlimab | Phase I | Recruiting |
NCT05337137 | Relatlimab + Nivolumab + Bevacizumab | Phase I & II | Recruiting |
NCT03439891 | Nivolumab + Sorafenib | Phase II | Active; Not recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, A.; Mathew, S.O. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers 2024, 16, 2446. https://doi.org/10.3390/cancers16132446
Garcia A, Mathew SO. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers. 2024; 16(13):2446. https://doi.org/10.3390/cancers16132446
Chicago/Turabian StyleGarcia, Alexsis, and Stephen O. Mathew. 2024. "Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma" Cancers 16, no. 13: 2446. https://doi.org/10.3390/cancers16132446
APA StyleGarcia, A., & Mathew, S. O. (2024). Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers, 16(13), 2446. https://doi.org/10.3390/cancers16132446