Value of Artificial Intelligence in Evaluating Lymph Node Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
Author, Year, Country | Organ | N. of WSI * | Stain | AI Employed | Scanner | Main Results | Limitations |
---|---|---|---|---|---|---|---|
Weaver, 2003, USA | BC LNS | NA 100 (20+, 80−) | CKAE1-AE3 | NA | ChromaVision Automated Cell Imaging and Medical System | AI-based identification of 19/20 micrometastatic cases | Use of IHC |
Clarke, 2011, Canada | BC LNS | 36/ 102 (43+, 59−) | CK 8–18, CAM5.2 | CAD algorithm | Mirax slide scanner | Sensitivity detection of ITCs, micro-, and macrometastases of 57.5%, 89.5%, and 100% | Use of IHC |
Litjens, 2016, Holland | BC LNS | 98, (48+, 50−) /(42+, 56−) | H&E | In house CNN | 3DHistech Pannoramic 250 Flash II slide scanner | Identification of 90% of all micro- and macrometastases | NA |
Valkonen, 2017, Finland | BC LNS | 170 (70+, 100) /100 (40+, 60−) | H&E | In house CNN | # | Mean AUC 0.970-0.839 | NA |
Holten-Rossing, 2017, Denmark | BC LNS | NA /900(139+, 761−) | CK7, CAM5.2 CKAE1-AE3 | Visiopharm APP 10104 | Hamamatsu NanoZoomer-XR | Sensitivity and specificity of 100% and 68.9% | NA |
Campanella, 2019, USA | BC LNS | 9864/NA | H&E | Resnet 34 | Philips IntelliSite Ultra Fast | AUC of 0.966 | Big amount of data for the testing set |
Liu, 2018, USA | BC LNS | 270(170−, 110+) /129(49+, 80−) | H&E | LYmph Node Assistant, or LYNA | 3DHISTECH Pannoramic 250 Flash II; Hamamatsu Aperio | AUC of 99.6%, no influence by artifacts (overfixation, poor staining, and air bubbles) | No ITC slides |
Steiner, 2018, USA | BC LNS | 70 (24−, 46+) /NA | H&E | LYmph Node Assistant, or LYNA | Leica AT2 system at a resolution of 0.25 µm/pixel | Shorter turn-around times with AI for micrometastases and negative images | NA |
Matsumoto, 2019, Japan | Gastric cancer | 56 (18−, 38+) 27 (26+, 1−) | H&E, UV excitation fluorescence microscopy | VGG16, INCEPTION V3, Inception ResNet V2 | Nanozoomer C9600-02, Hamamatsu Photonics | Mean accuracy in fluorescence patch classification of 97.4%, 98.2%, and 97.9%, respectively. | Technology not available in all laboratories |
Pham, 2019, Japan | Lung cancer | 233, 10/106 | H&E | HALO-based AI (CNN VGG network) | Aperio Scanscope CS2 digital slide scanner | Sensitivity of 100% (macro–micro metastases, and ITC) | Limited setting parameters, low specificity |
Pam, 2020, China | ESCC, lung cancer | 242(110−,132+) /795(222+,573−) | H&E | DeepLab model V3 with ResNet-5026 | NA | Accuracy of 94% and 90% in ESCC and lung cancer | No data about digital acquisition process |
Jin, 2020, Canada | BC LNS | # | H&E | ConcatNet | # | AUC of 0.924 | NA |
Hu, 2021, China | Gastric cancer | 594/327 | H&E | Xception, DenseNet-121, and fused networks | Leica Aperio Versa | Negative Predictive Value 97.99% in patients given neoadjuvant chemotherapy | Lot of work to classify at pixel level |
Chuang, 2021, Taiwan | Colon rectal cancer | 1963, 219/1000 | H&E | ResNet 50 | NanoZoomer S360 with a 40× magnification | AUC of 0.99 and 0.99 with macro- and micrometastases | Worse performance with ITC (AUC 0.78) |
Ming, 2021, USA | BC LNS | CAMELEON 16-17 dataset | H&E | Multiple instance learning | # | Average AUC of 0.953 ± 0.029 at ×40 magnification | Big amount of data for the training set |
Shahab, 2022, Bangladesh | BC LNS | 270/54 | H&E | AlexNet-GRU | Kaggle dataset | Accuracy, precision, sensitivity, and specificity of 99.50%, 98.10%, 98.90%, and 97.50 | NA |
Tang, 2022, China | HNSCC | 85 (38+,47−) /50 (21+, 29−) | H&E | GoogLeNet, MobileNet-v2, ResNet50, and ResNet101 | Pannoramic MIDI, 3DHISTECH Ltd. | Overall accuracy, sensitivity, and specificity of 86%, 100%, and 75.9% | NA |
Vulli, 2022, India | BC LNS | CAMELEON 16 dataset | H&E | Fine-tuned DenseNet 169 | # | Overall accuracy >97.4% | No ITC slides |
Khalil, 2022, Taiwan | BC LNS | 68 (54+, 18−)/26 (12+, 14−) | H&E, CK AE1-AE3 | Modified FCN based on Shelhamer model | 3DHISTECH Pannoramic | Including ITC overall precision 89.6%, recall 83.8%, F1-score 84.4%, and mIoU 74.9% | NA |
Huang, 2022, Taiwan | Gastric cancer | 983, 110/201 | H&E | ResNet50 architecture | NanoZoomer S360 digital slide | AUC of 0.9936, improvement of ITC and micrometastasis identification in a shorter turn-around time (−31.5%, p < 0.001) | Big amount of data for the training set |
4. Discussion
Author, Year, Country | Organ | N. of WSIs * | Stain | N. of Algorithms | Scanner | Limitations |
---|---|---|---|---|---|---|
Bejnordi, 2017, Holland | BC LNS | 160−, 110+/80−, 49+ | H&E | 32 | Pannoramic 250 Flash II,3DHISTECH, NanoZoomer-XR Digital slidescanner C12000-01 Hamamatsu Photonics | No ITC |
Bandi, 2018, Holland | BC LNS | 899 (558 − 341+)/500 | H&E | 37 | 3D Histec P250; Philips IntelliSite Ultra Fast; Hamamatsu XR C12000 | NA |
Kim, 2020 South Korea | BC LNS | 197/100 | H&E | 4 | Pannoramic 250 FLASH, 3DHISTECH Ltd. | TL |
4.1. AI and Nodal Breast Cancer Metastases
4.2. Public Challenges
4.3. Intraoperative Consultation
4.4. Tumors Other Than Breast Cancer
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worldwide Cancer Data—World Cancer Research Fund. Available online: https://www.Wcrf.Org/Cancer-Trends/Worldwide-Cancer-Data/ (accessed on 24 March 2023).
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer: Berlin/Heidelberg, Germany; American Joint Commission on Cancer: Chicago, IL, USA, 2017. [Google Scholar]
- Girolami, I.; Neri, S.; Eccher, A.; Brunelli, M.; Hanna, M.; Pantanowitz, L.; Hanspeter, E.; Mazzoleni, G. Frozen section telepathology service: Efficiency and benefits of an e-health policy in South Tyrol. Digit. Health 2022, 8, 20552076221116776. [Google Scholar] [CrossRef] [PubMed]
- Fraggetta, F.; Garozzo, S.; Zannoni, G.F.; Pantanowitz, L.; Rossi, E.D. Routine Digital Pathology Workflow: The Catania Experience. J. Pathol. Inform. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L.; Wiley, C.A.; Demetris, A.; Lesniak, A.; Ahmed, I.; Cable, W.; Contis, L.; Parwani, A.V. Experience with multimodality telepathology at the University of Pittsburgh Medical Center. J. Pathol. Inform. 2012, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Santonicco, N.; Marletta, S.; Pantanowitz, L.; Fadda, G.; Troncone, G.; Brunelli, M.; Ghimenton, C.; Antonini, P.; Paolino, G.; Girolami, I.; et al. Impact of mobile devices on cancer diagnosis in cytology. Diagn. Cytopathol. 2021, 50, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Eccher, A.; Fontanini, G.; Fusco, N.; Girolami, I.; Graziano, P.; Rocco, E.G.; Martini, M.; Morbini, P.; Pantanowitz, L.; Parwani, A.; et al. Digital Slides as an Effective Tool for Programmed Death Ligand 1 Combined Positive Score Assessment and Training: Lessons Learned from the “Programmed Death Ligand 1 Key Learning Program in Head-and-Neck Squamous Cell Carcinoma”. J. Pathol. Inform. 2021, 12. [Google Scholar] [CrossRef]
- Eccher, A.; Neil, D.; Ciangherotti, A.; Cima, L.; Boschiero, L.; Martignoni, G.; Ghimenton, C.; Chilosi, M.; Giobelli, L.; Zampicinini, L.; et al. Digital reporting of whole-slide images is safe and suitable for assessing organ quality in preimplantation renal biopsies. Hum. Pathol. 2016, 47, 115–120. [Google Scholar] [CrossRef]
- Tizhoosh, H.R.; Pantanowitz, L. Artificial Intelligence and Digital Pathology: Challenges and Opportunities. J. Pathol. Inform. 2018, 9, 38. [Google Scholar] [CrossRef]
- Joshi, G.; Jain, A.; Adhikari, S.; Garg, H.; Bhandari, M. FDA approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An updated 2022 landscape. medRxiv 2022. preprint. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Niioka, H.; Kumamoto, Y.; Sato, J.; Inamori, O.; Nakao, R.; Harada, Y.; Konishi, E.; Otsuji, E.; Tanaka, H.; et al. Deep-UV excitation fluorescence microscopy for detection of lymph node metastasis using deep neural network. Sci. Rep. 2019, 9, 16912. [Google Scholar] [CrossRef] [PubMed]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Silva, V.W.K.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.-Y.; Chen, C.-C.; Yu, W.-H.; Yeh, C.-J.; Chang, S.-H.; Ueng, S.-H.; Wang, T.-H.; Hsueh, C.; Kuo, C.-F.; Yeh, C.-Y. Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images. Mod. Pathol. 2021, 34, 1901–1911. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef]
- Huang, S.-C.; Chen, C.-C.; Lan, J.; Hsieh, T.-Y.; Chuang, H.-C.; Chien, M.-Y.; Ou, T.-S.; Chen, K.-H.; Wu, R.-C.; Liu, Y.-J.; et al. Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nat. Commun. 2022, 13, 3347. [Google Scholar] [CrossRef]
- Weaver, D.L.; Krag, D.N.; Manna, E.A.; Ashikaga, T.; Harlow, S.P.; Bauer, K.D. Comparison of Pathologist-Detected and Automated Computer-Assisted Image Analysis Detected Sentinel Lymph Node Micrometastases in Breast Cancer. Mod. Pathol. 2003, 16, 1159–1163. [Google Scholar] [CrossRef]
- Holten-Rossing, H.; Talman, M.M.; Jylling, A.M.B.; Lænkholm, A.; Kristensson, M.; Vainer, B. Application of automated image analysis reduces the workload of manual screening of sentinel lymph node biopsies in breast cancer. Histopathology 2017, 71, 866–873. [Google Scholar] [CrossRef]
- Clarke, G.M.; Peressotti, C.; Holloway, C.M.B.; Zubovits, J.T.; Liu, K.; Yaffe, M.J. Development and evaluation of a robust algorithm for computer-assisted detection of sentinel lymph node micrometastases. Histopathology 2011, 59, 116–128. [Google Scholar] [CrossRef]
- Pham, H.H.N.; Futakuchi, M.; Bychkov, A.; Furukawa, T.; Kuroda, K.; Fukuoka, J. Detection of Lung Cancer Lymph Node Metastases from Whole-Slide Histopathologic Images Using a Two-Step Deep Learning Approach. Am. J. Pathol. 2019, 189, 2428–2439. [Google Scholar] [CrossRef]
- Hu, Y.; Su, F.; Dong, K.; Wang, X.; Zhao, X.; Jiang, Y.; Li, J.; Ji, J.; Sun, Y. Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images. Gastric Cancer 2021, 24, 868–877. [Google Scholar] [CrossRef]
- Tang, H.; Li, G.; Liu, C.; Huang, D.; Zhang, X.; Qiu, Y.; Liu, Y. Diagnosis of lymph node metastasis in head and neck squamous cell carcinoma using deep learning. Laryngoscope Investig. Otolaryngol. 2022, 7, 161–169. [Google Scholar] [CrossRef]
- Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA 2017, 318, 2199–2210. [Google Scholar] [CrossRef]
- Bandi, P.; Geessink, O.; Manson, Q.; Van Dijk, M.; Balkenhol, M.; Hermsen, M.; Bejnordi, B.E.; Lee, B.; Paeng, K.; Zhong, A.; et al. From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Trans. Med. Imaging 2018, 38, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Cireşan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 411–418. [Google Scholar]
- dos Santos, D.F.; de Faria, P.R.; Travençolo, B.A.; Nascimento, M.Z.D. Automated detection of tumor regions from oral histological whole slide images using fully convolutional neural networks. Biomed. Signal Process. Control. 2021, 69, 102921. [Google Scholar] [CrossRef]
- Pedersen, N.J.; Jensen, D.H.; Lelkaitis, G.; Kiss, K.; Charabi, B.; Specht, L.; von Buchwald, C. Construction of a pathological risk model of occult lymph node metastases for prognostication by semi-automated image analysis of tumor budding in early-stage oral squamous cell carcinoma. Oncotarget 2017, 8, 18227–18237. [Google Scholar] [CrossRef]
- Girolami, I.; Marletta, S.; Pantanowitz, L.; Torresani, E.; Ghimenton, C.; Barbareschis, M.; Scarpa, A.; Brunelli, M.; Barresi, V.; Trimboli, P.; et al. Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects. Cytopathology 2020, 31, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Marletta, S.; Pantanowitz, L.; Santonicco, N.; Caputo, A.; Bragantini, E.; Brunelli, M.; Girolami, I.; Eccher, A. Application of Digital Imaging and Artificial Intelligence to Pathology of the Placenta. Pediatr. Dev. Pathol. 2022, 26, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Girolami, I.; Pantanowitz, L.; Marletta, S.; Hermsen, M.; van der Laak, J.; Munari, E.; Furian, L.; Vistoli, F.; Zaza, G.; Cardillo, M.; et al. Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: A systematic review. J. Nephrol. 2022, 35, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Breast Tumours, 5th ed.; WHO Classification of Tumours Series; International Agency for Research on Cancer: Lyon, France, 2019; Volume 2, Available online: https://Publications.Iarc.Fr/581 (accessed on 24 January 2023).
- Steiner, D.F.; MacDonald, R.; Liu, Y.; Truszkowski, P.; Hipp, J.D.; Gammage, C.; Thng, F.; Peng, L.; Stumpe, M.C. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am. J. Surg. Pathol. 2018, 42, 1636–1646. [Google Scholar] [CrossRef]
- Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C.; et al. Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights into the Black Box for Pathologists. Arch. Pathol. Lab. Med. 2018, 143, 859–868. [Google Scholar] [CrossRef]
- Khalil, M.-A.; Lee, Y.-C.; Lien, H.-C.; Jeng, Y.-M.; Wang, C.-W. Fast Segmentation of Metastatic Foci in H&E Whole-Slide Images for Breast Cancer Diagnosis. Diagnostics 2022, 12, 990. [Google Scholar] [CrossRef]
- Liu, J.T.C.; Glaser, A.K.; Bera, K.; True, L.D.; Reder, N.P.; Eliceiri, K.W.; Madabhushi, A. Harnessing non-destructive 3D pathology. Nat. Biomed. Eng. 2021, 5, 203–218. [Google Scholar] [CrossRef]
- Hartman, D.J.; Van Der Laak, J.A.W.M.; Gurcan, M.N.; Pantanowitz, L. Value of Public Challenges for the Development of Pathology Deep Learning Algorithms. J. Pathol. Informatics 2020, 11, 7. [Google Scholar] [CrossRef]
- Chen, Y.; Anderson, K.R.; Xu, J.; Goldsmith, J.D.; Heher, Y.K. Frozen-Section Checklist Implementation Improves Quality and Patient Safety. Am. J. Clin. Pathol. 2019, 151, 607–612. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Kim, S.; Cho, C.E.; Song, I.H.; Lee, H.J.; Ahn, S.; Park, S.Y.; Gong, G.; Kim, N. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Sci. Rep. 2020, 10, 21899. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Song, I.H.; Lee, H.; Kim, S.; Yang, D.H.; Kim, N.; Shin, D.; Yoo, Y.; Lee, K.; Kim, D.; et al. Challenge for Diagnostic Assessment of Deep Learning Algorithm for Metastases Classification in Sentinel Lymph Nodes on Frozen Tissue Section Digital Slides in Women with Breast Cancer. Cancer Res. Treat. 2020, 52, 1103–1111. [Google Scholar] [CrossRef]
- Laurent-Bellue, A.; Poullier, E.; Pomerol, J.-F.; Adnet, E.; Redon, M.-J.; Posseme, K.; Trassard, O.; Cherqui, D.; Zarca, K.; Guettier, C. Four-Year Experience of Digital Slide Telepathology for Intraoperative Frozen Section Consultations in a Two-Site French Academic Department of Pathology. Am. J. Clin. Pathol. 2020, 154, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Menter, T.; Nicolet, S.; Baumhoer, D.; Tolnay, M.; Tzankov, A. Intraoperative frozen section consultation by remote whole-slide imaging analysis–validation and comparison to robotic remote microscopy. J. Clin. Pathol. 2019, 73, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Sun, Z.; Wang, W.; Yang, Z.; Jia, J.; Feng, X.; Wang, Y.; Fang, Q.; Li, J.; Dai, H.; et al. Automatic detection of squamous cell carcinoma metastasis in esophageal lymph nodes using semantic segmentation. Clin. Transl. Med. 2020, 10, e129. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldonazzi, N.; Rizzo, P.C.; Eccher, A.; Girolami, I.; Fanelli, G.N.; Naccarato, A.G.; Bonizzi, G.; Fusco, N.; d’Amati, G.; Scarpa, A.; et al. Value of Artificial Intelligence in Evaluating Lymph Node Metastases. Cancers 2023, 15, 2491. https://doi.org/10.3390/cancers15092491
Caldonazzi N, Rizzo PC, Eccher A, Girolami I, Fanelli GN, Naccarato AG, Bonizzi G, Fusco N, d’Amati G, Scarpa A, et al. Value of Artificial Intelligence in Evaluating Lymph Node Metastases. Cancers. 2023; 15(9):2491. https://doi.org/10.3390/cancers15092491
Chicago/Turabian StyleCaldonazzi, Nicolò, Paola Chiara Rizzo, Albino Eccher, Ilaria Girolami, Giuseppe Nicolò Fanelli, Antonio Giuseppe Naccarato, Giuseppina Bonizzi, Nicola Fusco, Giulia d’Amati, Aldo Scarpa, and et al. 2023. "Value of Artificial Intelligence in Evaluating Lymph Node Metastases" Cancers 15, no. 9: 2491. https://doi.org/10.3390/cancers15092491
APA StyleCaldonazzi, N., Rizzo, P. C., Eccher, A., Girolami, I., Fanelli, G. N., Naccarato, A. G., Bonizzi, G., Fusco, N., d’Amati, G., Scarpa, A., Pantanowitz, L., & Marletta, S. (2023). Value of Artificial Intelligence in Evaluating Lymph Node Metastases. Cancers, 15(9), 2491. https://doi.org/10.3390/cancers15092491