Recurrence-Free Survival and Disease-Specific Survival in Patients with Pancreatic Neuroendocrine Neoplasms: A Single-Center Retrospective Study of 413 Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Outcome
2.3. Statistics
3. Results
3.1. Baseline Characteristics
3.2. Group 1—Surveillance
3.3. Group 2—Curative Intended Surgery
- Recurrence-Free Survival
- Disease-Specific Survival
3.4. Group 3—Unresectable Disease or Residual Tumor after Resection
- Disease-Specific Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finkelstein, P.S.R.; Picado, O.; Gadde, R.; Stuart, H.; Ripat, C.; Livingstone, A.S.; Sleeman, D.; Merchant, N.; Yakoub, D. Pancreatic Neuroendocrine Tumors (panNETs): Analysis of Overall Survival of Nonsurgical Management Versus Surgical Resection. J. Gastrointest. Surg. 2017, 21, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, L.; Dai, S.; Chen, M.; Li, F.; Sun, J.; Luo, F. Epidemiologic Trends of and Factors Associated With Overall Survival for Patients With Gastroenteropancreatic Neuroendocrine Tumors in the United States. JAMA Netw. Open 2021, 4, e2124750. [Google Scholar] [CrossRef]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.; Shavelle, R.M.; Vavra-Musser, K.N. Life expectancy in pancreatic neuroendocrine cancer. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Mazza, G.L.; Mi, L.; Oliver, T.; Starr, J.; Gudmundsdottir, H.; Cleary, S.P.; Hobday, T.; Halfdanarson, T.R. Survival and Incidence Patterns of Pancreatic Neuroendocrine Tumors Over the Last 2 Decades: A SEER Database Analysis. Oncologist 2022, 27, 573–578. [Google Scholar] [CrossRef]
- Stensbøl, A.B.; Krogh, J.; Holmager, P.; Klose, M.; Oturai, P.; Kjaer, A.; Hansen, C.P.; Federspiel, B.; Langer, S.W.; Knigge, U.; et al. Incidence, Clinical Presentation and Trends in Indication for Diagnostic Work-Up of Small Intestinal and Pancreatic Neuroendocrine Tumors. Diagnostics 2021, 11, 2030. [Google Scholar] [CrossRef] [PubMed]
- Hallet, J.; Law, C.H.; Cukier, M.; Saskin, R.; Liu, N.; Singh, S. Exploring the rising incidence of neuroendocrine tumors: A population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 2015, 121, 589–597. [Google Scholar] [CrossRef]
- Falconi, M.; Eriksson, B.; Kaltsas, G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Kos-Kudla, B.; Kwekkeboom, D.; Rindi, G.; Klöppel, G.; et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016, 103, 153–171. [Google Scholar] [CrossRef]
- Lahner, H.; Mathew, A.; Klocker, A.L.; Unger, N.; Theysohn, J.; Rekowski, J.; Jöckel, K.H.; Theurer, S.; Schmid, K.W.; Herrmann, K.; et al. Streptozocin/5-fluorouracil chemotherapy of pancreatic neuroendocrine tumours in the era of targeted therapy. Endocrine 2022, 75, 293–302. [Google Scholar] [CrossRef]
- Scott, A.T.; Howe, J.R. Evaluation and Management of Neuroendocrine Tumors of the Pancreas. Surg. Clin. N. Am. 2019, 99, 793–814. [Google Scholar] [CrossRef]
- Lopez-Aguiar, A.G.; Ethun, C.G.; Zaidi, M.Y.; Rocha, F.G.; Poultsides, G.A.; Dillhoff, M.; Fields, R.C.; Idrees, K.; Cho, C.S.; Abbott, D.E.; et al. The conundrum of <2-cm pancreatic neuroendocrine tumors: A preoperative risk score to predict lymph node metastases and guide surgical management. Surgery 2019, 166, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, J.M. Non-functional neuroendocrine tumors of the pancreas: Advances in diagnosis and management. World J. Gastroenterol. 2015, 21, 9512. [Google Scholar] [CrossRef] [PubMed]
- Janson, E.T.; Knigge, U.; Dam, G.; Federspiel, B.; Grønbaek, H.; Stålberg, P.; Langer, S.W.; Kjaer, A.; Arola, J.; Schalin-Jäntti, C.; et al. Nordic guidelines 2021 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol. 2021, 60, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Baudin, E.; Couvelard, A.; Krenning, E.; Öberg, K.; Steinmüller, T.; Anlauf, M.; Wiedenmann, B.; Salazar, R. ENETS Consensus Guidelines for the Management of Patients with Liver and Other Distant Metastases from Neuroendocrine Neoplasms of Foregut, Midgut, Hindgut, and Unknown Primary. Neuroendocrinology 2012, 95, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, H.; Wang, G.; Yin, L.; Xu, W.; Peng, Y.; Wu, J.; Jiang, K.; Miao, Y. A meta-analysis of Prognostic factor of Pancreatic neuroendocrine neoplasms. Sci. Rep. 2018, 8, 7271. [Google Scholar] [CrossRef] [PubMed]
- Andreasi, V.; Ricci, C.; Partelli, S.; Guarneri, G.; Ingaldi, C.; Muffatti, F.; Crippa, S.; Casadei, R.; Falconi, M. Predictors of disease recurrence after curative surgery for nonfunctioning pancreatic neuroendocrine neoplasms (NF-PanNENs): A systematic review and meta-analysis. J. Endocrinol. Investig. 2022, 45, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, G.; Yu, F.; Tian, C.; Tan, H. Meta-Analysis of Prognostic Factors for Recurrence of Resected Well-Differentiated Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 111, 1231–1237. [Google Scholar] [CrossRef]
- Garcia-Carbonero, R.; Sorbye, H.; Baudin, E.; Raymond, E.; Wiedenmann, B.; Niederle, B.; Sedlackova, E.; Toumpanakis, C.; Anlauf, M.; Cwikla, J.B.; et al. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology 2016, 103, 186–194. [Google Scholar] [CrossRef]
- Assarzadegan, N.; Montgomery, E. What is New in the 2019 World Health Organization (WHO) Classification of Tumors of the Digestive System: Review of Selected Updates on Neuroendocrine Neoplasms, Appendiceal Tumors, and Molecular Testing. Arch. Pathol. Lab. Med. 2021, 145, 664–677. [Google Scholar] [CrossRef]
- Merola, E.; Grana, C.M. Peptide Receptor Radionuclide Therapy (PRRT): Innovations and Improvements. Cancers 2023, 15, 2975. [Google Scholar] [CrossRef]
- Nielsen, K.; Binderup, T.; Langer, S.W.; Kjaer, A.; Knigge, P.; Grøndahl, V.; Melchior, L.; Federspiel, B.; Knigge, U. P53, Somatostatin receptor 2a and Chromogranin A immunostaining as prognostic markers in high grade gastroenteropancreatic neuroendocrine neoplasms. BMC Cancer 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; De Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Grant, C.S.; Salomao, D.R.; Fletcher, J.G.; Takahashi, N.; Fidler, J.L.; Levy, M.J.; Huebner, M. Small, nonfunctioning, asymptomatic pancreatic neuroendocrine tumors (PNETs): Role for nonoperative management. Surgery 2012, 152, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Sadot, E.; Reidy-Lagunes, D.L.; Tang, L.H.; Do, R.K.G.; Gonen, M.; D’Angelica, M.I.; Dematteo, R.P.; Kingham, T.P.; Koerkamp, B.G.; Untch, B.R.; et al. Observation versus Resection for Small Asymptomatic Pancreatic Neuroendocrine Tumors: A Matched Case–Control Study. Ann. Surg. Oncol. 2016, 23, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Fan, Z.; Zhang, P.; Qian, Y.; Huang, Q.; Deng, S.; Luo, G.; Cheng, H.; Jin, K.; Ni, Q.; et al. High pre-operative fasting blood glucose levels predict a poor prognosis in patients with pancreatic neuroendocrine tumour. Endocrine 2021, 71, 494–501. [Google Scholar] [CrossRef]
- Boninsegna, L.; Panzuto, F.; Partelli, S.; Capelli, P.; Delle Fave, G.; Bettini, R.; Pederzoli, P.; Scarpa, A.; Falconi, M. Malignant pancreatic neuroendocrine tumour: Lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur. J. Cancer 2012, 48, 1608–1615. [Google Scholar] [CrossRef]
- Clift, A.K.; Kidd, M.; Bodei, L.; Toumpanakis, C.; Baum, R.P.; Oberg, K.; Modlin, I.M.; Frilling, A. Neuroendocrine Neoplasms of the Small Bowel and Pancreas. Neuroendocrinology 2020, 110, 444–476. [Google Scholar] [CrossRef]
- Dam, G.; Grønbæk, H.; Sorbye, H.; Thiis Evensen, E.; Paulsson, B.; Sundin, A.; Jensen, C.; Ebbesen, D.; Knigge, U.; Tiensuu Janson, E. Prospective Study of Chromogranin A as a Predictor of Progression in Patients with Pancreatic, Small-Intestinal, and Unknown Primary Neuroendocrine Tumors. Neuroendocrinology 2020, 110, 217–224. [Google Scholar] [CrossRef]
- Rindi, G.; Falconi, M.; Klersy, C.; Albarello, L.; Boninsegna, L.; Buchler, M.W.; Capella, C.; Caplin, M.; Couvelard, A.; Doglioni, C.; et al. TNM staging of neoplasms of the endocrine pancreas: Results from a large international cohort study. J. Natl. Cancer Inst. 2012, 104, 764–777. [Google Scholar] [CrossRef]
- Scarpa, A.; Mantovani, W.; Capelli, P.; Beghelli, S.; Boninsegna, L.; Bettini, R.; Panzuto, F.; Pederzoli, P.; delle Fave, G.; Falconi, M. Pancreatic endocrine tumors: Improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod. Pathol. 2010, 23, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Falconi, M.; Bartsch, D.K.; Eriksson, B.; Klöppel, G.; Lopes, J.M.; O’Connor, J.M.; Salazar, R.; Taal, B.G.; Vullierme, M.P.; O’Toole, D. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: Well-differentiated pancreatic non-functioning tumors. Neuroendocrinology 2012, 95, 120–134. [Google Scholar] [CrossRef] [PubMed]
Overall | Surveillance (Group 1) | Curative Surgery (Group 2) | Unresectable Disease (Group 3) | ||
---|---|---|---|---|---|
n = 413 | n = 51 | n = 165 | n = 197 | ||
Age, years (SD) | 62 ± 14 | 60 ± 15 | 58 ± 14 | 66 ± 13 | |
Gender | Male | 234 (57%) | 27 (53%) | 97 (59%) | 110 (56%) |
Year of diagnosis | 2000–2009 | 84 (20) | 1 (2) | 29 (18) | 54 (27) |
2010–2020 | 329 (80) | 50 (98) | 136 (82) | 143 (73) | |
Incidentaloma | 174 (44%) | 35 (69%) | 82 (50%) | 57 (29%) | |
Heredity | MEN-1 | 25 (6%) | 8 (16%) | 12 (7%) | 5 (3%) |
VHL | 7 (2%) | 4 (8%) | 2 (1%) | 1 (1%) | |
NF1 | 3 (1%) | - | 3 (2%) | ||
Functional tumor | Insulinoma | 33 (8%) | 1 (2%) | 22 (13%) | 10 (5%) |
Gastrinoma | 10 (2%) | - | 3 (2%) | 7 (4%) | |
Glucagonoma | 2 (1%) | - | 1 (1%) | 1 (0.5%) | |
VIP’oma | 3 (1%) | - | 1 (1%) | 2 (1%) | |
Somatostatinoma | 4 (1%) | - | 3 (2%) | 1 (0.5%) | |
Total functional tumors | 52 (13%) | 1 (2%) | 29 (18%) | 22 (11%) | |
Stage (n = 412) | Local | 193 (47%) | 51 (100%) | 124 (75%) | 18 (9%) |
Regional | 48 (12%) | 32 (19%) | 16 (8%) | ||
Metastatic | 171 (41%) | 9 (6%) | 162 (82%) | ||
Primary tumor size (cm), median (IQR) | 2.5 (1.3–4.8) | 1.0 (0.8–1.4) | 2.0 (1.2–3.4) | 4.2 (2.6–7.0) | |
Liver metastases | 160 (39%) | 9 (6%) | 151 (77%) | ||
Bone metastases | 27 (7%) | 27 (14%) | |||
Ki-67%, median (IQR) (n = 348) | 10 (4–25) | 2 (1–2) | 5 (3–10) | 17 (9–64) | |
CgA, pmol/L (n = 373) | 122 (78–409) | 123 (69–115) | 91 (63–141) | 423 (135–1385) | |
2019 WHO grade (n = 351) | |||||
NETG1 | 54 (13%) | 8 (16%) | 29 (18%) | 17 (9%) | |
NETG2 | 195 (47%) | 2 (4%) | 109 (66%) | 84 (43%) | |
NETG3 | 26 (6%) | 8 (5%) | 18 (9%) | ||
NEC | 76 (18%) | 10 (6%) | 66 (34% | ||
Location in pancreas (n = 350) | Head | 172 (42%) | 21 (41%) | 65 (39%) | 86 (44%) |
Tail | 178 (43%) | 18 (35%) | 92 (56%) | 68 (35%) | |
Primary surgery | 185 (45%) | 165 (100%) | 20 (10%) |
Variable | Univariable Analysis | ||
---|---|---|---|
HR | 95% CI | p | |
Sex, male vs. female (ref.) | 1.0 | 0.5–2.0 | 0.97 |
Age at diagnosis, years | 1.0 | 1.0–1.0 | 0.35 |
Location in head | 3.0 | 1.5–6.0 | 0.002 |
Non-functioning (ref. functioning) | 3.5 | 1.1–11.6 | 0.04 |
Not incidentaloma (ref. incidentaloma) | 2.1 | 1.0–4.3 | 0.10 |
Primary tumor size, cm | 1.2 | 1.1–1.3 | <0.001 |
Stage (ref. localized) | <0.001 | ||
Regional | 5.1 | 2.5–10.4 | <0.001 |
Disseminated | 12.2 | 4.3–34.9 | <0.001 |
Grade (ref. NETG1) | <0.001 | ||
NETG2 | 1.2 | 0.5–3.3 | 0.71 |
NETG3 | 3.7 | 0.9–15.9 | 0.08 |
NEC | 10.7 | 3.2–35.5 | <0.001 |
Log2(CgA) | 1.4 | 0.9–1.9 | 0.11 |
Log2(Ki-67) | 1.8 | 1.4–2.2 | <0.001 |
Multivariable analysis | |||
With categorical Ki-67 (grade) | HR | 95% CI | p |
Primary tumor size, cm | 1.4 | 1.2–1.5 | <0.001 |
Location in head | 4.6 | 1.9–11.3 | <0.001 |
With continuous Ki-67 | |||
Primary tumor size, cm | 1.3 | 1.2–1.5 | <0.001 |
Location in head | 3.2 | 1.1–8.0 | 0.01 |
Log2(Ki-67) | 1.4 | 1.1–1.9 | 0.02 |
Univariable Analysis | ||||
---|---|---|---|---|
Variable | HR | 95% CI | p | |
Sex, male vs. female (ref.) | 1.1 | 0.4–2.8 | 0.90 | |
Age at diagnosis, years | 1.0 | 1.0–1.1 | 0.08 | |
Location in head | 3.3 | 1.2–9.4 | 0.03 | |
Non-functioning (ref. functioning) | 34.9 | 0.3–4114.0 | 0.14 | |
Primary tumor size, cm | 1.1 | 1.0–1.2 | 0.047 | |
Stage (ref. localized) | 0.006 | |||
Regional | 4.4 | 1.6–12.1 | 0.004 | |
Disseminated | 6.5 | 1.3–32.1 | 0.022 | |
Grade (ref. NETG1) | <0.001 | |||
NETG2 | 3.2 | 0.4–28.6 | 0.29 | |
NETG3 | 10.9 | 1.0–122.3 | 0.05 | |
NEC | 66.1 | 6.8–642.1 | <0.001 | |
Log2(CgA) | 1.6 | 1.0–2.5 | 0.04 | |
Log2(Ki-67) | 2.3 | 1.7–3.2 | <0.001 | |
Multivariable analysis | ||||
With categorical Ki-67 (grade) | HR | 95% CI | p | |
Grade (ref. NETG1) | <0.001 | |||
NETG2 | 5.6 | 0.4–72.7 | 0.19 | |
NETG3 | 13.5 | 0.5–342.0 | 0.12 | |
NEC | 169.2 | 9.3–3055.7 | <0.001 | |
With continuous Ki-67 | ||||
Age at diagnosis, years | 1.0 | 0.99–1.1 | 0.06 | |
Log2(Ki67) | 2.4 | 1.6–3.4 | <0.001 |
Medical Treatments | n (%) |
---|---|
Somatostatin analogue | 89 (21%) |
Peptide-receptor radionuclide therapy | 51 (12%) |
Interferon | 9 (2%) |
Streptozotocin + 5-fluorouracil | 77 (19%) |
Everolimus | 24 (6%) |
Carboplatin + etoposide | 68 (15%) |
Topotecan | 13 (3%) |
Temozolomide | 46 (11%) |
Temozolomide + capecitabine | 10 (2%) |
Palliative radiation | 26 (6%) |
Others | 12 (3%) |
Univariable Analysis | ||||
---|---|---|---|---|
Variable | HR | 95% CI | p | |
Sex, male vs. female (ref.) | 1.0 | 0.7–1.3 | 0.80 | |
Age at diagnosis, years | 1.0 | 1.0–1.0 | 0.01 | |
Decade of diagnosis (ref. 2000–2009) | 1.3 | 0.9–2.0 | 0.13 | |
Non-functioning (ref. functioning) | 2.0 | 1.3–3.6 | 0.017 | |
Not incidentaloma (ref. incidentaloma) | 1.6 | 1.1–2.4 | 0.02 | |
Stage (ref. localized) | 0.01 | |||
Regional | 1.7 | 0.7–4.4 | 0.29 | |
Disseminated | 3.0 | 1.5–5.9 | 0.002 | |
Grade (ref. NETG1) | <0.001 | |||
NETG2 | 1.5 | 0.7–3.2 | 0.29 | |
NETG3 | 4.6 | 1.9–20.0 | <0.001 | |
NEC | 10.0 | 4.6–21.8 | <0.001 | |
Log2(CgA) | 1.1 | 1.0–1.2 | 0.02 | |
Log2(Ki67) | 1.7 | 1.5–2.0 | <0.001 | |
Multivariable analysis | ||||
With categorical Ki-67 (grade) | HR | 95% CI | p | |
Age at diagnosis, years | 1.0 | 1.0–1.0 | 0.029 | |
Grade (ref. NETG1) | <0.001 | |||
NETG2 | 1.4 | 0.6–3.0 | 0.457 | |
NETG3 | 4.7 | 1.8–12.2 | 0.001 | |
NEC | 9.1 | 3.9–21.2 | <0.001 | |
Log2(CgA) | 1.1 | 1.0–1.2 | 0.014 | |
With continuous Ki-67 | ||||
Age at diagnosis, years | 1.02 | 1.0–1.03 | 0.027 | |
Log2(Ki67) | 1.7 | 1.5–2.0 | <0.001 | |
Log2(CgA) | 1.1 | 1.0–1.2 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Møller, S.; Langer, S.W.; Slott, C.; Krogh, J.; Hansen, C.P.; Kjaer, A.; Holmager, P.; Klose, M.; Garbyal, R.S.; Knigge, U.; et al. Recurrence-Free Survival and Disease-Specific Survival in Patients with Pancreatic Neuroendocrine Neoplasms: A Single-Center Retrospective Study of 413 Patients. Cancers 2024, 16, 100. https://doi.org/10.3390/cancers16010100
Møller S, Langer SW, Slott C, Krogh J, Hansen CP, Kjaer A, Holmager P, Klose M, Garbyal RS, Knigge U, et al. Recurrence-Free Survival and Disease-Specific Survival in Patients with Pancreatic Neuroendocrine Neoplasms: A Single-Center Retrospective Study of 413 Patients. Cancers. 2024; 16(1):100. https://doi.org/10.3390/cancers16010100
Chicago/Turabian StyleMøller, Stine, Seppo W. Langer, Cecilie Slott, Jesper Krogh, Carsten Palnæs Hansen, Andreas Kjaer, Pernille Holmager, Marianne Klose, Rajendra Singh Garbyal, Ulrich Knigge, and et al. 2024. "Recurrence-Free Survival and Disease-Specific Survival in Patients with Pancreatic Neuroendocrine Neoplasms: A Single-Center Retrospective Study of 413 Patients" Cancers 16, no. 1: 100. https://doi.org/10.3390/cancers16010100
APA StyleMøller, S., Langer, S. W., Slott, C., Krogh, J., Hansen, C. P., Kjaer, A., Holmager, P., Klose, M., Garbyal, R. S., Knigge, U., & Andreassen, M. (2024). Recurrence-Free Survival and Disease-Specific Survival in Patients with Pancreatic Neuroendocrine Neoplasms: A Single-Center Retrospective Study of 413 Patients. Cancers, 16(1), 100. https://doi.org/10.3390/cancers16010100