The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping and Imputation
2.3. Statistical Analysis and Mendelian Randomization Analysis
3. Results
3.1. Selected Characteristics of Study Population
3.2. Association of Individual Epigenetic Clock Instrument SNPs with Bladder Cancer Risk
3.3. Genetic Risk Score (GRS)
3.4. Summary-Statistics-Based Mendelian Randomization Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Zeegers, M.P.; Tan, F.E.; Dorant, E.; van Den Brandt, P.A. The impact of characteristics of cigarette smoking on urinary tract cancer risk: A meta-analysis of epidemiologic studies. Cancer 2000, 89, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association between smoking and risk of bladder cancer among men and women. JAMA 2011, 306, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.; Catto, J.W.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Reulen, R.C.; Kellen, E.; Buntinx, F.; Brinkman, M.; Zeegers, M.P. A meta-analysis on the association between bladder cancer and occupation. Scand. J. Urol. Nephrol. 2008, 42, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Hadkhale, K.; MacLeod, J.; Demers, P.A.; Martinsen, J.I.; Weiderpass, E.; Kjaerheim, K.; Lynge, E.; Sparen, P.; Tryggvadottir, L.; Anne Harris, M.; et al. Occupational variation in incidence of bladder cancer: A comparison of population-representative cohorts from Nordic countries and Canada. BMJ Open 2017, 7, e016538. [Google Scholar] [CrossRef] [PubMed]
- Kantor, A.F.; Hartge, P.; Hoover, R.N.; Fraumeni, J.F., Jr. Familial and environmental interactions in bladder cancer risk. Int. J. Cancer 1985, 35, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Aben, K.K.; Witjes, J.A.; Schoenberg, M.P.; Hulsbergen-van de Kaa, C.; Verbeek, A.L.; Kiemeney, L.A. Familial aggregation of urothelial cell carcinoma. Int. J. Cancer 2002, 98, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Closas, M.; Malats, N.; Silverman, D.; Dosemeci, M.; Kogevinas, M.; Hein, D.W.; Tardon, A.; Serra, C.; Carrato, A.; Garcia-Closas, R.; et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: Results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005, 366, 649–659. [Google Scholar] [CrossRef]
- Garcia-Closas, M.; Rothman, N.; Figueroa, J.D.; Prokunina-Olsson, L.; Han, S.S.; Baris, D.; Jacobs, E.J.; Malats, N.; De Vivo, I.; Albanes, D.; et al. Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res. 2013, 73, 2211–2220. [Google Scholar] [CrossRef]
- Hansen, J. Common cancers in the elderly. Drugs Aging 1998, 13, 467–478. [Google Scholar] [CrossRef]
- SEER*Explorer: An Interactive Website for SEER Cancer Statistics [Internet]. Surveillance Research Program, National Cancer Institute; 2023 April 19. [updated: 2023 Nov. 16; cited 2023 December 20]. Data Source(s): SEER Incidence Data, November 2022 Submission (1975–2020), SEER 22 Registries. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 4 March 2024).
- de Magalhaes, J.P. How ageing processes influence cancer. Nat. Rev. Cancer 2013, 13, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Jylhava, J.; Pedersen, N.L.; Hagg, S. Biological Age Predictors. eBioMedicine 2017, 21, 29–36. [Google Scholar] [CrossRef]
- Diebel, L.W.M.; Rockwood, K. Determination of Biological Age: Geriatric Assessment vs Biological Biomarkers. Curr. Oncol. Rep. 2021, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Moqri, M.; Herzog, C.; Poganik, J.R.; Biomarkers of Aging, C.; Justice, J.; Belsky, D.W.; Higgins-Chen, A.; Moskalev, A.; Fuellen, G.; Cohen, A.A.; et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 2023, 186, 3758–3775. [Google Scholar] [CrossRef]
- Mak, J.K.L.; McMurran, C.E.; Kuja-Halkola, R.; Hall, P.; Czene, K.; Jylhava, J.; Hagg, S. Clinical biomarker-based biological aging and risk of cancer in the UK Biobank. Br. J. Cancer 2023, 129, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Dugue, P.A.; Bassett, J.K.; Joo, J.E.; Jung, C.H.; Ming Wong, E.; Moreno-Betancur, M.; Schmidt, D.; Makalic, E.; Li, S.; Severi, G.; et al. DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. Int. J. Cancer 2018, 142, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Dugue, P.A.; Bassett, J.K.; Wong, E.M.; Joo, J.E.; Li, S.; Yu, C.; Schmidt, D.F.; Makalic, E.; Doo, N.W.; Buchanan, D.D.; et al. Biological Aging Measures Based on Blood DNA Methylation and Risk of Cancer: A Prospective Study. JNCI Cancer Spectr. 2021, 5, pkaa109. [Google Scholar] [CrossRef]
- Noroozi, R.; Ghafouri-Fard, S.; Pisarek, A.; Rudnicka, J.; Spolnicka, M.; Branicki, W.; Taheri, M.; Pospiech, E. DNA methylation-based age clocks: From age prediction to age reversion. Ageing Res. Rev. 2021, 68, 101314. [Google Scholar] [CrossRef]
- Ashapkin, V.V.; Kutueva, L.I.; Vanyushin, B.F. Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging? Adv. Exp. Med. Biol. 2019, 1178, 175–206. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ni, W.; Yao, Y.; Just, A.; Heiss, J.; Wei, Y.; Gao, X.; Coull, B.A.; Kosheleva, A.; Baccarelli, A.A.; et al. DNA methylation-based biomarkers of age acceleration and all-cause death, myocardial infarction, stroke, and cancer in two cohorts: The NAS, and KORA F4. eBioMedicine 2021, 63, 103151. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ganz, P.A.; Sehl, M.E. DNA Methylation, Aging, and Cancer Risk: A Mini-Review. Front. Bioinform. 2022, 2, 847629. [Google Scholar] [CrossRef] [PubMed]
- Kresovich, J.K.; Xu, Z.; O’Brien, K.M.; Weinberg, C.R.; Sandler, D.P.; Taylor, J.A. Methylation-Based Biological Age and Breast Cancer Risk. J. Natl. Cancer Inst. 2019, 111, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Fransquet, P.D.; Wrigglesworth, J.; Woods, R.L.; Ernst, M.E.; Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: A systematic review and meta-analysis. Clin. Epigenetics 2019, 11, 62. [Google Scholar] [CrossRef]
- Gala, H.; Tomlinson, I. The use of Mendelian randomisation to identify causal cancer risk factors: Promise and limitations. J. Pathol. 2020, 250, 541–554. [Google Scholar] [CrossRef]
- Markozannes, G.; Kanellopoulou, A.; Dimopoulou, O.; Kosmidis, D.; Zhang, X.; Wang, L.; Theodoratou, E.; Gill, D.; Burgess, S.; Tsilidis, K.K. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med. 2022, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ping, J.; Guo, X.; Long, J.; Cai, Q.; Shu, X.O.; Shu, X. Drug-target Mendelian randomization revealed a significant association of genetically proxied metformin effects with increased prostate cancer risk. Mol. Carcinog. 2024, 63, 849–858. [Google Scholar] [CrossRef] [PubMed]
- McCartney, D.L.; Min, J.L.; Richmond, R.C.; Lu, A.T.; Sobczyk, M.K.; Davies, G.; Broer, L.; Guo, X.; Jeong, A.; Jung, J.; et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol. 2021, 22, 194. [Google Scholar] [CrossRef]
- Morales Berstein, F.; McCartney, D.L.; Lu, A.T.; Tsilidis, K.K.; Bouras, E.; Haycock, P.; Burrows, K.; Phipps, A.I.; Buchanan, D.D.; Cheng, I.; et al. Assessing the causal role of epigenetic clocks in the development of multiple cancers: A Mendelian randomization study. elife 2022, 11, e75374. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, M.; Shete, S.; Amos, C.I.; Kamat, A.; Ye, Y.; Lin, J.; Dinney, C.P.; Wu, X. A genome-wide association study identifies a locus on chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of susceptibility for bladder cancer. Cancer Prev. Res. 2011, 4, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, Y.; Xu, J.; Chancoco, H.; Gu, J. Leukocyte Telomere Length and Bladder Cancer Risk: A Large Case-Control Study and Mendelian Randomization Analysis. Cancer Epidemiol. Biomark. Prev. 2021, 30, 203–209. [Google Scholar] [CrossRef]
- Chen, M.; Tsai, C.W.; Chang, W.S.; Xiong, G.Y.; Xu, Y.; Bau, D.T.; Gu, J. High circulating insulin-like growth factor-1 reduces the risk of renal cell carcinoma: A Mendelian randomization study. Carcinogenesis 2021, 42, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Chang, W.S.; Xu, Y.; Huang, M.; Bau, D.T.; Gu, J. Associations of genetically predicted circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 with bladder cancer risk. Mol. Carcinog. 2021, 60, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Bau, D.T.; Tsai, C.W.; Chang, W.S.; Yang, J.S.; Liu, T.Y.; Lu, H.F.; Wang, Y.W.; Tsai, F.J. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol. Carcinog. 2024, 63, 617–628. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Yavorska, O.O.; Burgess, S. Mendelian Randomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Leung, D.; Thrush, K.; Zhao, W.; Ratliff, S.; Tanaka, T.; Schmitz, L.L.; Smith, J.A.; Ferrucci, L.; Levine, M.E. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell 2020, 19, e13229. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.; Russ, T.C.; Clarke, T.K.; Howard, D.M.; Hillary, R.F.; Evans, K.L.; Walker, R.M.; Bermingham, M.L.; Morris, S.W.; Campbell, A.; et al. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet. 2019, 15, e1008104. [Google Scholar] [CrossRef] [PubMed]
- Twine, N.A.; Harkness, L.; Kassem, M.; Wilkins, M.R. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells. BMC Genom. 2016, 17, 872. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, L.; Wang, L.; Xiao, J.; Sun, J.; Zhou, Y.; Xu, X.; Xu, W.; Spiliopoulou, A.; Timofeeva, M.; et al. Alcohol consumption, blood DNA methylation and breast cancer: A Mendelian randomisation study. Eur. J. Epidemiol. 2022, 37, 701–712. [Google Scholar] [CrossRef]
Variables | Cases, N (%) | Controls, N (%) | p-Value |
---|---|---|---|
Age, mean (SD) | 64.70 (11.11) | 64.59 (10.22) | 0.738 |
Sex | |||
Male | 1606 (79.11) | 1606 (79.11) | |
Female | 424 (20.89) | 424 (20.89) | 1 |
Smoking Status | |||
Never | 487 (28.63) | 885 (43.72) | |
Former | 874 (51.38) | 883 (43.63) | |
Current | 340 (19.99) | 256 (12.65) | <0.001 |
SNP ID | Chr. | Position | Gene | Allele | β | EAF * | OR (95% CI) ** | p-Value | |
---|---|---|---|---|---|---|---|---|---|
Cases | Controls | ||||||||
HannumAge | |||||||||
rs1005277 *** | 10 | 38218259 | ZNF25 | A/C | 0.301 | 0.320 | 0.246 | 1.45 (1.29–1.62) | 3.68 × 10−10 |
rs12417758 | 11 | 66076360 | RP11-867G23.13 | C/T | 0.209 | 0.463 | 0.416 | 1.22 (1.11–1.34) | 3.66 × 10−5 |
rs4383328 | 2 | 16693124 | AC104623.2 | T/A | 0.189 | 0.742 | 0.716 | 1.13 (1.02–1.25) | 0.019 |
rs1598856 | 4 | 103446115 | NFKB1 | A/G | 0.186 | 0.478 | 0.449 | 1.11 (1.01–1.22) | 0.031 |
rs34970912 | 16 | 73068163 | ZFHX3 | G/C | 0.521 | 0.022 | 0.017 | 1.29 (0.92–1.81) | 0.144 |
rs10786282 | 10 | 98122808 | OPALIN | G/A | 0.360 | 0.795 | 0.781 | 1.07 (0.96–1.2) | 0.231 |
rs4838595 | 10 | 49675247 | ARHGAP22 | C/T | 0.258 | 0.873 | 0.872 | 1.03 (0.9–1.18) | 0.671 |
rs3093956 | 6 | 31426967 | - | C/T | 0.243 | 0.154 | 0.156 | 0.98 (0.86–1.11) | 0.746 |
rs111731678 | 7 | 130418744 | KLF14 | T/A | 0.227 | 0.821 | 0.815 | 1 (0.88–1.14) | 0.967 |
HorvathAge | |||||||||
rs4240228 | 2 | 16688759 | AC104623.2 | T/G | 0.255 | 0.742 | 0.716 | 1.13 (1.02–1.25) | 0.019 |
rs6577536 | 1 | 8910110 | ENO1 | A/G | 0.197 | 0.494 | 0.471 | 1.1 (1–1.2) | 0.054 |
rs10447389 | 6 | 25642577 | ZFP57 | G/A | 0.276 | 0.727 | 0.714 | 1.08 (0.98–1.2) | 0.124 |
rs1511762 | 18 | 42119324 | LINC01478 | T/C | 0.264 | 0.229 | 0.217 | 1.09 (0.97–1.22) | 0.133 |
rs2492286 | 3 | 128336298 | RPN1 | T/G | 0.281 | 0.150 | 0.135 | 1.1 (0.96–1.27) | 0.156 |
rs3917672 | 1 | 169592981 | SELP | G/A | 0.262 | 0.516 | 0.533 | 0.94 (0.85–1.03) | 0.171 |
rs7550821 | 1 | 208029947 | C1orf132 | C/T | 0.255 | 0.767 | 0.780 | 0.93 (0.83–1.03) | 0.175 |
rs12043492 | 1 | 39457006 | AKIRIN1 | T/C | 0.217 | 0.445 | 0.431 | 1.07 (0.97–1.17) | 0.185 |
rs10732882 | 11 | 57111693 | P2RX3 | G/T | 0.241 | 0.592 | 0.601 | 0.94 (0.86–1.04) | 0.247 |
rs75243280 | 22 | 17601466 | CECR6 | C/T | 0.232 | 0.273 | 0.266 | 1.07 (0.95–1.22) | 0.273 |
rs144317085 | 4 | 105806108 | RP11-556I14.2 | A/T | 0.514 | 0.972 | 0.971 | 1.15 (0.87–1.52) | 0.324 |
rs2736099 | 5 | 1287340 | TERT | A/G | 0.233 | 0.346 | 0.329 | 1.06 (0.95–1.18) | 0.333 |
rs1726672 | 1 | 236519502 | EDARADD | C/T | 0.204 | 0.679 | 0.687 | 0.96 (0.86–1.06) | 0.371 |
rs7627756 | 3 | 160217483 | KPNA4 | A/G | 0.216 | 0.558 | 0.554 | 1.03 (0.94–1.13) | 0.474 |
rs12903325 | 15 | 50353277 | ATP8B4 | G/T | 0.222 | 0.239 | 0.236 | 1.04 (0.93–1.16) | 0.511 |
rs12666349 | 7 | 31728180 | PPP1R17 | T/C | 0.255 | 0.853 | 0.851 | 0.96 (0.82–1.13) | 0.624 |
rs6414374 | 3 | 150001224 | LINC01214 | A/G | 0.321 | 0.146 | 0.139 | 1.03 (0.9–1.19) | 0.631 |
rs10735418 | 12 | 107343376 | RP11-412D9.4 | T/C | 0.195 | 0.625 | 0.625 | 1.02 (0.93–1.12) | 0.69 |
rs10949481 | 6 | 18121029 | NHLRC1 | A/T | 1.082 | 0.960 | 0.956 | 1.04 (0.83–1.31) | 0.705 |
rs34003787 | 16 | 73071381 | ZFHX3 | T/C | 0.324 | 0.064 | 0.067 | 0.97 (0.8–1.18) | 0.766 |
rs79111787 | 3 | 47715545 | SMARCC1 | C/T | 0.908 | 0.009 | 0.009 | 1.06 (0.67–1.7) | 0.794 |
rs2275558 | 1 | 164529120 | PBX1 | G/A | 0.234 | 0.913 | 0.901 | 0.97 (0.74–1.29) | 0.855 |
rs1488106 | 3 | 168859006 | MECOM | T/C | 0.183 | 0.360 | 0.361 | 1 (0.91–1.1) | 0.942 |
rs57941717 | 21 | 38374179 | RIPPLY3 | T/G | 0.291 | 0.237 | 0.233 | 1 (0.9–1.12) | 0.972 |
GrimAge | |||||||||
rs887466 | 6 | 31143511 | POU5F1 | G/A | 0.193 | 0.605 | 0.620 | 0.95 (0.87–1.05) | 0.329 |
rs4065321 | 17 | 38143548 | PSMD3 | C/T | 0.170 | 0.445 | 0.459 | 0.96 (0.87–1.05) | 0.359 |
rs17094148 | 10 | 101280279 | LINC01475 | G/A | 0.180 | 0.301 | 0.289 | 1.05 (0.94–1.16) | 0.384 |
rs9386796 | 6 | 109618704 | CCDC162P | T/C | 0.198 | 0.459 | 0.451 | 1.01 (0.92–1.11) | 0.873 |
PhenoAge | |||||||||
rs6531114 | 2 | 16617781 | AC010880.1 | C/T | 0.254 | 0.766 | 0.743 | 1.13 (1.02–1.26) | 0.023 |
rs752223 | 1 | 60433076 | RN7SL475P | G/A | 0.560 | 0.919 | 0.931 | 0.83 (0.69–0.99) | 0.035 |
rs11190127 | 10 | 101271982 | LINC01475 | A/C | 0.248 | 0.378 | 0.367 | 1.04 (0.94–1.15) | 0.447 |
rs116853700 | 17 | 55466295 | MSI2 | A/G | 0.552 | 0.029 | 0.033 | 0.9 (0.69–1.17) | 0.448 |
rs3829957 | 17 | 3378876 | ASPA | C/T | 0.380 | 0.806 | 0.801 | 1.04 (0.93–1.17) | 0.456 |
rs678553 | 1 | 236525447 | EDARADD | T/C | 0.326 | 0.682 | 0.684 | 0.98 (0.88–1.09) | 0.681 |
rs1142345 | 6 | 18130918 | TPMT | T/C | 0.823 | 0.961 | 0.957 | 1.04 (0.83–1.31) | 0.716 |
rs7228835 | 18 | 41969071 | LINC01478 | G/C | 0.514 | 0.893 | 0.890 | 1.03 (0.88–1.19) | 0.739 |
rs11253338 | 10 | 759559 | DIP2C | T/C | 0.285 | 0.182 | 0.183 | 1.02 (0.9–1.15) | 0.754 |
rs1990053 | 7 | 44925896 | PURB | A/G | 0.257 | 0.440 | 0.436 | 0.99 (0.91–1.09) | 0.914 |
rs73028070 | 11 | 122681835 | UBASH3B | G/A | 0.433 | 0.944 | 0.944 | 0.99 (0.8–1.22) | 0.931 |
Epigenetic Clocks | Number of SNPs | GRS, Mean (SD) | p-Value | |
---|---|---|---|---|
Controls | Cases | |||
HannumAge | 9 | 2.24 (0.39) | 2.33 (0.43) | 1.56 × 10−10 |
HorvathAge | 24 | 7.78 (0.77) | 7.83 (0.73) | 0.040 |
GrimAge | 4 | 0.68 (0.25) | 0.68 (0.26) | 0.639 |
PhenoAge | 11 | 6.33 (0.62) | 6.34 (0.61) | 0.756 |
GRS | Control, N (%) | Case, N (%) | OR * (95% CI) | p-Value |
---|---|---|---|---|
HannumAge | ||||
Dichotomize | ||||
Low | 1015 (54.16) | 859 (45.84) | 1 (reference) | |
High | 1015 (46.43) | 1171 (53.57) | 1.31 (1.15–1.49) | 5.89 × 10−5 |
Quartile | ||||
1 (lowest) | 508 (56.70) | 388 (43.30) | 1 (reference) | |
2 | 507 (51.84) | 471 (48.16) | 1.22 (1.00–1.47) | 0.045 |
3 | 508 (51.21) | 484 (48.79) | 1.19 (0.98–1.44) | 0.075 |
4 (highest) | 507 (42.46) | 687 (57.54) | 1.71 (1.42–2.06) | 1.31 × 10−8 |
HorvathAge | ||||
Dichotomize | ||||
Low | 1015 (51.55) | 954 (48.45) | 1 (reference) | |
High | 1015 (48.54) | 1076 (51.46) | 1.10 (0.97–1.26) | 0.140 |
Quartile | ||||
1 (lowest) | 508 (52.32) | 463 (47.68) | 1 (reference) | |
2 | 507 (50.80) | 491 (49.20) | 1.11 (0.92–1.33) | 0.298 |
3 | 508 (48.61) | 537 (51.39) | 1.17 (0.97–1.40) | 0.103 |
4 (highest) | 507 (48.47) | 539 (51.53) | 1.15 (0.96–1.39) | 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Tsai, C.-W.; Chang, W.-S.; Xu, Y.; Huang, M.; Bau, D.-T.; Gu, J. The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks. Cancers 2024, 16, 2357. https://doi.org/10.3390/cancers16132357
Deng Y, Tsai C-W, Chang W-S, Xu Y, Huang M, Bau D-T, Gu J. The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks. Cancers. 2024; 16(13):2357. https://doi.org/10.3390/cancers16132357
Chicago/Turabian StyleDeng, Yang, Chia-Wen Tsai, Wen-Shin Chang, Yifan Xu, Maosheng Huang, Da-Tian Bau, and Jian Gu. 2024. "The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks" Cancers 16, no. 13: 2357. https://doi.org/10.3390/cancers16132357
APA StyleDeng, Y., Tsai, C. -W., Chang, W. -S., Xu, Y., Huang, M., Bau, D. -T., & Gu, J. (2024). The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks. Cancers, 16(13), 2357. https://doi.org/10.3390/cancers16132357