Total Neoadjuvant Therapy in Localized Pancreatic Cancer: Is More Better?
Abstract
:Simple Summary
Abstract
1. Introduction
2. What Is Total Neoadjuvant Therapy?
3. General Risks and Benefits of NAT and TNT
4. The Advent of TNT for BRPC Patients
4.1. Use of Single Modality NAT
4.2. Use of TNT Strategies for BRPC
4.2.1. Conventional CRT with Induction or Consolidation Chemotherapy Prior to Surgery
4.2.2. The Dutch TNT Strategy: PREOPANC Regimen
4.2.3. Stereotactic Body Radiotherapy (SBRT)
Non-Ablative SBRT
Nearly Ablative SBRT
Ablative SBRT
5. The Advent of TNT for LAPC Patients
5.1. TNT with Conventional CRT with Induction or Consolidation Chemotherapy Prior to Surgery
5.2. TNT with Hyprofractionnated Ablative Intensity-Modulated Radiotherapy (HFA-IMRT)
5.3. TNT with SBRT
5.3.1. Non-Ablative SBRT
5.3.2. Nearly Ablative SBRT
5.3.3. Ablative Adaptive SBRT
6. Evaluation of Treatment Response and Future Perspectives for Patient Selection in the Precision Medicine Era
6.1. Available Tools for the Evaluation of Treatment Response
6.2. Future Perspectives for Response Status and Patient Selection
7. Conclusions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic Cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, M.; Buscail, E.; Boussari, O.; Adgié, S.; Leduc, N.; Terrebonne, E.; Smith, D.; Blanc, J.F.; Lapuyade, B.; Laurent, C.; et al. Neoadjuvant Treatment for Borderline Resectable Pancreatic Adenocarcinoma Is Associated with Higher R0 Rate Compared to Upfront Surgery. Acta Oncol. 2021, 60, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Bouchart, C.; Navez, J.; Closset, J.; Hendlisz, A.; Van Gestel, D.; Moretti, L.; Van Laethem, J.L. Novel Strategies Using Modern Radiotherapy to Improve Pancreatic Cancer Outcomes: Toward a New Standard? Ther. Adv. Med. Oncol. 2020, 12, 1758835920936093. [Google Scholar] [CrossRef]
- Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; et al. Total Neoadjuvant Therapy with FOLFIRINOX in Combination with Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Pietrasz, D.; Turrini, O.; Vendrely, V.; Simon, J.M.; Hentic, O.; Coriat, R.; Portales, F.; Le Roy, B.; Taieb, J.; Regenet, N.; et al. How Does Chemoradiotherapy Following Induction FOLFIRINOX Improve the Results in Resected Borderline or Locally Advanced Pancreatic Adenocarcinoma? An AGEO-FRENCH Multicentric Cohort. Ann. Surg. Oncol. 2019, 26, 109–117. [Google Scholar] [CrossRef]
- Truty, M.J.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Cleary, S.P.; Graham, R.P.; Goenka, A.H.; Hallemeier, C.L.; Haddock, M.G.; Harmsen, W.S.; et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Ann. Surg. 2021, 273, 341–349. [Google Scholar] [CrossRef]
- Kim, R.Y.; Christians, K.K.; Aldakkak, M.; Clarke, C.N.; George, B.; Kamgar, M.; Khan, A.H.; Kulkarni, N.; Hall, W.A.; Erickson, B.A.; et al. Total Neoadjuvant Therapy for Operable Pancreatic Cancer. Ann. Surg. Oncol. 2021, 28, 2246–2256. [Google Scholar] [CrossRef] [PubMed]
- Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; et al. EMT and Dissemination Precede Pancreatic Tumor Formation. Cell 2012, 148, 349–361. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, P.; Lan, P.; Wang, L.; Chen, W.; Cui, L.; Chen, D.; Cao, J.; Wei, H.; Peng, X.; et al. Modified FOLFOX6 with or Without Radiation Versus Fluorouracil and Leucovorin with Radiation in Neoadjuvant Treatment of Locally Advanced Rectal Cancer: Initial Results of the Chinese FOWARC Multicenter, Open-Label, Randomized Three-Arm Phase III Trial. J. Clin. Oncol. 2016, 34, 3300–3307. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-Course Radiotherapy Followed by Chemotherapy before Total Mesorectal Excision (TME) versus Preoperative Chemoradiotherapy, TME, and Optional Adjuvant Chemotherapy in Locally Advanced Rectal Cancer (RAPIDO): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Conroy, T.; Etienne, P.-L.; Rio, E.; Evesque, L.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouche, O.; Boileve, A.; Delaye, M.; et al. Total Neoadjuvant Therapy with MFOLFIRINOX versus Preoperative Chemoradiation in Patients with Locally Advanced Rectal Cancer: 7-Year Results of PRODIGE 23 Phase III Trial, a UNICANCER GI Trial. J. Clin. Oncol. 2023, 41, LBA3504. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Ahmad, S.A.; Herman, J.M.; Marsh, R.D.W.; Collisson, E.; Schwartz, L.; Frankel, W.; Martin, R.; Conway, W.; et al. Preoperative Modified FOLFIRINOX Treatment Followed by Capecitabine-Based Chemoradiation for Borderline Resectable Pancreatic Cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 2016, 151, e161137. [Google Scholar] [CrossRef]
- Wittmann, D.; Hall, W.A.; Christians, K.K.; Barnes, C.A.; Jariwalla, N.R.; Aldakkak, M.; Clarke, C.N.; George, B.; Ritch, P.S.; Riese, M.; et al. Impact of Neoadjuvant Chemoradiation on Pathologic Response in Patients with Localized Pancreatic Cancer. Front. Oncol. 2020, 10, 460. [Google Scholar] [CrossRef]
- Pugalenthi, A.; Protic, M.; Gonen, M.; Kingham, T.P.; Angelica, M.I.D.; Dematteo, R.P.; Fong, Y.; Jarnagin, W.R.; Allen, P.J. Postoperative Complications and Overall Survival after Pancreaticoduodenectomy for Pancreatic Ductal Adenocarcinoma. J. Surg. Oncol. 2016, 113, 188–193. [Google Scholar] [CrossRef]
- Wu, W.; He, J.; Cameron, J.L.; Makary, M.; Soares, K.; Ahuja, N.; Rezaee, N.; Herman, J.; Zheng, L.; Laheru, D.; et al. The Impact of Postoperative Complications on the Administration of Adjuvant Therapy Following Pancreaticoduodenectomy for Adenocarcinoma. Ann. Surg. Oncol. 2014, 21, 2873–2881. [Google Scholar] [CrossRef]
- Wei, A.C.; Ou, F.S.; Shi, Q.; Carrero, X.; O’Reilly, E.M.; Meyerhardt, J.; Wolff, R.A.; Kindler, H.L.; Evans, D.B.; Deshpande, V.; et al. Perioperative Gemcitabine + Erlotinib Plus Pancreaticoduodenectomy for Resectable Pancreatic Adenocarcinoma: ACOSOG Z5041 (Alliance) Phase II Trial. Ann. Surg. Oncol. 2019, 26, 4489–4497. [Google Scholar] [CrossRef]
- Mackay, T.M.; Smits, F.J.; Roos, D.; Bonsing, B.A.; Bosscha, K.; Busch, O.R.; Creemers, G.J.; van Dam, R.M.; van Eijck, C.H.J.; Gerhards, M.F.; et al. The Risk of Not Receiving Adjuvant Chemotherapy after Resection of Pancreatic Ductal Adenocarcinoma: A Nationwide Analysis. HPB 2020, 22, 233–240. [Google Scholar] [CrossRef]
- Lubrano, J.; Bachelier, P.; Paye, F.; Le Treut, Y.P.; Chiche, L.; Sa-Cunha, A.; Turrini, O.; Menahem, B.; Launoy, G.; Delpero, J.R. Severe Postoperative Complications Decrease Overall and Disease Free Survival in Pancreatic Ductal Adenocarcinoma after Pancreaticoduodenectomy. Eur. J. Surg. Oncol. 2018, 44, 1078–1082. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Asbun, H.; Bain, A.; Behrman, S.W.; Al Benson, B.; Binder, E.; Cardin, D.B.; Cha, C.; et al. Pancreatic Adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 1028–1061. [Google Scholar] [CrossRef]
- Vauthey, J.N.; Dixon, E. AHPBA/SSO/SSAT Consensus Conference on Resectable and Borderline Resectable Pancreatic Cancer: Rationale and Overview of the Conference. Ann. Surg. Oncol. 2009, 16, 1725–1726. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Kim, J. The American Joint Committee on Cancer 8th Edition Staging System for the Pancreatic Ductal Adenocarcinoma: Is It Better than the 7th Edition? Hepatobiliary Surg. Nutr. 2020, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Isaji, S.; Mizuno, S.; Windsor, J.A.; Bassi, C.; Fernández-del Castillo, C.; Hackert, T.; Hayasaki, A.; Katz, M.H.G.; Kim, S.W.; Kishiwada, M.; et al. International Consensus on Definition and Criteria of Borderline Resectable Pancreatic Ductal Adenocarcinoma 2017. Pancreatology 2018, 18, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, G.; Ghidini, M.; Ghidini, A.; Trevisan, F.; Celotti, A.; Russo, A.; Gambini, D.; Indini, A.; Rijavec, E.; Bareggi, C.; et al. Total Neoadjuvant Therapy for Initially Inoperable Pancreatic Cancer: A Systematic Review of Phase 2–3 Studies. Radiother. Oncol. 2021, 164, 13–19. [Google Scholar] [CrossRef] [PubMed]
- De Simoni, O.; Scarpa, M.; Soldà, C.; Bergamo, F.; Lonardi, S.; Fantin, A.; Pilati, P.; Gruppo, M. Could Total Neoadjuvant Therapy Followed by Surgical Resection Be the New Standard of Care in Pancreatic Cancer? A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Bouchart, C.; Engelholm, J.L.; Closset, J.; Navez, J.; Loi, P.; Gökburun, Y.; De Grez, T.; Mans, L.; Hendlisz, A.; Bali, M.A.; et al. Isotoxic High-Dose Stereotactic Body Radiotherapy Integrated in a Total Multimodal Neoadjuvant Strategy for the Treatment of Localized Pancreatic Ductal Adenocarcinoma. Ther. Adv. Med. Oncol. 2021, 13, 17588359211045860. [Google Scholar] [CrossRef] [PubMed]
- Reni, M.; Balzano, G.; Zanon, S.; Zerbi, A.; Rimassa, L.; Castoldi, R.; Pinelli, D.; Mosconi, S.; Doglioni, C.; Chiaravalli, M.; et al. Safety and Efficacy of Preoperative or Postoperative Chemotherapy for Resectable Pancreatic Adenocarcinoma (PACT-15): A Randomised, Open-Label, Phase 2-3 Trial. Lancet Gastroenterol. Hepatol. 2018, 3, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, C.W.D.; Fleming, J.B.; Lee, J.E.; Xiao, L.; Pisters, P.W.T.; Vauthey, J.N.; Abdalla, E.K.; Wolff, R.A.; Varadhachary, G.R.; Fogelman, D.R.; et al. Defined Clinical Classifications Are Associated with Outcome of Patients with Anatomically Resectable Pancreatic Adenocarcinoma Treated with Neoadjuvant Therapy. Ann. Surg. Oncol. 2012, 19, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Katz, M.H.; Tzeng, C.W.; Bjørnbeth, B.A.; Cvancarova, M.; Edwin, B.; Kure, E.H.; Eide, T.J.; Dueland, S.; Buanes, T.; et al. Impact of Early Disease Progression and Surgical Complications on Adjuvant Chemotherapy Completion Rates and Survival in Patients Undergoing the Surgery First Approach for Resectable Pancreatic Ductal Adenocarcinoma—A Population-Based Cohort Study. Acta Oncol. 2016, 55, 265–277. [Google Scholar] [CrossRef]
- Lambert, A.; Schwarz, L.; Borbath, I.; Henry, A.; Van Laethem, J.L.; Malka, D.; Ducreux, M.; Conroy, T. An Update on Treatment Options for Pancreatic Adenocarcinoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875568. [Google Scholar] [CrossRef]
- Labori, K.J. Short-Course or Total Neoadjuvant Chemotherapy in Resectable and Borderline Resectable Pancreatic Cancer—Current Status and Future Perspectives. Front. Surg. 2022, 9, 839339. [Google Scholar] [CrossRef] [PubMed]
- Swords, D.S.; Zhang, C.; Presson, A.P.; Firpo, M.A.; Mulvihill, S.J.; Scaife, C.L. Association of Time-to-Surgery with Outcomes in Clinical Stage I-II Pancreatic Adenocarcinoma Treated with Upfront Surgery. Surgery 2018, 163, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, K.A.; Hollenbeak, C.S.; Wong, J. Time to Surgery: A Misguided Quality Metric in Early Stage Pancreatic Cancer. J. Gastrointest. Surg. 2018, 22, 1365–1375. [Google Scholar] [CrossRef]
- Khuri, S.F.; Henderson, W.G.; DePalma, R.G.; Mosca, C.; Healey, N.A.; Kumbhani, D.J. Determinants of Long-Term Survival after Major Surgery and the Adverse Effect of Postoperative Complications. Ann. Surg. 2005, 242, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Merkow, R.P.; Bilimoria, K.Y.; Tomlinson, J.S.; Paruch, J.L.; Fleming, J.B.; Talamonti, M.S.; Ko, C.Y.; Bentrem, D.J. Postoperative Complications Reduce Adjuvant Chemotherapy Use in Resectable Pancreatic Cancer. Ann. Surg. 2014, 260, 372–377. [Google Scholar] [CrossRef]
- Tzeng, C.W.D.; Cao, H.S.T.; Lee, J.E.; Pisters, P.W.T.; Varadhachary, G.R.; Wolff, R.A.; Abbruzzese, J.L.; Crane, C.H.; Evans, D.B.; Wang, H.; et al. Treatment Sequencing for Resectable Pancreatic Cancer: Influence of Early Metastases and Surgical Complications on Multimodality Therapy Completion and Survival. J. Gastrointest. Surg. 2014, 18, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Li, J.; Lin, C. Neoadjuvant Therapy for Pancreatic Cancer: Systematic Review of Postoperative Morbidity, Mortality, and Complications. Am. J. Clin. Oncol. 2016, 39, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Navez, J.; Bouchart, C.; Mans, L.; Devos, S.; Loi, P.; Closset, J.; Van Laethem, J.L. Neoadjuvant Chemotherapy Associated with Isotoxic High-Dose Stereotactic Body Radiotherapy Does Not Increase Postoperative Complications after Pancreaticoduodenectomy for Nonmetastatic Pancreatic Cancer. J. Surg. Oncol. 2023, 128, 33–40. [Google Scholar] [CrossRef]
- Ferrone, C.R.; Marchegiani, G.; Hong, T.S.; Ryan, D.P.; Deshpande, V.; McDonnell, E.I.; Sabbatino, F.; Santos, D.D.; Allen, J.N.; Blaszkowsky, L.S.; et al. Radiological and Surgical Implications of Neoadjuvant Treatment with FOLFIRINOX for Locally Advanced and Borderline Resectable Pancreatic Cancer. Ann. Surg. 2015, 261, 12–17. [Google Scholar] [CrossRef]
- Marchegiani, G.; Andrianello, S.; Nessi, C.; Sandini, M.; Maggino, L.; Malleo, G.; Paiella, S.; Polati, E.; Bassi, C.; Salvia, R. Neoadjuvant Therapy Versus Upfront Resection for Pancreatic Cancer: The Actual Spectrum and Clinical Burden of Postoperative Complications. Ann. Surg. Oncol. 2018, 25, 626–637. [Google Scholar] [CrossRef]
- Groot Koerkamp, B.; Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Haberkorn, B.C.M.; de Hingh, I.H.J.T.; Karsten, T.M.; Van der Kolk, M.B.; et al. LBA83 Neoadjuvant Chemotherapy with FOLFIRINOX versus Neoadjuvant Gemcitabine-Based Chemoradiotherapy for Borderline Resectable and Resectable Pancreatic Cancer (PREOPANC-2): A Multicenter Randomized Controlled Trial. Ann. Oncol. 2023, 34, S1323. [Google Scholar] [CrossRef]
- Alva-Ruiz, R.; Yohanathan, L.; Yonkus, J.A.; Abdelrahman, A.M.; Gregory, L.A.; Halfdanarson, T.R.; Mahipal, A.; McWilliams, R.R.; Ma, W.W.; Hallemeier, C.L.; et al. Neoadjuvant Chemotherapy Switch in Borderline Resectable/Locally Advanced Pancreatic Cancer. Ann. Surg. Oncol. 2022, 29, 1579–1591. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Bratlie, S.O.; Andersson, B.; Angelsen, J.H.; Biörserud, C.; Björnsson, B.; Bringeland, E.A.; Elander, N.; Garresori, H.; Grønbech, J.E.; et al. Neoadjuvant FOLFIRINOX versus Upfront Surgery for Resectable Pancreatic Head Cancer (NORPACT-1): A Multicentre, Randomised, Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2024, 9, 205–217. [Google Scholar] [CrossRef] [PubMed]
- van Dam, J.L.; Verkolf, E.M.M.; Dekker, E.N.; Bonsing, B.A.; Bratlie, S.O.; Brosens, L.A.A.; Busch, O.R.; van Driel, L.M.J.W.; van Eijck, C.H.J.; Feshtali, S.; et al. Perioperative or Adjuvant MFOLFIRINOX for Resectable Pancreatic Cancer (PREOPANC-3): Study Protocol for a Multicenter Randomized Controlled Trial. BMC Cancer 2023, 23, 1–8. [Google Scholar] [CrossRef]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; Vogel, A.; et al. Pancreatic Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef]
- Lurie, R.H.; Cardin, D.B.; Gabriela Chiorean, E.; Hutchinson Cancer Center Jared Christensen, F.A.; Chung, V.; Czito, B.; Del Chiaro, M.; Donahue, T.R.; Dotan, E.; Fountzilas, C.; et al. NCCN Guidelines Version 1.2024 Pancreatic Adenocarcinoma Continue NCCN Guidelines Version 1.2024 Pancreatic Adenocarcinoma. 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 24 June 2024).
- Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Groot Koerkamp, B.; Rasch, C.R.N.; van Tienhoven, G. Meta-Analysis Comparing Upfront Surgery with Neoadjuvant Treatment in Patients with Resectable or Borderline Resectable Pancreatic Cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [CrossRef]
- Janssen, Q.P.; Buettner, S.; Suker, M.; Beumer, B.R.; Addeo, P.; Bachellier, P.; Bahary, N.; Bekaii-Saab, T.; Bali, M.A.; Besselink, M.G.; et al. Neoadjuvant FOLFIRINOX in Patients with Borderline Resectable Pancreatic Cancer: A Systematic Review and Patient-Level Meta-Analysis. J. Natl. Cancer Inst. 2019, 111, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients with Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-Label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef]
- Ghaneh, P.; Palmer, D.; Cicconi, S.; Jackson, R.; Halloran, C.M.; Rawcliffe, C.; Sripadam, R.; Mukherjee, S.; Soonawalla, Z.; Wadsley, J.; et al. Immediate Surgery Compared with Short-Course Neoadjuvant Gemcitabine plus Capecitabine, FOLFIRINOX, or Chemoradiotherapy in Patients with Borderline Resectable Pancreatic Cancer (ESPAC5): A Four-Arm, Multicentre, Randomised, Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef]
- Golcher, H.; Brunner, T.B.; Witzigmann, H.; Marti, L.; Bechstein, W.O.; Bruns, C.; Jungnickel, H.; Schreiber, S.; Grabenbauer, G.G.; Meyer, T.; et al. Neoadjuvant Chemoradiation Therapy with Gemcitabine/Cisplatin and Surgery versus Immediate Surgery in Resectable Pancreatic Cancer: Results of the First Prospective Randomized Phase II Trial. Strahlenther. Onkol. 2015, 191, 7–16. [Google Scholar] [CrossRef]
- Motoi, F.; Kosuge, T.; Ueno, H.; Yamaue, H.; Satoi, S.; Sho, M.; Honda, G.; Matsumoto, I.; Wada, K.; Furuse, J.; et al. Randomized Phase II/III Trial of Neoadjuvant Chemotherapy with Gemcitabine and S-1 versus Upfront Surgery for Resectable Pancreatic Cancer (Prep-02/JSAP05). Jpn. J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Reichart, A.; Bankstahl, U.S.; Pauligk, C.; Kraus, T.W.; Bechstein, W.O.; Trojan, J.; Behrend, M.; Potenberg, J.; Homann, N.; et al. Randomized Multicenter Phase II/III Study with Adjuvant Gemcitabine versus Neoadjuvant/Adjuvant FOLFIRINOX in Resectable Pancreatic Cancer: The NEPAFOX Trial. J. Clin. Oncol. 2021, 39, 406. [Google Scholar] [CrossRef]
- Unno, M.; Motoi, F.; Matsuyama, Y.; Satoi, S.; Matsumoto, I.; Aosasa, S.; Shirakawa, H.; Wada, K.; Fujii, T.; Yoshitomi, H.; et al. Randomized Phase II/III Trial of Neoadjuvant Chemotherapy with Gemcitabine and S-1 versus Upfront Surgery for Resectable Pancreatic Cancer (Prep-02/JSAP-05). J. Clin. Oncol. 2019, 37, 189. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ Preservation in Patients with Rectal Adenocarcinoma Treated with Total Neoadjuvant Therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef] [PubMed]
- Nagakawa, Y.; Hosokawa, Y.; Nakayama, H.; Sahara, Y.; Takishita, C.; Nakajima, T.; Hijikata, Y.; Kasuya, K.; Katsumata, K.; Tokuuye, K.; et al. A Phase II Trial of Neoadjuvant Chemoradiotherapy with Intensity-Modulated Radiotherapy Combined with Gemcitabine and S-1 for Borderline-Resectable Pancreatic Cancer with Arterial Involvement. Cancer Chemother. Pharmacol. 2017, 79, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Dholakia, A.S.; Hacker-Prietz, A.; Wild, A.T.; Raman, S.P.; Wood, L.D.; Huang, P.; Laheru, D.A.; Zheng, L.; De Jesus-Acosta, A.; Le, D.T.; et al. Resection of Borderline Resectable Pancreatic Cancer after Neoadjuvant Chemoradiation Does Not Depend on Improved Radiographic Appearance of Tumor-Vessel Relationships. J. Radiat. Oncol. 2013, 2, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Auclin, E.; Marthey, L.; Abdallah, R.; Mas, L.; Francois, E.; Saint, A.; Cunha, A.S.; Vienot, A.; Lecomte, T.; Hautefeuille, V.; et al. Role of FOLFIRINOX and Chemoradiotherapy in Locally Advanced and Borderline Resectable Pancreatic Adenocarcinoma: Update of the AGEO Cohort. Br. J. Cancer 2021, 124, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Wo, J.Y.; Niemierko, A.; Ryan, D.P.; Blaszkowsky, L.S.; Clark, J.W.; Kwak, E.L.; Lillemoe, K.D.; Drapek, L.N.; Zhu, A.X.; Allen, J.N.; et al. Tolerability and Long-Term Outcomes of Dose-Painted Neoadjuvant Chemoradiation to Regions of Vessel Involvement in Borderline or Locally Advanced Pancreatic Cancer. Am. J. Clin. Oncol. 2018, 41, 656–661. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.; Van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients with Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine with or without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Sudo, K.; Hara, R.; Nakamura, K.; Kita, E.; Tsujimoto, A.; Yamaguchi, T. Phase II Study of Induction Gemcitabine and S-1 Followed by Chemoradiotherapy and Systemic Chemotherapy Using S-1 for Locally Advanced Pancreatic Cancer. Cancer Chemother. Pharmacol. 2017, 80, 195–202. [Google Scholar] [CrossRef]
- Huguet, F.; Hajj, C.; Winston, C.B.; Shi, W.; Zhang, Z.; Wu, A.J.; O’Reilly, E.M.; Reidy, D.L.; Allen, P.; Goodman, K.A. Chemotherapy and Intensity-Modulated Radiation Therapy for Locally Advanced Pancreatic Cancer Achieves a High Rate of R0 Resection. Acta Oncol. 2017, 56, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Sherman, W.H.; Hecht, E.; Leung, D.; Chu, K. Predictors of Response and Survival in Locally Advanced Adenocarcinoma of the Pancreas following Neoadjuvant GTX with or without Radiation Therapy. Oncologist 2018, 23, 4-e10. [Google Scholar] [CrossRef]
- Ioka, T.; Furuse, J.; Fukutomi, A.; Mizusawa, J.; Nakamura, S.; Hiraoka, N.; Ito, Y.; Katayama, H.; Ueno, M.; Ikeda, M.; et al. Randomized phase II study of chemoradiotherapy with versus without induction chemotherapy for locally advanced pancreatic cancer: Japan Clinical Oncology Group trial, JCOG1106. Jpn. J. Clin. Oncol. 2021, 51, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Fietkau, R.; Ghadimi, M.; Grützmann, R.; Wittel, U.A.; Jacobasch, L.; Uhl, W.; Croner, R.S.; Bechstein, W.O.; Neumann, U.P.; Waldschmidt, D.; et al. Randomized Phase III Trial of Induction Chemotherapy Followed by Chemoradiotherapy or Chemotherapy Alone for Nonresectable Locally Advanced Pancreatic Cancer: First Results of the CONKO-007 Trial. J. Clin. Oncol. 2022, 40, 4008. [Google Scholar] [CrossRef]
- Barhoumi, M.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouché, O.; Bosset, J.F.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Cancer Du Pancréas Localement Évolué Non Resécable: Chimioradiothérapie d’induction Suivie de Chimiothérapie Par Gemcitabine Contre Chimiothérapie Exclusive Par Gemcitabine: Résultats Définitifs de l’étude de Phase III 2000–2001de La FFCD et de La SFRO. Cancer/Radiothérapie 2011, 15, 182–191. [Google Scholar] [CrossRef]
- Versteijne, E.; Van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef]
- Reyngold, M.; Alice, W.; O’Reilly, E.M.; D’Angelica, M.I.; Drebin, J.A.; Soares, K.; Kingham, T.P.; Balachandran, V.P.; Varghese, A.M.; Park, W.; et al. Phase II Trial of Maximal Ablative Irradiation Because of Encasement (MAIBE) for Patients with Potentially Resectable Locally Advanced Pancreatic Cancer. J. Clin. Oncol. 2023, 41, 710. [Google Scholar] [CrossRef]
- Mukherjee, S.; Qi, C.; Shaw, R.; Bridgewater, J.; Radhakrishna, G.; Patel, N.; Tranter, B.; Parsons, P.; Falk, S.; Wasan, H.; et al. SCALOP2:A Multicenter Randomized Trial of RT Dose Escalation and Nelfinavir in Pancreatic Cancer. Radiother. Oncol. 2022, 170, S77–S78. [Google Scholar] [CrossRef]
- Krishnan, S.; Chadha, A.S.; Suh, Y.; Chen, H.C.; Rao, A.; Das, P.; Minsky, B.D.; Mahmood, U.; Delclos, M.E.; Sawakuchi, G.O.; et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 755–765. [Google Scholar] [CrossRef]
- Reyngold, M.; O’Reilly, E.; Zinovoy, M.; Romesser, P.B.; Wu, A.J.; Hajj, C.; Cuaron, J.J.; Yorke, E.D.; Varghese, A.M.; Crane, C.H. Ablative RT Results in Excellent Local Control and Survival in Localized Pancreatic Cancer. Int. J. Radiat. Oncol. 2019, 105, S206. [Google Scholar] [CrossRef]
- Reyngold, M.; O’Reilly, E.M.; Varghese, A.M.; Fiasconaro, M.; Zinovoy, M.; Romesser, P.B.; Wu, A.; Hajj, C.; Cuaron, J.J.; Tuli, R.; et al. Association of Ablative Radiation Therapy with Survival Among Patients with Inoperable Pancreatic Cancer. JAMA Oncol. 2021, 7, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; Lens, E.; van der Horst, A.; Bel, A.; Visser, J.; Punt, C.J.A.; Suker, M.; van Eijck, C.H.J.; van Tienhoven, G. Quality Assurance of the PREOPANC Trial (2012-003181-40) for Preoperative Radiochemotherapy in Pancreatic Cancer: The Dummy Run. Strahlenther. Onkol. 2017, 193, 630–638. [Google Scholar] [CrossRef] [PubMed]
- McGinn, C.J.; Zalupski, M.M.; Shureiqi, I.; Robertson, J.M.; Eckhauser, F.E.; Smith, D.C.; Brown, D.; Hejna, G.; Strawderman, M.; Normolle, D.; et al. Phase I Trial of Radiation Dose Escalation with Concurrent Weekly Full-Dose Gemcitabine in Patients with Advanced Pancreatic Cancer. J. Clin. Oncol. 2001, 19, 4202–4208. [Google Scholar] [CrossRef]
- Small Jr, W.; Berlin, J.; Freedman, G.M.; Lawrence, T.; Talamonti, M.S.; Mulcahy, M.F.; Bapsi Chakravarthy, A.; Konski, A.A.; Zalupski, M.M.; Philip, P.A.; et al. Full-Dose Gemcitabine with Concurrent Radiation Therapy in Patients with Nonmetastatic Pancreatic Cancer: A Multicenter Phase II Trial. J. Clin. Oncol. 2008, 26, 942–947. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.; El-Maraghi, R.H.; Hammel, P.; Heinemann, V.; Kunzmann, V.; Sastre, J.; Scheithauer, W.; Siena, S.; Tabernero, J.; Teixeira, L.; et al. Nab-Paclitaxel plus Gemcitabine for Metastatic Pancreatic Cancer: Long-Term Survival from a Phase III Trial. J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo Cid, R.; Chandana, S.R.; De La Fouchardière, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O.; et al. NALIRIFOX versus Nab-Paclitaxel and Gemcitabine in Treatment-Naive Patients with Metastatic Pancreatic Ductal Adenocarcinoma (NAPOLI 3): A Randomised, Open-Label, Phase 3 Trial. Lancet 2023, 402, 1272–1281. [Google Scholar] [CrossRef]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for Locally Advanced Pancreatic Cancer: A Systematic Review and Patient-Level Meta-Analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Hackert, T.; Sachsenmaier, M.; Hinz, U.; Schneider, L.; Michalski, C.W.; Springfeld, C.; Strobel, O.; Jäger, D.; Ulrich, A.; Büchler, M.W. Locally Advanced Pancreatic Cancer: Neoadjuvant Therapy with Folfirinox Results in Resectability in 60% of the Patients. Ann. Surg. 2016, 264, 457–461. [Google Scholar] [CrossRef]
- Dhir, M.; Zenati, M.S.; Hamad, A.; Singhi, A.D.; Bahary, N.; Hogg, M.E.; Zeh, H.J.; Zureikat, A.H. FOLFIRINOX Versus Gemcitabine/Nab-Paclitaxel for Neoadjuvant Treatment of Resectable and Borderline Resectable Pancreatic Head Adenocarcinoma. Ann. Surg. Oncol. 2018, 25, 1896–1903. [Google Scholar] [CrossRef]
- Sohal, D.; Duong, M.T.; Ahmad, S.A.; Gandhi, N.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. SWOG S1505: Results of Perioperative Chemotherapy (Peri-Op CTx) with Mfolfirinox versus Gemcitabine/Nab-Paclitaxel (Gem/NabP) for Resectable Pancreatic Ductal Adenocarcinoma (PDA). J. Clin. Oncol. 2020, 38, 4504. [Google Scholar] [CrossRef]
- Potters, L.; Kavanagh, B.; Galvin, J.M.; Hevezi, J.M.; Janjan, N.A.; Larson, D.A.; Mehta, M.P.; Ryu, S.; Steinberg, M.; Timmerman, R.; et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 326–332. [Google Scholar] [CrossRef]
- Timmerman, R.D.; Herman, J.; Cho, L.C. Emergence of Stereotactic Body Radiation Therapy and Its Impact on Current and Future Clinical Practice. J. Clin. Oncol. 2014, 32, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Kamel, R.; Dennis, K.; Doody, J.; Pantarotto, J. Ablative vs. Non-Ablative Radiotherapy in Palliating Locally Advanced Pancreatic Cancer: A Single Institution Experience and a Systematic Review of the Literature. Cancers 2023, 15, 3016. [Google Scholar] [CrossRef] [PubMed]
- Rwigema, J.C.M.; Parikh, S.D.; Heron, D.E.; Howell, M.; Zeh, H.; Moser, A.J.; Bahary, N.; Quinn, A.; Burton, S.A. Stereotactic Body Radiotherapy in the Treatment of Advanced Adenocarcinoma of the Pancreas. Am. J. Clin. Oncol. 2011, 34, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Mellon, E.A.; Hoffe, S.E.; Springett, G.M.; Frakes, J.M.; Strom, T.J.; Hodul, P.J.; Malafa, M.P.; Chuong, M.D.; Shridhar, R. Long-Term Outcomes of Induction Chemotherapy and Neoadjuvant Stereotactic Body Radiotherapy for Borderline Resectable and Locally Advanced Pancreatic Adenocarcinoma. Acta Oncol. 2015, 54, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Moningi, S.; Dholakia, A.S.; Raman, S.P.; Blackford, A.; Cameron, J.L.; Le, D.T.; De Jesus-Acosta, A.M.C.; Hacker-Prietz, A.; Rosati, L.M.; Assadi, R.K.; et al. The Role of Stereotactic Body Radiation Therapy for Pancreatic Cancer: A Single-Institution Experience. Ann. Surg. Oncol. 2015, 22, 2352–2358. [Google Scholar] [CrossRef] [PubMed]
- Mellon, E.A.; Jin, W.H.; Frakes, J.M.; Centeno, B.A.; Strom, T.J.; Springett, G.M.; Malafa, M.P.; Shridhar, R.; Hodul, P.J.; Hoffe, S.E. Predictors and Survival for Pathologic Tumor Response Grade in Borderline Resectable and Locally Advanced Pancreatic Cancer Treated with Induction Chemotherapy and Neoadjuvant Stereotactic Body Radiotherapy. Acta Oncol. 2017, 56, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Quan, K.; Sutera, P.; Xu, K.; Bernard, M.E.; Burton, S.A.; Wegner, R.E.; Zeh, H.; Bahary, N.; Stoller, R.; Heron, D.E. Results of a Prospective Phase 2 Clinical Trial of Induction Gemcitabine/Capecitabine Followed by Stereotactic Ablative Radiation Therapy in Borderline Resectable or Locally Advanced Pancreatic Adenocarcinoma. Pract. Radiat. Oncol. 2018, 8, 95–106. [Google Scholar] [CrossRef]
- Gurka, M.K.; Kim, C.; He, A.R.; Charabaty, A.; Haddad, N.; Turocy, J.; Johnson, L.; Jackson, P.; Weiner, L.M.; Marshall, J.L.; et al. Stereotactic Body Radiation Therapy (SBRT) Combined with Chemotherapy for Unresected Pancreatic Adenocarcinoma. Am. J. Clin. Oncol. 2017, 40, 152–157. [Google Scholar] [CrossRef]
- Kharofa, J.; Mierzwa, M.; Olowokure, O.; Sussman, J.; Latif, T.; Gupta, A.; Xie, C.; Patel, S.; Esslinger, H.; McGill, B.; et al. Pattern of Marginal Local Failure in a Phase II Trial of Neoadjuvant Chemotherapy and Stereotactic Body Radiation Therapy for Resectable and Borderline Resectable Pancreas Cancer. Am. J. Clin. Oncol. Cancer Clin. Trials 2019, 42, 247–252. [Google Scholar] [CrossRef]
- Palta, M.; Czito, B.G.; Duffy, E.; Malicki, M.; Niedzwiecki, D.; Abbruzzese, J.L.; Uronis, H.E.; Blobe, G.C.; Blazer, D.G.; Willett, C. A Phase II Trial of Neoadjuvant Gemcitabine/Nab-Paclitaxel and SBRT for Potentially Resectable Pancreas Cancer: An Evaluation of Acute Toxicity. J. Clin. Oncol. 2018, 36, 4121. [Google Scholar] [CrossRef]
- Jiang, W.; Haque, W.; Verma, V.; Butler, E.B.; Teh, B.S. Neoadjuvant Stereotactic Body Radiation Therapy for Nonmetastatic Pancreatic Adenocarcinoma. Acta Oncol. 2019, 58, 1259–1266. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.P.; Herman, J.M.; Choung, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.d.W.; Schwartz, L.H.; Behr, S.; et al. Alliance A021501: Preoperative MFOLFIRINOX or MFOLFIRINOX plus Hypofractionated Radiation Therapy (RT) for Borderline Resectable (BR) Adenocarcinoma of the Pancreas. J. Clin. Oncol. 2021, 39, 377. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, D.; Li, F.; Ju, X.; Cao, Y.; Shen, Y.; Cao, F.; Qing, S.; Fang, F.; Jia, Z.; et al. Prospective Analysis of Different Combined Regimens of Stereotactic Body Radiation Therapy and Chemotherapy for Locally Advanced Pancreatic Cancer. Cancer Med. 2018, 7, 2913–2924. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.D.; Frakes, J.M.; Figura, N.; Hoffe, S.E.; Shridhar, R.; Mellon, E.A.; Hodul, P.J.; Malafa, M.P.; Springett, G.M.; Centeno, B.A. Histopathologic tumor response after induction chemotherapy and stereotactic body radiation therapy for borderline resectable pancreatic cancer. J. Gastrointest. Oncol. 2016, 7, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.D.; Springett, G.M.; Freilich, J.M.; Park, C.K.; Weber, J.M.; Mellon, E.A.; Hodul, P.J.; Malafa, M.P.; Meredith, K.L.; Hoffe, S.E.; et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 516–522. [Google Scholar] [CrossRef]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Griffith, M.E.; Pawlik, T.M.; Pai, J.S.; et al. Phase 2 Multi-Institutional Trial Evaluating Gemcitabine and Stereotactic Body Radiotherapy for Patients with Locally Advanced Unresectable Pancreatic Adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Jumeau, R.; Delouya, G.; Roberge, D.; Donath, D.; Béliveau-Nadeau, D.; Campeau, M.P. Stereotactic Body Radiotherapy (SBRT) for Patients with Locally Advanced Pancreatic Cancer: A Single Center Experience. Dig. Liver Dis. 2018, 50, 396–400. [Google Scholar] [CrossRef]
- Jung, J.; Yoon, S.M.; Park, J.H.; Seo, D.W.; Lee, S.S.; Kim, M.H.; Lee, S.K.; Park, D.H.; Song, T.J.; Ryoo, B.Y.; et al. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer. PLoS ONE 2019, 14, e0214970. [Google Scholar] [CrossRef]
- Simoni, N.; Micera, R.; Paiella, S.; Guariglia, S.; Zivelonghi, E.; Malleo, G.; Rossi, G.; Addari, L.; Giuliani, T.; Pollini, T.; et al. Hypofractionated Stereotactic Body Radiation Therapy with Simultaneous Integrated Boost and Simultaneous Integrated Protection in Pancreatic Ductal Adenocarcinoma. Clin. Oncol. 2021, 33, e31–e38. [Google Scholar] [CrossRef] [PubMed]
- Suker, M.; Nuyttens, J.J.; Eskens, F.A.L.M.; Haberkorn, B.C.M.; Coene, P.P.L.O.; van der Harst, E.; Bonsing, B.A.; Vahrmeijer, A.L.; Mieog, J.S.D.; Jan Swijnenburg, R.; et al. Efficacy and Feasibility of Stereotactic Radiotherapy after Folfirinox in Patients with Locally Advanced Pancreatic Cancer (LAPC-1 Trial). EClinicalMedicine 2019, 17, 100200. [Google Scholar] [CrossRef] [PubMed]
- Comito, T.; Cozzi, L.; Clerici, E.; Franzese, C.; Tozzi, A.; Iftode, C.; Navarria, P.; D’Agostino, G.; Rimassa, L.; Carnaghi, C.; et al. Can Stereotactic Body Radiation Therapy Be a Viable and Efficient Therapeutic Option for Unresectable Locally Advanced Pancreatic Adenocarcinoma? Results of a Phase 2 Study. Technol. Cancer Res. Treat. 2017, 16, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Patel, K.; Switchenko, J.; Cassidy, R.J.; Hall, W.A.; Gillespie, T.; Patel, P.R.; Kooby, D.; Landry, J. Outcomes for Patients with Locally Advanced Pancreatic Adenocarcinoma Treated with Stereotactic Body Radiation Therapy versus Conventionally Fractionated Radiation. Cancer 2017, 123, 3486–3493. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, C.; Rudra, S.; Bommireddy, A.; Hawkins, W.G.; Wang-Gillam, A.; Fields, R.C.; Cai, B.; Park, J.; Green, O.; Roach, M.; et al. Ablative Five-Fraction Stereotactic Body Radiation Therapy for Inoperable Pancreatic Cancer Using Online MR-Guided Adaptation. Adv. Radiat. Oncol. 2021, 6, 100506. [Google Scholar] [CrossRef]
- Chuong, M.D.; Herrera, R.; Kaiser, A.; Rubens, M.; Romaguera, T.; Alvarez, D.; Kotecha, R.; Hall, M.D.; McCulloch, J.; Ucar, A.; et al. Induction Chemotherapy and Ablative Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy for Inoperable Pancreas Cancer. Front. Oncol. 2022, 12, 888462. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.J.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Portelance, L.; et al. A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided On-Table Adaptive Radiation Therapy for Borderline Resectable and Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 799–808. [Google Scholar] [CrossRef]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.C.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using Adaptive Magnetic Resonance Image-Guided Radiation Therapy for Treatment of Inoperable Pancreatic Cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef]
- Tringale, K.R.; Tyagi, N.; Romesser, P.B.; Wu, A.; O’Reilly, E.M.; Varghese, A.M.; Scripes, P.G.; Khalil, D.N.; Park, W.; Yu, K.; et al. Stereotactic Ablative Radiation for Pancreatic Cancer on a 1.5 Telsa Magnetic Resonance-Linac System. Phys. Imaging Radiat. Oncol. 2022, 24, 88. [Google Scholar] [CrossRef]
- Manderlier, M.; Navez, J.; Hein, M.; Engelholm, J.L.; Closset, J.; Bali, M.A.; Van Gestel, D.; Moretti, L.; Van Laethem, J.L.; Bouchart, C. Isotoxic High-Dose Stereotactic Body Radiotherapy (IHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation. Cancers 2022, 14, 5730. [Google Scholar] [CrossRef]
- Bouchart, C.; Navez, J.; Borbath, I.; Geboes, K.; Vandamme, T.; Closset, J.; Moretti, L.; Demetter, P.; Paesmans, M.; Van Laethem, J.L. Preoperative Treatment with MFOLFIRINOX or Gemcitabine/Nab-Paclitaxel +/− Isotoxic High-Dose Stereotactic Body Radiation Therapy (IHD-SBRT) for Borderline Resectable Pancreatic Adenocarcinoma (the STEREOPAC Trial): Study Protocol for a Randomised Comparative Multicenter Phase II Trial. BMC Cancer 2023, 23, 891. [Google Scholar]
- Henke, L.E.; Contreras, J.A.; Mazur, T.; Green, O.; Daniel, N.; Lashmett, H.; Senter, T.; Gach, H.M.; Ochoa, L.; Mutic, S.; et al. Delineation of a Cardiac Planning Organ-At-Risk Volume Using Real-Time Magnetic Resonance Imaging for Cardiac Protection in Thoracic and Breast Radiation Therapy. Pract. Radiat. Oncol. 2019, 9, e298–e306. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Henke, L.E.; Shaverdian, N.; Mittauer, K.; Wojcieszynski, A.P.; Hullett, C.R.; Kamrava, M.; Lamb, J.; Cao, M.; Green, O.L.; et al. A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Adv. Radiat. Oncol. 2018, 4, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.D.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Portelance, L.; et al. Stereotactic MR-Guided on-Table Adaptive Radiation Therapy (SMART) for Borderline Resectable and Locally Advanced Pancreatic Cancer: A Multi-Center, Open-Label Phase 2 Study. Radiother. Oncol. 2024, 191, 110064. [Google Scholar] [CrossRef]
- Giraud, P.; Racadot, S.; Vernerey, D.; Goldstein, D.; Glimelius, B.; Van Houtte, P.; Gubanski, M.; Spry, N.; Van Laethem, J.L.; Hammel, P.; et al. Investigation of Relation of Radiation Therapy Quality with Toxicity and Survival in LAP07 Phase 3 Trial for Locally Advanced Pancreatic Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 993–1002. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Wang, X.; Wang, Y.; Cha, N. Effects of Chemoradiotherapy and Chemotherapy on Survival of Patients with Locally Advanced Pancreatic Cancer: A Meta-Analysis of Randomized Controlled Trials. Medicine 2018, 97, e12260. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Chiu, Y.F.; Yu, J.C.; Chen, L.T.; Ch’ang, H.J. The Role of Consolidation Chemoradiotherapy in Locally Advanced Pancreatic Cancer Receiving Chemotherapy: An Updated Systematic Review and Meta-Analysis. Cancer Res. Treat. 2018, 50, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Comito, T.; Ghidini, A.; Torri, V.; Scorsetti, M.; Barni, S. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer: A Systematic Review and Pooled Analysis of 19 Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 313–322. [Google Scholar] [CrossRef]
- Tchelebi, L.T.; Lehrer, E.J.; Trifiletti, D.M.; Sharma, N.K.; Gusani, N.J.; Crane, C.H.; Zaorsky, N.G. Conventionally Fractionated Radiation Therapy versus Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer (CRiSP): An International Systematic Review and Meta-Analysis. Cancer 2020, 126, 2120–2131. [Google Scholar] [CrossRef]
- Perri, G.; Prakash, L.R.; Katz, M.H.G. Response to Preoperative Therapy in Localized Pancreatic Cancer. Front. Oncol. 2020, 10, 516. [Google Scholar] [CrossRef]
- Tsai, S.; George, B.; Wittmann, D.; Ritch, P.S.; Krepline, A.N.; Aldakkak, M.; Barnes, C.A.; Christians, K.K.; Dua, K.; Griffin, M.; et al. Importance of Normalization of CA19-9 Levels Following Neoadjuvant Therapy in Patients with Localized Pancreatic Cancer. Ann. Surg. 2020, 271, 740–747. [Google Scholar] [CrossRef]
- Perri, G.; Prakash, L.; Wang, H.; Bhosale, P.; Varadhachary, G.R.; Wolff, R.; Fogelman, D.; Overman, M.; Pant, S.; Javle, M.; et al. Radiographic and Serologic Predictors of Pathologic Major Response to Preoperative Therapy for Pancreatic Cancer. Ann. Surg. 2021, 273, 806–813. [Google Scholar] [CrossRef]
- Ye, C.; Sadula, A.; Ren, S.; Guo, X.; Yuan, M.; Yuan, C.; Xiu, D. The Prognostic Value of CA19-9 Response after Neoadjuvant Therapy in Patients with Pancreatic Cancer: A Systematic Review and Pooled Analysis. Cancer Chemother. Pharmacol. 2020, 86, 731–740. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Fleming, J.B.; Bhosale, P.; Varadhachary, G.; Lee, J.E.; Wolff, R.; Wang, H.; Abbruzzese, J.; Pisters, P.W.T.; Vauthey, J.N.; et al. Response of Borderline Resectable Pancreatic Cancer to Neoadjuvant Therapy Is Not Reflected by Radiographic Indicators. Cancer 2012, 118, 5749–5756. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Pisters, P.W.T.; Lee, J.E.; Fleming, J.B. Borderline Resectable Pancreatic Cancer: What Have We Learned and Where Do We Go from Here? Ann. Surg. Oncol. 2011, 18, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Arnoletti, J.P.; Behrman, S.W.; Ben-Josef, E.; Benson, A.B.; Casper, E.S.; Cohen, S.J.; Czito, B.; Ellenhorn, J.D.I.; Hawkins, W.G.; et al. Pancreatic Adenocarcinoma, Version 2.2012: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2012, 10, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Varadhachary, G.R.; Tamm, E.P.; Abbruzzese, J.L.; Xiong, H.Q.; Crane, C.H.; Wang, H.; Lee, J.E.; Pisters, P.W.T.; Evans, D.B.; Wolff, R.A. Borderline Resectable Pancreatic Cancer: Definitions, Management, and Role of Preoperative Therapy. Ann. Surg. Oncol. 2006, 13, 1035–1046. [Google Scholar] [CrossRef]
- Chatterjee, D.; Katz, M.H.; Rashid, A.; Varadhachary, G.R.; Wolff, R.A.; Wang, H.; Lee, J.E.; Pisters, P.W.T.; Vauthey, J.N.; Crane, C.; et al. Histologic Grading of the Extent of Residual Carcinoma Following Neoadjuvant Chemoradiation in Pancreatic Ductal Adenocarcinoma: A Predictor for Patient Outcome. Cancer 2012, 118, 3182–3190. [Google Scholar] [CrossRef] [PubMed]
- Bali, M.A.; Pullini, S.; Metens, T.; Absil, J.; Chao, S.L.; Marechal, R.; Matos, C.; Peerboccus, B.M.; Van Laethem, J.L. Assessment of Response to Chemotherapy in Pancreatic Ductal Adenocarcinoma: Comparison between Diffusion-Weighted MR Quantitative Parameters and RECIST. Eur. J. Radiol. 2018, 104, 49–57. [Google Scholar] [CrossRef]
- Yeh, R.; Dercle, L.; Garg, I.; Wang, Z.J.; Hough, D.M.; Goenka, A.H. The Role of 18F-FDG PET/CT and PET/MRI in Pancreatic Ductal Adenocarcinoma. Abdom. Radiol. 2018, 43, 415–434. [Google Scholar] [CrossRef]
- Yoshioka, M.; Sato, T.; Furuya, T.; Shibata, S.; Andoh, H.; Asanuma, Y.; Hatazawa, J.; Shimosegawa, E.; Koyama, K.; Yamamoto, Y. Role of Positron Emission Tomography with 2-Deoxy-2-[18F]Fluoro-D-Glucose in Evaluating the Effects of Arterial Infusion Chemotherapy and Radiotherapy on Pancreatic Cancer. J. Gastroenterol. 2004, 39, 50–55. [Google Scholar] [CrossRef]
- Sperti, C.; Pasquali, C.; Bissoli, S.; Chierichetti, F.; Liessi, G.; Pedrazzoli, S. Tumor Relapse after Pancreatic Cancer Resection Is Detected Earlier by 18-FDG PET than by CT. J. Gastrointest. Surg. 2010, 14, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, P.; Shen, G.; Hou, S.; Zhang, Y.; Liu, X.; Tian, B. 18F-Fluorodeoxyglucose Positron Emission Tomography Predicts Treatment Efficacy and Clinical Outcome for Patients with Pancreatic Carcinoma: A Meta-Analysis. Pancreas 2019, 48, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Garg, I.; Truty, M.J.; Kline, T.L.; Johnson, M.P.; Ehman, E.C.; Suman, G.; Anaam, D.A.; Kemp, B.J.; Johnson, G.B.; et al. Borderline Resectable and Locally Advanced Pancreatic Cancer: FDG PET/MRI and CT Tumor Metrics for Assessment of Pathologic Response to Neoadjuvant Therapy and Prediction of Survival. AJR. Am. J. Roentgenol. 2021, 217, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Oh, M.; Kim, J.S.; Park, Y.; Kwon, J.W.; Jun, E.; Song, K.B.; Lee, J.H.; Hwang, D.W.; Yoo, C.; et al. Metabolic Activity by FDG-PET/CT after Neoadjuvant Chemotherapy in Borderline Resectable and Locally Advanced Pancreatic Cancer and Association with Survival. Br. J. Surg. 2021, 109, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Zucchetta, P.; Moletta, L.; Serafini, S.; Cassarino, G.; Pegoraro, N.; Bergamo, F.; Sperti, C.; Cecchin, D. The Role of FDG PET/CT or PET/MRI in Assessing Response to Neoadjuvant Therapy for Patients with Borderline or Resectable Pancreatic Cancer: A Systematic Literature Review. Ann. Nucl. Med. 2021, 35, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, S.P.; Komar, G.; Seppänen, M.P.; Dean, K.I.; Minn, H.R.; Kajander, S.A.; Rinta-Kiikka, I.; Alanen, K.; Borra, R.J.; Puolakkainen, P.A.; et al. A Prospective Diagnostic Accuracy Study of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography, Multidetector Row Computed Tomography, and Magnetic Resonance Imaging in Primary Diagnosis and Staging of Pancreatic Cancer. Ann. Surg. 2009, 250, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Strobel, O.; Büchler, M.W. Pancreatic Cancer: FDG-PET Is Not Useful in Early Pancreatic Cancer Diagnosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patra, A.; Khasawneh, H.; Korfiatis, P.; Rajamohan, N.; Suman, G.; Majumder, S.; Panda, A.; Johnson, M.P.; Larson, N.B.; et al. Radiomics-Based Machine-Learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022, 163, 1435–1446. [Google Scholar] [CrossRef]
- Whatcott, C.J.; Diep, C.H.; Jiang, P.; Watanabe, A.; Lobello, J.; Sima, C.; Hostetter, G.; Shepard, H.M.; Von Hoff, D.D.; Han, H. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. Clin. Cancer Res. 2015, 21, 3561–3568. [Google Scholar] [CrossRef]
- Mei, L.; Du, W.; Ma, W.W. Targeting Stromal Microenvironment in Pancreatic Ductal Adenocarcinoma: Controversies and Promises. J. Gastrointest. Oncol. 2016, 7, 487. [Google Scholar] [CrossRef] [PubMed]
- Duluc, C.; Moatassim-Billah, S.; Chalabi-Dchar, M.; Perraud, A.; Samain, R.; Breibach, F.; Gayral, M.; Cordelier, P.; Delisle, M.-B.; Bousquet-Dubouch, M.-P.; et al. Pharmacological Targeting of the Protein Synthesis MTOR/4E-BP1 Pathway in Cancer-Associated Fibroblasts Abrogates Pancreatic Tumour Chemoresistance. EMBO Mol. Med. 2015, 7, 735. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qi, L.; Liu, B.; Liu, J.; Zhang, H.; Che, D.H.; Cao, J.Y.; Shen, J.; Geng, J.X.; Bi, Y.; et al. Fibroblast Activation Protein Overexpression and Clinical Implications in Solid Tumors: A Meta-Analysis. PLoS ONE 2015, 10, e0116683. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.H.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual Microdissection Identifies Distinct Tumor- and Stroma-Specific Subtypes of Pancreatic Ductal Adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Bulle, A.; Lim, K.H. Beyond Just a Tight Fortress: Contribution of Stroma to Epithelial-Mesenchymal Transition in Pancreatic Cancer. Signal Transduct. Target. Ther. 2020, 5, 249. [Google Scholar] [CrossRef]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J. Nucl. Med. 2019, 60, 801. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, L.; Shang, Q.; Meng, T.; Zhao, L.; Feng, L.; Wang, S.; Guo, P.; Wu, X.; Lin, Q.; et al. Positron Emission Tomography and Computed Tomography with [68Ga]Ga-Fibroblast Activation Protein Inhibitors Improves Tumor Detection and Staging in Patients with Pancreatic Cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 1322–1337. [Google Scholar] [CrossRef] [PubMed]
- Rohrich, M.; Naumann, P.; Giesel, F.L.; Choyke, P.L.; Staudinger, F.; Wefers, A.; Liew, D.P.; Kratochwil, C.; Rathke, H.; Liermann, J.; et al. Impact of 68Ga-FAPI PET/CT Imaging on the Therapeutic Management of Primary and Recurrent Pancreatic Ductal Adenocarcinomas. J. Nucl. Med. 2021, 62, 779. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pang, Y.; Wu, J.; Zhao, L.; Hao, B.; Wu, J.; Wei, J.; Wu, S.; Zhao, L.; Luo, Z.; et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the Diagnosis of Primary and Metastatic Lesions in Patients with Various Types of Cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1820–1832. [Google Scholar] [CrossRef]
- Heredia-Soto, V.; Rodríguez-Salas, N.; Feliu, J. Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice? Cancers 2021, 13, 1986. [Google Scholar] [CrossRef]
- Stosic, K.; Senar, O.A.; Tarfouss, J.; Bouchart, C.; Navez, J.; Van Laethem, J.L.; Arsenijevic, T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Pu, N.; Thompson, E.; Miao, Y.; Wolfgang, C.; Yu, J. Improved Assessment of Response Status in Patients with Pancreatic Cancer Treated with Neoadjuvant Therapy Using Somatic Mutations and Liquid Biopsy Analysis. Clin. Cancer Res. 2021, 27, 740–748. [Google Scholar] [CrossRef]
- Groot, V.P.; Mosier, S.; Javed, A.A.; Teinor, J.A.; Gemenetzis, G.; Ding, D.; Haley, L.M.; Yu, J.; Burkhart, R.A.; Hasanain, A.; et al. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin. Cancer Res. 2019, 25, 4973–4984. [Google Scholar] [CrossRef]
- Sefrioui, D.; Blanchard, F.; Toure, E.; Basile, P.; Beaussire, L.; Dolfus, C.; Perdrix, A.; Paresy, M.; Antonietti, M.; Iwanicki-Caron, I.; et al. Diagnostic Value of CA19.9, Circulating Tumour DNA and Circulating Tumour Cells in Patients with Solid Pancreatic Tumours. Br. J. Cancer 2017, 117, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C.; Stephens, B.M.; Huang, J.; Semaan, A.; Guerrero, P.A.; et al. Circulating Nucleic Acids Are Associated with Outcomes of Patients with Pancreatic Cancer. Gastroenterology 2019, 156, 108–118.e4. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef]
- Ghaneh, P.; Palmer, D.H.; Cicconi, S.; Halloran, C.; Psarelli, E.E.; Rawcliffe, C.L.; Sripadam, R.; Mukherjee, S.; Wadsley, J.; Al-Mukhtar, A.; et al. ESPAC-5F: Four-Arm, Prospective, Multicenter, International Randomized Phase II Trial of Immediate Surgery Compared with Neoadjuvant Gemcitabine plus Capecitabine (GEMCAP) or FOLFIRINOX or Chemoradiotherapy (CRT) in Patients with Borderline Resectable Pancreatic Cancer. J. Clin. Oncol. 2020, 38, 4505. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.J.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Coene, P.P.L.O.; van Eijck, C.H.J.; de Hingh, I.H.J.T.; Karsten, T.M.; van der Kolk, M.B.; et al. Total Neoadjuvant FOLFIRINOX versus Neoadjuvant Gemcitabine-Based Chemoradiotherapy and Adjuvant Gemcitabine for Resectable and Borderline Resectable Pancreatic Cancer (PREOPANC-2 Trial): Study Protocol for a Nationwide Multicenter Randomized Controlled Trial. BMC Cancer 2021, 21, 300. [Google Scholar] [CrossRef]
- Perri, G.; Prakash, L.; Qiao, W.; Varadhachary, G.R.; Wolff, R.; Fogelman, D.; Overman, M.; Pant, S.; Javle, M.; Koay, E.J.; et al. Response and Survival Associated with First-Line FOLFIRINOX vs Gemcitabine and Nab-Paclitaxel Chemotherapy for Localized Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2020, 155, 832–839. [Google Scholar] [CrossRef]
- Sohal, D.P.S.; Duong, M.; Ahmad, S.A.; Gandhi, N.S.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. Efficacy of Perioperative Chemotherapy for Resectable Pancreatic Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Tiriac, H.; Belleau, P.; Engle, D.D.; Plenker, D.; Deschênes, A.; Somerville, T.D.D.; Froeling, F.E.M.; Burkhart, R.A.; Denroche, R.E.; Jang, G.H.; et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018, 8, 1112–1129. [Google Scholar] [CrossRef] [PubMed]
- Miyabayashi, K.; Nakagawa, H.; Koike, K. Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Front. Oncol. 2021, 11, 682872. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, R.; Bachet, J.-B.; Harlé, A.; Iovanna, J.; Hammel, P.; Rebours, V.; Turpin, A.; Ben Abdelghani, M.; Wei, A.; Mitry, E.; et al. Prediction of Adjuvant Gemcitabine Sensitivity in Resectable Pancreatic Adenocarcinoma Using the GemPred RNA Signature: An Ancillary Study of the PRODIGE-24/CCTG PA6 Clinical Trial. J. Clin. Oncol. 2024, 42, 1067–1076. [Google Scholar] [CrossRef]
- Nicolle, R.; Blum, Y.; Duconseil, P.; Vanbrugghe, C.; Brandone, N.; Poizat, F.; Roques, J.; Bigonnet, M.; Gayet, O.; Rubis, M.; et al. Establishment of a Pancreatic Adenocarcinoma Molecular Gradient (PAMG) That Predicts the Clinical Outcome of Pancreatic Cancer. EBioMedicine 2020, 57, 102858. [Google Scholar] [CrossRef] [PubMed]
- Nishiwada, S.; Sho, M.; Cui, Y.; Yamamura, K.; Akahori, T.; Nakagawa, K.; Nagai, M.; Nakamura, K.; Takagi, T.; Ikeda, N.; et al. A Gene Expression Signature for Predicting Response to Neoadjuvant Chemoradiotherapy in Pancreatic Ductal Adenocarcinoma. Int. J. Cancer 2021, 148, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Pishvaian, M.J.; Blais, E.M.; Brody, J.R.; Lyons, E.; DeArbeloa, P.; Hendifar, A.; Mikhail, S.; Chung, V.; Sahai, V.; Sohal, D.P.S.; et al. Overall Survival in Patients with Pancreatic Cancer Receiving Matched Therapies Following Molecular Profiling: A Retrospective Analysis of the Know Your Tumor Registry Trial. Lancet Oncol. 2020, 21, 508–518. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
Study | Study Design | Type | N | Treatment | Resection (%) | Survival/Progression | ||||
---|---|---|---|---|---|---|---|---|---|---|
Neoadjuvant Treatment | Adj Cht (%) | R Rate | R0 Rate | DFS | PFS | OS | ||||
Induction Cht → CRT or CRT → Consolidation Cht | ||||||||||
Dholakia 2013 [57] | Retrosp | BRPC | 50 | mFFX/Gem-based → CRT50 Gy/25 (Cap/Gem) | NA | 58 | 93 | NA | 13.4 M NR/R: 16.7/5.9 M (p < 0.001) * | 17.2 M NR/R: 22.9/13 M (p < 0.001) * |
Katz 2016 [13] (Alliance A021101) | Phase II | BRPC | 22 | mFFX (4c) → CRT 50.4 Gy/28 (Cap) | 45 | 68 | 93 | NA | NA | 21.7 M |
Nagakawa 2017 [56] | Phase II | BRPC | 27 | Gem (2c) → CRT 50.4 Gy/28 (Gem+S-1) | 94.7 | 70 | 94.7 | NA | NA | 22.4 M 1 y OS 81.3% 2 y OS 33.9% |
Wo 2018 [59] | Retrosp | BRPC LAPC | 99 | FFX /FOLFOX/Gem based (4-8c) → CRT 58.8 Gy/28 (Cap/5FU/Gem) | NA | 37 | 87 | NA | NA | 18.1 M |
Pietrasz 2019 [6] AGEO-FRENCH | Retrosp | BRPC LAPC | 203 | FFX (6c) | 73.2 | 73.2 | 76.3 | 13.5 M | NA | 35.5 M |
FFX (6c) → CRT 54 Gy/30 (5-FU or Cap) | 41.2 | 41.2 | 89.2 (p = 0.017) * | 17.7 M (p = 0.121) | NA | 57.8 M (p = 0.007) * | ||||
Auclin 2021 [58] AGEO cohort | Retrosp | BRPC LAPC | 330 | FFX (7c) → CRT 50.4 Gy/28 (Cap) | NA | 13.8 | 74.7 | 12.8 M | NA | 21.4 M |
Hammel 2016 [60] LAP07 | Phase III Rando | LAPC | 449 | Gem +/− Erlotinib 4c → 2c CRT | NA | 6 | 2.5 | NA | NA | 16.5 M |
Gem +/− Erlotinib 4c → CRT 54 Gy/30 | NA | 3 | NA | NA | 15.2 M | |||||
Sudo 2017 [61] | Phase II | LAPC | 30 | S1+Gem → CRT 50.4 Gy/28 (S1) | 70 | 10 | 100 | NA | 12.7 M | 21.3 M |
Huguet 2017 [62] | Retrosp | LAPC | 134 | Gem-based/FFX → CRT 50.4 Gy/28 (Gem/Cap) | NA | 19 | 85 | NA | NA | 2 M 1 y OS 86% 2 y OS 48% |
Sherman 2018 [63] | Phase II | LAPC | 45 | GTX → CRT 56 Gy/28 (Cap) | NA | 89 | 70 | R0 31 M R1 14 M | NA | R0: 37 M R1: 29 M |
Loka 2021 [64] | Phase II Rando | LAPC | 102 | S1 → CRT 50.4 Gy/28 (Gem) | NA | NA | NA | NA | NA | 1 y OS 66.7% 2 y OS 36.9% |
Gem 3c → CRT 50.4 Gy/28 (Gem) | NA | NA | NA | NA | NA | 1 y O 69.3% 2 y OS 18.9% | ||||
Fietkau 2022 [65] CONKO-007 | Phase III Rando | LAPC | 335 | Gem 6c/FFX (12c) | NA | 35.9 | 18 | NA | 1 yOS 59.0% 2 yOS 17.5% | 1 y OS 71.3% 2 y OS 32.5% |
Gem (3c) /FFX (6c) → CRT 50.4 Gy/28 (Gem) | NA | 36.3 | 25 | NA | 1 y OS 56.3% 2 y OS 24.1% | 1 y OS 71.1% 2 y OS 34.8% | ||||
Barhoumi 2011 [66] | Phase III | LAPC | 119 | CRT 60 Gy/30 (5FU+CDDP) → Gem | NA | NA | NA | NA | NA | 8.6 M 1 y OS 53% |
Cht (Gem) | 13 M (p = 0.03) * 1 y OS% | |||||||||
PREOPANC | ||||||||||
Versteijne 2022 [67] PREOPANC1 | Phase III Rando | RPC BRPC | 246 | Immediate surgery | 51 | 72 | 43 | 7.7 M | LFFI 13.4 M | 14.3 M |
CRT: 36 Gy/15 (Gem) | 46 | 61 | 72 (p < 0.001) | 8.1 M | LFFI 31.2 M (p = 0.04) | 15.7 M | ||||
Koerkamp 2023 [41] PREOPANC2 | Phase III Rando | RPC BRPC | 375 | FFX (8c) | NA | 77 | NA | NA | NA | 21.9 M |
CRT: 36 Gy/15 (Gem) | Yes | 75 | NA | NA | NA | 21.3 M | ||||
HFA-IMRT | ||||||||||
Reyngold 2023 [68] | Prospec | BRPC | 47 | mFFX/Gem-based → CRT 75 Gy/25; 67.5/15 (Cap) | NA | 26 | 58.3 | NA | NA | 2 y OS 38.9% 2 y OS (NR/R): 37.1%/39.4% |
Mukherjee 2022 [69] SCALOP-2 | Phase II | LAPC | 186 | Gem/Nab-P+/−Nelfinavir → CRT 50.4 Gy/28 (Cap) | NA | NA | NA | 1 yPFS 33.3% | 1 yLRF 26.7% | 15.6 M |
Gem/Nab-P+/−Nelfinavir → HFA 60 Gy/30 | 1 yPFS 23.9% | 1 yLRF 15.2% | 16.9 M | |||||||
Krishnan 2016 [70] | Retrosp | LAPC | 200 | FFX/Gem-based → CRT 50.4 Gy/28 (Cap/Gem) | NA | NA | NA | NA | LR RFS 6.2 M | 15 M 3 y OS 9% |
FFX/Gem-based → HFA (BED > 70 Gy) | LR RFS 10.2 M | 17.8 M 3 y OS 31% | ||||||||
Reyngold 2019 [71] | Prospec | LAPC | 136 | CMT → RT 75 Gy/25; 67.5 Gy/15; SBRT 50 Gy/5 | NA | NA | NA | NA | 2 y FFLP 78% | 2 y OS 55% |
Reyngold 2021 [72] | Prospec | LAPC | 119 | mFOLFIRINOX/Gem Based → RT 75 Gy/25; 67.5/15 | NA | NA | NA | NA | 6.3 M 1 yLRF 17.6% 2 yLRF 32.8% | 18.2 M |
Study | Study Design | Type | N | Treatment | Resection (%) | Survival/Progression | ||||
---|---|---|---|---|---|---|---|---|---|---|
Neoadjuvant Treatment | Adj Cht (%) | R Rate | R0 Rate | DFS/PFS | LC | OS | ||||
Non-Ablative Stereo (BED10 [50–60 Gy]) | ||||||||||
Chuong 2016 [97] | Retrosp | BRPC | 36 | GTX → SBRT 35 Gy/5 (32.5–40 Gy) | No | 88.6 | 97.2 | mPFS:14.9 M | NA | 22.5 M |
Chuong 2013 [98] | Retrosp | BRPC LAPC | 73 | Gem (3c) → SBRT 25–30 Gy/5 (SIB TVI 35–50 Gy) | NA | BRPC: 56 | BRPC: 97 | mPFS BRPC 9.7 M LAPC 9.8 M 1 yPFS BRPC: 42.8% LAPC: 41% | 1 y LC (NR): 81% | BRPC 16.4 M LAPC 15 M 1 y OS BRPC: 72.2% LAPC: 68.1% |
Mellon 2015 [87] | Retrosp | BRPC LAPC | 159 | Gem/mFFX → SBRT 28–30/5 (SIB TVI 50) | NA | BRPC: 51 LAPC: 14 | BRPC: 96 LAPC: 100 | mPFS BRPC 19.2 M LAPC 15 M | NA | BRPC 19.2 M LAPC 15 M |
Moningi 2015 [88] | Retrosp | BRPC LAPC | 88 | Gem/mFFX → SBRT 25–33 Gy/5 | NA | 22 | 84 | mPFS 9.9 M 1 y PFS 41% 2 y PFS 11% | 13.9 M 1 y LC: 61% 2 y LC: 14% | 13.7 M 1 y OS 60% 2 y OS 15% |
Mellon 2017 [89] | Retrosp | BRPC LAPC | 222 | Gem/FFX (3c) → SBRT 25–30/5 (SIB TVI 50 Gy) | NA | BRPC: 51 LAPC: 11 | 97.5 | NA | NA | 37.5 M |
Quan 2018 [90] | Phase II | BRPC LAPC | 35 | Gem/Cap 4c → SBRT 36 Gy/3 | NA | BRPC: 53 LAPC: 12.5 | 91.7 | NA | 1 y LC (R/NR) 80/44% | BRPC 18.8 M LAPC 28.3 M |
Gurka 2017 [91] | Retrosp | BRPC LAPC | 38 | Concurrent Gem based/mFOLFOX → SBRT 25–30 Gy/5 | NA | NA | NA | mPFS 6.8 M | 6 M LC 82% | 12.3 M |
Kharofa 2019 [92] | Phase II Rando | BRPC RPC | 18 | Gem or FFX 3c → SBRT 25 Gy/5 (SIB TVI 33 Gy) | NA | 67 | 92 | mPFS 1 M | 1 y LC 50% | 21 M |
Palta 2018 [93] | Phase II | BRPC RPC | 25 | Gem/Nab-P (2c) → SBRT 25 Gy/5 | NA | 68 | 93 | NA | 1 y LC 77% | 24 M |
Jiang 2019 [94] | Retrosp | BRPC LAPC | 5828 | CMT + SBRT (5.7%) | NA | NA | 84.9 | NA | NA | 32.1 M |
CMT (55.5%) | 75.9 | 27.5 M | ||||||||
CMT + CRT (38.8) | 83.2 | 27.1 M | ||||||||
Katz 2021 [95] Alliance A021501 | Phase II Rando | BRPC LAPC | 126 | mFFX 8c | 0.34 | 58 | 88 | NA | NA | 29.8 M 18 M-OS 66.7% |
mFFX (7c) → SBRT 25–33 Gy/5 (SIB TVI 40 Gy) | 0.24 | 51 | 74 | 17.1 M 18 M-OS 47.3% | ||||||
Herman 2015 [99] | Phase II | LAPC | 49 | Gem → SBRT 33 Gy/5 | Yes | 8 | 100 | mPFS 7.9 M 1 y PFS 32% 2 y PFS 10% | 1 y LC 78% | 13.9 M 1 y OS 59% 2 y OS 18% |
Jumeau 2018 [100] | Retrosp | LAPC | 17 | Gem/FFX (38%) → SBRT 30 Gy/5 | NA | NA | NA | NA | 6 M LC: 93%1 y LC 67% | 22 M |
Jung 2019 [101] | Retrosp | LAPC | 95 | Gem Based/mFFX → SBRT 24–36 (median 28 Gy/4) | NA | 7.4 | 57 | mPFS 10.2 M 1 y PFS 42.9% | NA | 16.7 M 1 y OS 67.4% |
Nearly Ablative Stereo (BED10 [70–85 Gy]) | ||||||||||
Bouchart 2021 [26] | Obs | BRPC LAPC | 39 | mFFX (6c) → SBRT 25–30/5 (SIB TVI 50 Gy) | NA | 55.9 | NA | mPFS 15.6 M NR/R 7/24.1 M p < 0.001 | 1 y LC 74.1% (SBRT) | 24.6 M NR/R: 18.2/32.3 M p = 0.02 |
Simoni 2021 [102] | Obs | BRPC LAPC | 59 | Gem-based/FFX → SBRT 25–30/5 (SIB TVI 50 Gy) | NA | 59.4 | NA | mPFS 10.7 M NR/R 5/13 M p < 0.001 | 1 y LC (NR/R) 79.7/85% 2 y LC (NR/R) 60.6/80% | 19.1 M 2 y OS (NR/R) 49/72.5% p = 0.012 |
Suker 2019 [103] LAPC-1 | Phase II | LAPC | 50 | FFX → SBRT 40 Gy/5 | NA | 12 | 100 | mDFS SBRT 11 M non-SBRT 3 M mPFS 9 M 1 y PFS 34% | SBRT 20 M non-SBRT 3 M | SBRT 1 M non-SBRT 7 M 1 y OS: 64% |
Comito 2017 [104] | Phase II | LAPC | 45 | Gem-based → SBRT 45 Gy/6 | 0.48 | NA | NA | mPFS 8 M | mFFLP: 26 M 2 y OS 90% | 13 M |
Zhong 2017 [105] | Retrosp | LAPC | 7819 | CRT 50.4 Gy/28 | NA | 9.2 | 84 | NA | NA | 11.6 M 2 y OS 16.5% |
631 | SBRT 40 Gy/5 | 10.8 | 92 | 13.9 M 2 y OS 21.7% (p = 0.014) * | ||||||
Ablative Stereo (BED10 [100 Gy]) | ||||||||||
Hassanzadeh 2021 [106] | Retrosp | BRPC LAPC | 44 | FFX or Gem/Nab-paclitaxel or Gem alone → SBRT 50 Gy/5 | 43.2 | 9.1 | 50 | mDFS 21.3 M 1 y DFS 78% 2 y DFS 37.8% mPFS 12.4 M 1 y PFS 52.3% 2 y PFS 13.9% | 1 y LC: 84.3% 2 y LC: 59.3% | 15.7 M 1 y OS 68.2% 2 y OS 37.9% |
Chuong 2022 [107] | Retrosp | BRPC LAPC | 62 | FFXor Gem/Nab-P → SBRT 50 Gy/5 | NA | 22.6 | NA | mPFS 20 M 1 y PFS 88.4% 2 y PFS 40% | 1 y LC 98.3% 2 y LC 87.7% | 23 M 1 y OS 90.2% 2 y OS 45.5% |
Parikh 2023 [108] | Phase II | BRPC LAPC | 136 | FFX or Gem/Nab-P → SBRT 50 Gy/5 | 19.9 | 32.4 | NA | 1 y PFS (NR/R): 46%/82% | 1 y LC (NR/R): 78%/93 | 1 y OS (NR/R): 56%/85% |
Rudra 2019 [109] | Retrosp | LAPC | 44 | BED < 70 Gy: CRT (40–45 Gy/25–28)/SBRT (30–35 Gy/5) | NA | NA | NA | 18 M FFDF 48% | 2 y FFLF 57% | 2 y OS 30% |
BED > 70 Gy: CRT (50–67.5 Gy/10–15)/SBRT (40–52 Gy/5) | 18 M FFDF 24% | 2 y FFLF 77% | 2 y OS 49% (p = 0.03) | |||||||
Tringale 2022 [110] | Retrosp | LAPC | 30 | FFX → SBRT 50 Gy/5 | NA | NA | NA | mPFS 10.1 M 1 y PFS 39.7% | NA | 1 y OS 96.4% |
Study NCT | Study Design | Recruitment Status | Type | N | Treatment | Primary Endpoint | |
---|---|---|---|---|---|---|---|
Study Treatment | Ajd Cht | ||||||
Bouchart STEREOPAC NCT05083247 | Phase II Random | Recruiting | BRPC | 256 | 8c mFFX/12c Gem/Nab-P | NA | R0 DFS |
6c mFFX or 9c Gem/Nab-P → SBRT 35–55 Gy/5 | NA | ||||||
AGITG Masterplan ACTRN12619000409178 | Phase II Random | Recruiting | RPC BRPC LAPC | 120 | 6c mFFX | Yes | LC 1 year |
6c mFFX → SBRT 40 Gy/5 | |||||||
PANDAS PRODIGE 44 NCT02676349 | Phase II Random | Active Not recruiting | BRPC | 130 | mFFX | Yes | R0 rate |
mFFX → CRT 50.4 Gy/28(Cap) | |||||||
Span-C trial NCT03505229 | Phase II | Recruiting | BRPC LAPC | 40 | Oxaliplatin-based regimen/Gem-based regimen → SBRT 30–45 Gy/5 | NA | Local failure at 12 M |
Wei NCT05851924 | Phase II | Recruiting | BRPC LAPC | 60 | FFX →AD-RT | NA | EFS |
TORPEDO B3002023000168 | Phase II | Starting | BRPC LAPC | NA | FFX (6c) or Gem-Nab-P (3c) | NA | NA |
FXX (2c) + SBRT 40 Gy/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saúde-Conde, R.; El Ghali, B.; Navez, J.; Bouchart, C.; Van Laethem, J.-L. Total Neoadjuvant Therapy in Localized Pancreatic Cancer: Is More Better? Cancers 2024, 16, 2423. https://doi.org/10.3390/cancers16132423
Saúde-Conde R, El Ghali B, Navez J, Bouchart C, Van Laethem J-L. Total Neoadjuvant Therapy in Localized Pancreatic Cancer: Is More Better? Cancers. 2024; 16(13):2423. https://doi.org/10.3390/cancers16132423
Chicago/Turabian StyleSaúde-Conde, Rita, Benjelloun El Ghali, Julie Navez, Christelle Bouchart, and Jean-Luc Van Laethem. 2024. "Total Neoadjuvant Therapy in Localized Pancreatic Cancer: Is More Better?" Cancers 16, no. 13: 2423. https://doi.org/10.3390/cancers16132423
APA StyleSaúde-Conde, R., El Ghali, B., Navez, J., Bouchart, C., & Van Laethem, J. -L. (2024). Total Neoadjuvant Therapy in Localized Pancreatic Cancer: Is More Better? Cancers, 16(13), 2423. https://doi.org/10.3390/cancers16132423