Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Triple-Negative Breast Cancer (TNBC)
1.2. Development of Heterogeneity in TNBC
1.3. TNBC Pathogenesis
1.4. TNBC Ecology
1.5. Current Standard Therapies for TNBC
2. Oncolytic and Immuno-Oncolytic Viruses (OVs)
2.1. History of Viruses in Cancer Therapy
2.2. Genome Manipulation and Genetically Engineered Viruses
3. Preclinical OVs for TNBC
3.1. Adenovirus
3.2. Herpes Simplex Virus
3.3. Chimeric Poxvirus
3.4. Tanapoxvirus
3.5. Vaccinia Virus
3.6. Alphavirus M1
3.7. Coxsackievirus B3
3.8. Maraba Virus
3.9. Measles Virus
3.10. Mumps Virus
3.11. Newcastle Disease Virus
3.12. Reovirus
4. OVs in the Clinical Stage for TNBC
4.1. Adenovirus
4.2. Herpes Simplex Virus (T-vec)
4.3. Reovirus (Pelareorep)
4.4. Vaccinia Virus
4.5. Measles Virus
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts and Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022. [Google Scholar]
- Polyak, K. Review series introduction Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 2011–2013. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, C.; Boutsikos, P.; Papageorgis, P. Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis. Front. Oncol. 2018, 8, 31. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.K.; Carey, L. A Biology, Metastatic Patterns and Treatment of Patients with Triple-Negtive Breast Cancer. Clin. Breast Cancer 2010, 9, S73–S81. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. 2011, 121, 2750. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Gray, W.H.; Lehmann, B.D.; Bauer, J.A.; Shyr, Y.; Pietenpol, J.A. TNBC type: A subtyping tool for triple-negative breast cancer. Cancer Inform. 2012, 11, 147–156. [Google Scholar] [CrossRef]
- Hatzis, C. A Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for Invasive Breast Cancer. JAMA 2011, 305, 1873. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Cervera, N.; Charafe-Jauffret, E.; Mamessier, E.; Adélaïde, J.; Debono, S.; Houvenaeghel, G.; Maraninchi, D.; Viens, P.; et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 2006, 66, 4636–4644. [Google Scholar] [CrossRef]
- Corbin, M.; Morrison, S. Tumor heterogeneity and cancer cell plasticity. Nature 2013, 501, 328–337. [Google Scholar]
- Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta 2011, 1805, 105–117. [Google Scholar] [CrossRef]
- Merlo, L.M.F.; Pepper, J.W.; Reid, B.J.; Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 2006, 6, 924–935. [Google Scholar] [CrossRef]
- Rangel, M.C.; Bertolette, D.; Castro, N.P.; Klauzinska, M.; Cuttitta, F.; Salomon, D.S. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res. Treat. 2016, 156, 211–226. [Google Scholar] [CrossRef]
- Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef]
- Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Jo, M.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; et al. Association of Reactive Oxygen Species Levels and Radioresistance in Cancer Stem Cells. Nature 2009, 458, 780–783. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef]
- Balic, M.; Lin, H.; Young, L.; Hawes, D.; Giuliano, A.; McNamara, G.; Datar, R.H.; Cote, R.J. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 2006, 12, 5615–5621. [Google Scholar] [CrossRef]
- Ginestier, C.; Hur, M.H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C.G.; Liu, S.; et al. ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell 2007, 1, 555–567. [Google Scholar] [CrossRef]
- American Cancer Society. Breast Cancer Facts and Figure 2019 and Figure 2020; American Cancer Society: Atlanta, GA, USA, 2019; pp. 1–44. [Google Scholar]
- Eberlein, T.J. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. Yearb. Surg. 2007, 2007, 304–305. [Google Scholar] [CrossRef]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the California Cancer Registry. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef]
- Arias, A.M. Epithelial mesenchymal interactions in cancer and development. Cell 2001, 105, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Soady, K.; Smalley, M.J. Slugging their way to immortality: Driving mammary epithelial cells into a stem cell-like state. Breast Cancer Res. 2012, 14, 319. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Keckesova, Z.; Donaher, J.L.; Shibue, T.; Tischler, V.; Reinhardt, F.; Itzkovitz, S.; Noske, A.; Zürrer-Härdi, U.; Bell, G.; et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012, 148, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Pomp, V.; Leo, C.; Mauracher, A.; Korol, D.; Guo, W.; Varga, Z. Differential expression of epithelial–mesenchymal transition and stem cell markers in intrinsic subtypes of breast cancer. Breast Cancer Res. Treat. 2015, 154, 45–55. [Google Scholar] [CrossRef]
- Ito, M.; Shien, T.; Omori, M.; Mizoo, T. Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor. Breast Cancer 2015, 23, 2–5. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, X.; Yu, L.; Zhou, R.; Li, A.; Li, M.; Yang, W. Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J. Cancer 2018, 9, 604–613. [Google Scholar] [CrossRef]
- Shah Sohrab, P.; Roth Andrew, G.; Rodrigo, O.; Arusha, H.G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; Bashashati, A.; et al. The clonal and mutational evolution spectrum of primary triple negative breast cancers. Nature 2013, 486, 395–399. [Google Scholar] [CrossRef]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease; Elsevier Current Trends: Amsterdam, The Netherlands, 2015; Volume 36, pp. 822–846. [Google Scholar]
- Munzone, E.; Gray, K.P.; Fumagalli, C.; Guerini-Rocco, E.; Láng, I.; Ruhstaller, T.; Gianni, L.; Kammler, R.; Viale, G.L.; Leo, A.D.; et al. Mutational analysis of triple-negative breast cancers within the International Breast Cancer Study Group (IBCSG) Trial 22-00. Breast Cancer Res. Treat. 2018, 170, 351–360. [Google Scholar] [CrossRef]
- Tung, N.; Lin, N.U.; Kidd, J.; Allen, B.A.; Singh, N.; Wenstrup, R.J.; Hartman, A.R.; Winer, E.P.; Garber, J.E. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J. Clin. Oncol. 2016, 34, 1460–1468. [Google Scholar] [CrossRef]
- Turnbull, C.; Rahman, N. Genetic Predisposition to Breast Cancer: Past, Present, and Future. Annu. Rev. Genom. Hum. Genet. 2008, 9, 321–345. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2017. 2017. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html (accessed on 15 April 2018).
- Heitz, F.; Harter, P.; Traut, A.; Lueck, H.J.; Beutel, B.; du Bois, A. Cerebral metastases (CM) in breast cancer (BC) with focus on triple-negative tumors. J. Clin. Oncol. 2008, 26, 1010. [Google Scholar] [CrossRef]
- Lin, N.U.; Claus, E.; Sohl, J.; Razzak, A.R.; Arnaout, A.; Winer, E.P. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer. Cancer 2008, 113, 2638–2645. [Google Scholar] [CrossRef]
- Miller, B.E.; Miller, F.R.; Leith, J.; Heppner, G.H. Growth Interaction in Vivo between Tumor Subpopulations Derived from a Single Mouse Mammary Tumor Growth Interaction in Vivo between Tumor Subpopulations Derived from a Single Mouse Mammary Tumor1. Cancer Res. 1980, 40, 3977–3981. [Google Scholar]
- Caignard, A.; Martin, M.S.; Michel, M.F.; Martin, F. Interaction between two cellular subpopulations of a rat colonic carcinoma when inoculated to the syngeneic host. Int. J. Cancer 1985, 36, 273–279. [Google Scholar] [CrossRef]
- Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med. 2007, 9, 267–285. [Google Scholar] [CrossRef]
- Nagy, J.D. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol. 2004, 66, 663–687. [Google Scholar] [CrossRef]
- Jouanneau, J.; Moens, G.; Bourgeois, Y.; Poupon, M.F.; Thiery, J.P. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression. Proc. Natl. Acad. Sci. USA 1994, 91, 286–290. [Google Scholar] [CrossRef]
- Axelrod, R.; Axelrod, D.E.; Pienta, K.J. Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. USA 2006, 103, 13474–13479. [Google Scholar] [CrossRef] [PubMed]
- Heppner, G.H.; Miller, F.R. The Cellular Basis of Tumor Progression. In International Review of Cytology; Jeon, K.W., Ed.; International Review of Cytology; Academic Press: Cambridge, MA, USA, 1997; Volume 177, pp. 1–56. [Google Scholar]
- Bychkov, V.A.; Pevzner, A.M.; Nebova, J.A.; Ermakova, N.N.; Ibragimova, M.K.; Tsyganov, M.M.; Lyapunova, L.S.; Litviakov, N.V. In vitro modeling of tumor interclonal interactions using breast cancer cell lines. Exp. Oncol. 2021, 43, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Ethier, S.P. Growth factor synthesis and human breast cancer progression. J. Natl. Cancer Inst. 1995, 87, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Kuperwasser, C.; Chavarria, T.; Wu, M.; Magrane, G.; Gray, J.W.; Carey, L.; Richardson, A.; Weinberg, R.A. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. USA 2004, 101, 4966–4971. [Google Scholar] [CrossRef]
- Mintz, B.; Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 1975, 72, 3585–3589. [Google Scholar] [CrossRef]
- Kenny, P.A.; Bissell, M.J. Tumor reversion: Correction of malignant behavior by microenvironmental cues. Int. J. Cancer 2003, 107, 688–695. [Google Scholar] [CrossRef]
- Wahba, H.A.; El-hadaad, H.A. Current approaches in treatment of triple-negative breast cancer Treatment modalities of TNBC. Cancer Biol. Med. 2015, 12, 106–116. [Google Scholar] [CrossRef]
- Albain, K.; Anderson, S.; Arriagada, R.; Barlow, W.; Bergh, J.; Bliss, J.; Wood, W. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet 2012, 379, 432–444. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef]
- Bonotto, M.; Gerratana, L.; Poletto, E.; Driol, P.; Giangreco, M.; Russo, S.; Minisini, A.M.; Andreetta, C.; Mansutti, M.; Pisa, F.E.; et al. Measures of Outcome in Metastatic Breast Cancer: Insights from a Real-World Scenario. Oncologist 2014, 19, 608–615. [Google Scholar] [CrossRef]
- Conlin, A.K.; Seidman, A.D. Taxanes in Breast Cancer: An Update Corresponding author. Curr. Oncol. Rep. 2007, 9, 22–30. [Google Scholar] [CrossRef]
- US FDA Website. FDA Approves Atezolizumab for PD-L1 Positive Unresectable Locally Advanced or Metastatic Triple-Negative Breast Cancer. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negative (accessed on 12 December 2022).
- Kang, C.; Syed, Y.Y. Atezolizumab (in Combination with Nab-Paclitaxel): A Review in Advanced Triple-Negative Breast Cancer. Drugs 2020, 80, 601–607. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Dieras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Ibrahim, N.K.; Desai, N.; Legha, S.; Soon-Shiong, P.; Theriault, R.L.; Rivera, E.; Esmaeli, B.; Ring, S.E.; Bedikian, A.; Hortobagyi, G.N.; et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 2002, 8, 1038–1044. [Google Scholar]
- Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel Compared with Polyethylated Castor Oil–Based Paclitaxel in Women With Breast Cancer. J. Clin. Oncol. 2005, 23, 7794–7803. [Google Scholar] [CrossRef]
- Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324. [Google Scholar] [CrossRef]
- Chen, N.; Li, Y.; Ye, Y.; Palmisano, M.; Chopra, R.; Zhou, S. Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: Disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J. Clin. Pharmacol. 2014, 54, 1097–1107. [Google Scholar] [CrossRef]
- Gardner, E.R.; Dahut, W.L.; Scripture, C.D.; Jones, J.; Aragon-Ching, J.B.; Desai, N.; Hawkins, M.J.; Sparreboom, A.; Figg, W.D. Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin. Cancer Res. 2008, 14, 4200–4205. [Google Scholar] [CrossRef]
- Brufsky, A. Nab-Paclitaxel for the treatment of breast cancer: An update across treatment settings. Exp. Hematol. Oncol. 2017, 6, 7. [Google Scholar] [CrossRef]
- Suryawanshi, Y.R.; Zhang, T.; Essani, K. Oncolytic viruses: Emerging options for the treatment of breast cancer. Med. Oncol. 2017, 34, 43. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 24 March 2023).
- Zhu, W.; Zhang, H.; Shi, Y.; Song, M.; Zhu, B.; Wei, L. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol. Ther. 2013, 14, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Bramante, S.; Koski, A.; Liikanen, I.; Vassilev, L.; Oksanen, M.; Siurala, M.; Heiskanen, R.; Hakonen, T.; Joensuu, T.; Kanerva, A.; et al. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. Oncoimmunology 2016, 5, e1078057. [Google Scholar] [CrossRef] [PubMed]
- Gholami, S.; Chen, C.-H.; Lou, E.; Belin, L.J.; Fujisawa, S.; Longo, V.A.; Chen, N.G.; Gönen, M.; Zanzonico, P.B.; Szalay, A.A.; et al. Vaccinia virus GLV-1h153 in combination with 131I shows increased efficiency in treating triple-negative breast cancer. FASEB J. 2014, 28, 676–682. [Google Scholar] [CrossRef]
- Gholami, S.; Marano, A.; Chen, N.G.; Aguilar, R.J.; Frentzen, A.; Chen, C.-H.; Lou, E.; Fujisawa, S.; Eveno, C.; Belin, L.; et al. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res. Treat. 2014, 148, 489–499, Erratum in Breast Cancer Res. Treat. 2016, 156, 607–608. [Google Scholar] [CrossRef]
- Suryawanashi, Y.R.; Zhang, T.; Woyczesczyk, H.M.; Christie, J.; Byers, E.; Kohler, S.; Eversole, R.; Mackenzie, C.; Essani, K. T-independent response mediated by oncolytic tanapoxvirus recombinants expressing interleukin-2 and monocyte chemoattractant protein-1 suppresses human triple negative breast tumors. Med. Oncol. 2017, 34, 112. [Google Scholar] [CrossRef]
- Choi, A.H.; O′Leary, M.P.; Chaurasiya, S.; Lu, J.; Kim, S.I.; Fong, Y.; Chen, N.G. Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery 2017, 163, 336–342. [Google Scholar] [CrossRef]
- Bourgeois-Daigneault, M.C.; St-Germain, L.E.; Roy, D.G.; Pelin, A.; Aitken, A.S.; Arulanandam, R.; Falls, T.; Garcia, V.; Diallo, J.S.; Bell, J.C. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res. 2016, 18, 83. [Google Scholar] [CrossRef]
- Gromeier, M.; Nair, S.K. Recombinant Poliovirus for Cancer Immunotherapy. Annu. Rev. Med. 2018, 69, 289–299. [Google Scholar] [CrossRef]
- Jing, Y.; Chavez, V.; Ban, Y.; Acquavella, N.; El-Ashry, D.; Pronin, A.; Chen, X.; Merchan, J.R. Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol. Cancer Res. 2017, 15, 1410–1420. [Google Scholar] [CrossRef]
- Cody, J.J.; Markert, J.M.; Hurst, D.R. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells. PLoS ONE 2014, 9, e92919. [Google Scholar] [CrossRef]
- Laurie, S.A.; Bell, J.C.; Atkins, H.L.; Roach, J.; Bamat, M.K.; O’Neil, J.D.; Roberts, M.S.; Groene, W.S.; Lorence, R.M. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin. Cancer Res. 2006, 12, 2555–2562. [Google Scholar] [CrossRef]
- DePace, N. Sulla Scomparsa di un enorme cancro vegetante del callo dell’utero senza cura chirurgica. Ginecologia 1912, 9, 82–89. [Google Scholar]
- Dock, G. The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 1904, 127, 563–592. [Google Scholar] [CrossRef]
- Pelner, L.; Fowler, G.A.; Nauts, H.C. Effects of concurrent infections and their toxins on the course of leukemia. Acta Med. Scand. Suppl. 1958, 338, 1–47. [Google Scholar] [CrossRef]
- Bierman, H.R.; Crile, D.M.; Dod, K.S.; Kelly, K.H.; Petrakis, N.L.; White, L.P.; Shimkin, M.B. Remissions in leukemia of childhood following acute infectious disease: Staphyloccous and streptococcus, varicella, and feline panleukopenia. Cancer 1953, 6, 591–605. [Google Scholar] [CrossRef]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P. A Virus Obtained from Influenza Patients. Lancet 1933, 222, 66–68. [Google Scholar] [CrossRef]
- Sinkovics, J.G.; Horvath, J.C. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch. Immunol. Ther. Exp. 2008, 56, 178–216. [Google Scholar] [CrossRef]
- Sinkovics, J.G.; Horvath, J.C. Newcastle disease virus (NDV): Brief history of its oncolytic strains. J. Clin. Virol. 2000, 16, 1–15. [Google Scholar] [CrossRef]
- Newman, W.; Southam, C.M. Virus treatment in advanced cancer. A pathological study of fifty-seven cases. Cancer 1954, 7, 106–118. [Google Scholar] [CrossRef]
- Hoster, H.A.; Zanes, R.P., Jr.; Haam, E.V. Studies in Hodgkin’s Syndrome IX. The Association of “Viral” Hepatitis and Hodgkin’s Disease (A Preliminary Report). Cancer Res. 1949, 9, 473–480. [Google Scholar]
- Asada, T. Treatment of human cancer with mumps virus. Cancer 1974, 34, 1907–1928. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Hasumi, K.; Okadaira, Y.; Yaminishi, K.; Takahashi, M. Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect. 1988, 12, 487–495. [Google Scholar]
- Okuno, Y.; Asada, T.; Yamanishi, K.; Otsuka, T.; Takahashi, M.; Tanioka, T.; Aoyama, H.; Fukui, O.; Matsumoto, K.; Uemura, F.; et al. Studies on the use of mumps virus for treatment of human cancer. Biken J. 1978, 21, 37–49. [Google Scholar]
- Sato, M.; Urade, M.; Sakuda, M.; Shirasuna, K.; Yoshida, H.; Maeda, N.; Yanagawa, T.; Morimoto, M.; Yura, Y.; Miyazaki, T.; et al. Attenuated mumps virus therapy of carcinoma of the maxillary sinus. Int. J. Oral. Surg. 1979, 8, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.E. The destructive effects of the virus of Russian Far East encephalitis on the transplantable mouse sarcoma 180. Cancer 1949, 2, 525–534. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Johnson, N.; Phipps, L.P.; Stephenson, J.R.; Fooks, A.R.; Solomon, T. Tick-borne encephalitis virus—A review of an emerging zoonosis. J. Gen. Virol. 2009, 90, 1781–1794. [Google Scholar] [CrossRef]
- Moore, A.E. Inhibition of growth of five transplantable mouse tumours by the virus of Russian far east encephalitis. Cancer 1951, 4, 375–382. [Google Scholar] [CrossRef]
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007, 15, 651–659. [Google Scholar] [CrossRef]
- Sinkovics, J.G. Enhancement of carcinostatic activity of Newcastle Disease Virus (NDV) associated with adaptation fo suckling mouse brain. Bact. Proc 1957, 96, M108. [Google Scholar]
- Sinkovics, J.G. Interactions of the Newcastle Disease Virus with mouse tissues. Arch. Ges. Virusforsch. 1960, 10, 103–125. [Google Scholar] [CrossRef]
- Moore, A.E. Viruses with oncolytic properties and their adaptation in tumours. Ann. N. Y. Acad. Sci. 1952, 54, 945–952. [Google Scholar] [CrossRef]
- Hammon, W.M.; Yohn, D.S.; Casto, B.C.; Atchison, R.W. Oncolytic potentials of nonhuman viruses for human cancer. I. Effects of twenty-four viruses on human cancer cell lines. J. Natl. Cancer Inst. 1963, 31, 329–345. [Google Scholar]
- Yohn, D.S.; Hammon, W.M.; Atchison, R.W.; Casto, B.C. Oncolytic potentials of nonhuman viruses for human cancer. II. Effects of five viruses on heterotransplantable human tumors. J. Natl. Cancer Inst. 1968, 41, 523–529. [Google Scholar]
- Southam, C.M.; Moore, A.E. West Nile, Ilheus, and Bunyamwera virus infections in man. Am. J. Trop. Med. Hyg. 1951, 31, 724–741. [Google Scholar] [CrossRef]
- Ginder, D.R. Tumor-destroying effects of viruses. Antimetabolites and Cancer. Am. Assn. Adv. Sci. 1955, 243–251. [Google Scholar]
- Southam, C.M.; Moore, A.E. Clinical studies of viruses as antineoplastic agents, with particular reference to Egypt 101 virus. Cancer 1952, 5, 1025–1034. [Google Scholar] [CrossRef]
- Moore, A.E. Effects of viruses on tumors. Annu. Rev. Microbiol. 1954, 8, 393–410. [Google Scholar] [CrossRef]
- Cassel, W.A.; Garrett, R.E. Newcastle disease virus as an antineoplastic agent. Cancer 1965, 18, 863–868. [Google Scholar] [CrossRef]
- Southam, C.M. Present status of oncolytic virus studies. Trans. N. Y. Acad. Sci. 1960, 22, 657–673. [Google Scholar] [CrossRef]
- Hoskins, M. A protective action of neurotropic against viscerotropic yellow fever virus in Macaccus rhesus. Am. J. Trop. Med. 1935, 15, 675–680. [Google Scholar] [CrossRef]
- Speir, R.W.; Southam, C.M. Interference of Newcastle disease virus with neuropathogenicity of oncolytic viruses in mice. Ann. N. Y. Acad. Sci. 1960, 83, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F. Prospects for human gene therapy. Science 1984, 226, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F. Human gene therapy. Science 1992, 256, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S. Use of viruses as carriers of added genetic information. Nature 1968, 219, 749–751. [Google Scholar] [CrossRef]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef]
- Ott, P.A.; Hodi, F.S. Talimogene laherparepvec for the treatment of advanced melanoma. Clin. Cancer Res. 2016, 22, 3127–3131. [Google Scholar] [CrossRef]
- Kwan, A.; Winder, N.; Muthana, M. Oncolytic virotherapy treatment of breast cancer: Barriers and recent advances. Viruses 2021, 13, 1128. [Google Scholar] [CrossRef]
- Cejalvo, J.M.; Falato, C.; Villanueva, L.; Tolosa, P.; González, X.; Pascal, M.; Canes, J.; Gavilá, J.; Manso, L.; Pascual, T.; et al. Oncolytic viruses: A new immunotherapeutic approach for breast cancer treatment? Cancer Treat. Rev. 2022, 106, 102392. [Google Scholar] [CrossRef]
- Yano, S.; Takehara, K.; Kishimoto, H.; Tazawa, H.; Urata, Y.; Kagawa, S.; Bouvet, M.; Fujiwara, T.; Hoffman, R.M. OBP-401-GFP telomerase-dependent adenovirus illuminates and kills high-metastatic more effectively than low-metastatic triple-negative breast cancer in vitro. Cancer Gene Ther. 2017, 24, 45–47. [Google Scholar] [CrossRef]
- Yano, S.; Takehara, K.; Kishimoto, H.; Tazawa, H.; Urata, Y.; Kagawa, S.; Bouvet, M.; Fujiwara, T. High-metastatic triple-negative breast-cancer variants selected in vivo become chemoresistant in vitro. Vitr. Cell Dev. Biol. Anim. 2017, 53, 285–287. [Google Scholar] [CrossRef]
- Garza-Morales, R.; Gonzalez-Ramos, R.; Chiba, A.; De Oca-Luna, R.M.; McNally, L.R.; McMasters, K.M.; Gomez-Gutierrez, J.G. Temozolomide enhances triple-negative breast cancer virotherapy in vitro. Cancers 2018, 10, 144. [Google Scholar] [CrossRef]
- Ang, L.; Guo, L.; Wang, J.; Huang, J.; Lou, X.; Zhao, M. Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Lett. 2020, 479, 42–53. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, W.; Zhang, Y.; Dong, X.; Liu, C.; Yi, J.; Zhang, S.; Wen, C.; Zheng, L.; Wang, H. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model. Cancer Gene Ther. 2022, 29, 456–465. [Google Scholar] [CrossRef]
- Rodríguez, M.D.C.R.; Rodríguez, I.G.; Nattress, C.; Qureshi, A.; Halldén, G. HDAC Inhibitors Enhance Efficacy of the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T in Pancreatic and Triple-Negative Breast Cancer Models. Viruses 2022, 14, 1006. [Google Scholar] [CrossRef]
- Ang, L.; Li, J.; Dong, H.; Wang, C.; Huang, J.; Li, M.; Zhao, M.; Su, C.; Wu, Q. Chimeric Oncolytic Adenovirus Armed Chemokine Rantes for Treatment of Breast Cancer. Bioengineering 2022, 9, 342. [Google Scholar] [CrossRef]
- Miyajima, N.; Eissa, I.R.; Abdelmoneim, M.; Naoe, Y.; Ichinose, T.; Matsumura, S.; Bustos-Villalobos, I.; Mukoyama, N.; Morimoto, D.; Shibata, M.; et al. S-1 facilitates canerpaturev (C-REV)-induced antitumor efficacy in a triple-negative breast cancer model. Nagoya J. Med. Sci. 2021, 83, 683–696. [Google Scholar] [CrossRef]
- El Sayed, Y.M.; Sadée, W. Metabolic activation of R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil (ftorafur) to 5-fluorouracil by soluble enzymes. Cancer Res. 1983, 43, 4039–4044. [Google Scholar]
- Filipazzi, P.; Valenti, R.; Huber, V.; Pilla, L.; Canese, P.; Iero, M.; Castelli, C.; Mariani, L.; Parmiani, G.; Rivoltini, L. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 2007, 25, 2546–2553. [Google Scholar] [CrossRef]
- Bronte, V.; Serafini, P.; Mazzoni, A.; Segal, D.M.; Zanovello, P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003, 24, 301–305. [Google Scholar] [CrossRef]
- Rodriguez, P.C.; Hernandez, C.P.; Quiceno, D.; Dubinett, S.M.; Zabaleta, J.; Ochoa, J.B.; Gilbert, J.; Ochoa, A.C. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 2005, 202, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, S.; Gupta, K.; Pisarev, V.; Kinarsky, L.; Sherman, S.; Kang, L.; Herber, D.L.; Schneck, J.; Gabrilovich, D.I. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 2007, 13, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Kusmartsev, S.; Gabrilovich, D.I. Inhibition of myeloid cell differentiation in cancer: The role of reactive oxygen species. J. Leukoc. Biol. 2003, 74, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; MacLean, A.R.; McKie, E.A.; Harland, J. The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J. Virol. 1997, 71, 9442–9449. [Google Scholar] [CrossRef]
- Raafat, N.; Sadowski-Cron, C.; Mengus, C.; Heberer, M.; Spagnoli, G.C.; Zajac, P. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope. Int. J. Cancer 2011, 131, E659–E669. [Google Scholar] [CrossRef]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef]
- Pol, J.; Kroemer, G.; Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2016, 5, e1115641. [Google Scholar] [CrossRef]
- O′Leary, M.P.; Warner, S.G.; Kim, S.I.; Chaurasiya, S.; Lu, J.; Choi, A.H.; Park, A.K.; Woo, Y.; Fong, Y.; Chen, N.G. A Novel Oncolytic Chimeric Orthopoxvirus Encoding Luciferase Enables Real-Time View of Colorectal Cancer Cell Infection. Mol. Ther. Oncolytics 2018, 9, 13–21. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Yang, A.; Zhang, Z.; Lu, J.; Valencia, H.; Kim, S.I.; Woo, Y.; Warner, S.G.; Olafsen, T.; Zhao, Y.; et al. A comprehensive preclinical study supporting clinical trial of oncolytic chimeric poxvirus CF33-hNIS-anti-PD-L1 to treat breast cancer. Mol. Ther. Methods Clin. Dev. 2022, 24, 102–116. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Chen, N.G.; Lu, J.; Martin, N.; Shen, Y.; Kim, S.-I.; Warner, S.G.; Woo, Y.; Fong, Y. A chimeric poxvirus with J2R (thymidine kinase) deletion shows safety and anti-tumor activity in lung cancer models. Cancer Gene Ther. 2020, 27, 125–135. [Google Scholar] [CrossRef]
- Downie, A.W.; Taylor-Robinson, C.H.; Caunt, A.E.; Nelson, G.S.; Manson-Bahr, P.E.; Matthews, T.C. Tanapox: A new disease caused by a pox virus. Br. Med. J. 1971, 1, 363–368. [Google Scholar] [CrossRef]
- Jezek, Z.; Arita, I.; Szczeniowski, M.; Paluku, K.M.; Ruti, K.; Nakano, J.H. Human tanapox in Zaire: Clinical and epidemiological observations on cases confirmed by laboratory studies. Bull. World Health Organ. 1985, 63, 1027–1035. [Google Scholar]
- Nazarian, S.H.; Barrett, J.W.; Stanford, M.M.; Johnston, J.B.; Essani, K.; McFadden, G. Tropism of Tanapox virus infection in primary human cells. Virology 2007, 368, 32–40. [Google Scholar] [CrossRef]
- Henney, C.S.; Kuribayashi, K.; Kern, D.E.; Gillis, S. Interleukin-2 augments natural killer cell activity. Nature 1981, 291, 335–338. [Google Scholar] [CrossRef]
- Han, X.; Wilbanks, G.D.; Devaja, O.; Ruperelia, V.; Raju, K.S. IL-2 Enhances Standard IFNγ/LPS Activation of Macrophage Cytotoxicity to Human Ovarian Carcinoma in Vitro: A Potential for Adoptive Cellular Immunotherapy. Gynecol. Oncol. 1999, 75, 198–210. [Google Scholar] [CrossRef]
- Carr, M.W.; Roth, S.J.; Luther, E.; Rose, S.S.; Springer, T.A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 1994, 91, 3652–3656. [Google Scholar] [CrossRef]
- Xu, L.L.; Warren, M.K.; Rose, W.L.; Gong, W.; Wang, J.M. Human recombinant monocyte chemotactic protein and other c-c chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol. 1996, 60, 365–371. [Google Scholar] [CrossRef]
- Collington, S.J.; Hallgren, J.; Pease, J.E.; Jones, T.G.; Rollins, B.J.; Westwick, J.; Austen, K.F.; Williams, T.J.; Gurish, M.F.; Weller, C.L. The role of the CCL2/CCR2 axis in mouse mast cell migration in vitro and in vivo. J. Immunol. 2010, 184, 6114–6123. [Google Scholar] [CrossRef]
- Gholami, S.; Chen, C.-H.; Lou, E.; De Brot, M.; Fujisawa, S.; Chen, N.G.; Szalay, A.A.; Fong, Y. Vaccinia Virus GLV-1h153 Is Effective in Treating and Preventing Metastatic Triple-Negative Breast Cancer. Ann. Surg. 2012, 256, 437–445. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Liang, J.; Li, K.; Zhu, W.; Fu, L.; Wang, F.; Zheng, X.; Shi, H.; Wu, S.; et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc. Natl. Acad. Sci. USA 2014, 111, E4504–E4512. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Tan, J.; Zhang, Y.; Wong, C.W.; Lin, Z.; Liu, X.; Sander, M.; Yang, X.; Liang, L.; et al. Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene 2021, 40, 4783–4795. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Bahreyni, A.; Liu, H.; Mohamud, Y.; Xue, Y.C.; Zhang, J.; Luo, H. A new miRNA-Modified coxsackievirus B3 inhibits triple negative breast cancer growth with improved safety profile in immunocompetent mice. Cancer Lett. 2022, 548, 215849. [Google Scholar] [CrossRef] [PubMed]
- Nohata, N.; Hanazawa, T.; Enokida, H.; Seki, N. MicroRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget 2012, 3, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Brun, J.; McManus, D.; Lefebvre, C.; Hu, K.; Falls, T.; Atkins, H.; Bell, J.C.; McCart, J.A.; Mahoney, D.; Stojdl, D.F. Identification of genetically modified maraba virus as an oncolytic rhabdovirus. Mol. Ther. 2010, 18, 1440–1449. [Google Scholar] [CrossRef]
- Bourgeois-Daigneault, M.C.; Roy, D.G.; Aitken, A.S.; El Sayes, N.; Martin, N.T.; Varette, O.; Falls, T.; St-germain, L.E.; Pelin, A.; Lichty, B.D.; et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci. Transl. Med. 2018, 10, eaao1641. [Google Scholar] [CrossRef]
- Lal, G.; Rajala, M.S. Combination of oncolytic measles virus armed with BNiP3, a pro-apoptotic gene and paclitaxel induces breast cancer cell death. Front. Oncol. 2019, 9, 676. [Google Scholar] [CrossRef]
- Jing, Y.; Tong, C.; Zhang, J.; Nakamura, T.; Iankov, I.; Russell, S.J.; Merchan, J.R. Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 2009, 69, 1459–1468. [Google Scholar] [CrossRef]
- Xu, Y.; Hagege, J.; Doublet, J.D.; Callard, P.; Sraer, J.D.; Rønne, E.; Rondeau, E. Endothelial and macrophage upregulation of urokinase receptor expression in human renal cell carcinoma. Hum. Pathol. 1997, 28, 206–213. [Google Scholar] [CrossRef]
- Hildenbrand, R.; Schaaf, A. The urokinase-system in tumor tissue stroma of the breast and breast cancer cell invasion. Int. J. Oncol. 2009, 34, 15–23. [Google Scholar] [CrossRef]
- Behrens, M.D.; Stiles, R.J.; Pike, G.M.; Sikkink, L.A.; Zhuang, Y.; Yu, J.; Wang, L.; Boughey, J.C.; Goetz, M.P.; Federspiel, M.J. Oncolytic Urabe mumps virus: A promising virotherapy for triple-negative breast cancer. Mol. Ther. Oncolytics 2022, 27, 239–255. [Google Scholar] [CrossRef]
- Faranoush, P.; Jahandideh, A.; Nekouian, R.; Mortazavi, P. Evaluation of the in vitro and in vivo effect of liposomal doxorubicin along with oncolytic Newcastle disease virus on 4T1 cell line: Animal preclinical research. Vet. Med. Sci. 2023, 1–12. [Google Scholar] [CrossRef]
- Rodriguez, S.; Roxana, M.; Raghuram, V.; Berry, J.T.L.; Joshi, G.N.; Mainou, B.A. Noncanonical Cell Death Induction by Reassortant Reovirus. J. Virol. 2020, 94, e01613-20. [Google Scholar]
- Stewart, R.M.R.; Berry, J.T.L.; Berger, A.K.; Yoon, B.; Hirsch, A.L. Enhanced Killing of Triple-Negative Breast Cancer Cells by Reassortant Reovirus and Topoisomerase Inhibitors. J. Virol. 2019, 93, e01411-19. [Google Scholar]
- Berry, J.T.L.; Muñoz, L.E.; Rodríguez Stewart, R.M.; Selvaraj, P.; Mainou, B.A. Doxorubicin Conjugation to Reovirus Improves Oncolytic Efficacy in Triple-Negative Breast Cancer. Mol. Ther. Oncolytics 2020, 18, 556–572. [Google Scholar] [CrossRef]
- Cook, M.; Chauhan, A. Clinical application of oncolytic viruses: A systematic review. Int. J. Mol. Sci. 2020, 21, 7505. [Google Scholar] [CrossRef]
- Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 2017, 170, 1109–1119.e10. [Google Scholar] [CrossRef]
- Hasenburg, A.; Tong, X.W.; Rojas-Martinez, A.; Nyberg-Hoffman, C.; Kieback, C.C.; Kaplan, A.; Kaufman, R.H.; Ramzy, I.; Aguilar-Cordova, E.; Kieback, D.G. Thymidine kinase gene therapy with concomitant topotecan chemotherapy for recurrent ovarian cancer. Cancer Gene Ther. 2000, 7, 839–844. [Google Scholar] [CrossRef]
- Bernicker, E.H.; Teh, B.S.; Butler, B.; Chang, J.C. Abstract CT064: Trial of SBRT and in-situ gene therapy followed by nivolumab in metastatic non-small cell lung carcinoma (ENSIGN). Cancer Res. 2017, 77, CT064. [Google Scholar] [CrossRef]
- Soliman, H.; Hogue, D.; Han, H.; Mooney, B.; Costa, R.; Lee, M.C.; Niell, B.; Williams, A.; Chau, A.; Falcon, S.; et al. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: A phase 2 trial. Nat. Med. 2023, 29, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Haines, B.B.; Denslow, A.; Grzesik, P.; Lee, J.S.; Farkaly, T.; Hewett, J.; Wambua, D.; Kong, L.; Behera, P.; Jacques, J.; et al. ONCR-177, an oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Cancer Immunol. Res. 2021, 9, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Soliman, H.; Falchook, G.; Owonikoko, T.; Spreafico, A.; Massarelli, E.; McKean, M.; Chow, L.; Ott, P.; Wesolowski, R.; et al. 511 Initial results of a phase 1 study of intratumoral ONCR-177, an oncolytic herpes-simplex virus-1 expressing five immunomodulatory transgenes, in subjects with advanced injectable tumors. J. Immunother. Cancer 2021, 9, A542. [Google Scholar] [CrossRef]
- Penheiter, A.R.; Wegman, T.R.; Classic, K.L.; Dingli, D.; Bender, C.E.; Russell, S.J.; Carlson, S.K. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. Am. J. Roentgenol. 2010, 195, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Greiner, S.M.; Harvey, M.E.; Griesmann, G.; Kuffel, M.J.; Buhrow, S.A.; Federspiel, M.; Ames, M.M.; Dingli, D.; Schweikart, K.; et al. Preclinical Pharmacology and Toxicology of Intravenous MV-NIS, an Oncolytic Measles Virus Administered With or Without Cyclophosphamide. Clin. Pharmacol. Ther. 2009, 82, 700–710. [Google Scholar] [CrossRef]
- Liszewski, M.K.; Post, T.W.; Atkinson, J.P. Membrane Cofactor Protein (MCP or CD46): Newest Member of the Regulators of Complement Activation Gene Cluster. Annu. Rev. Immunol 1991, 9, 431–455. [Google Scholar] [CrossRef]
- Jurianz, K.; Ziegler, S.; Garcia-Schüler, H.; Kraus, S.; Bohana-Kashtan, O.; Fishelson, Z.; Kirschfink, M. Complement resistance of tumor cells: Basal and induced mechanisms. Mol. Immunol. 1999, 36, 929–939. [Google Scholar] [CrossRef]
- Dörig, R.E.; Marcil, A.; Chopra, A.; Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993, 75, 295–305. [Google Scholar] [CrossRef]
- Anderson, B.D.; Nakamura, T.; Russell, S.J.; Peng, K.W. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004, 64, 4919–4926. [Google Scholar] [CrossRef]
- Oglesby, T.J.; White, D.; Tedja, I.; Liszewski, K.; Wright, L.; Van den Bogarde, J.; Atkinson, P. Protection of mammalian cells from complement-mediated lysis by transfection of human membrane cofactor protein and decay-accelerating factor. Trans. Assoc. Am. Physicians 1991, 104, 164–172. [Google Scholar]
- Adams, E.M.; Brown, M.C.; Nunge, M.; Krych, M.; Atkinson, J.P. Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. J. Immunol. 1991, 147, 3005–3011. [Google Scholar] [CrossRef]
- Cimermancic, P.; Weinkam, P.; Rettenmaier, T.J.; Bichmann, L.; Keedy, D.A.; Woldeyes, R.A.; Schneidman-duhovny, D.; Omar, N.; Mitchell, J.C.; Wells, J.A.; et al. Phase I Trial of Systemic Administration of Edmonston Strain of Measles Virus, Genetically Engineered to Express the Sodium Iodide Symporter in Patients with Recurrent or Refractory Multiple Myeloma. Leukemia 2017, 428, 709–719. [Google Scholar] [CrossRef]
- Aref, S.; Bailey, K.; Fielding, A. Measles to the rescue: A review of oncolytic measles virus. Viruses 2016, 8, 294. [Google Scholar] [CrossRef]
- Viker, K.B.; Steele, M.B.; Iankov, I.D.; Concilio, S.C.; Ammayappan, A.; Bolon, B.; Jenks, N.J.; Goetz, M.P.; Panagioti, E.; Federspiel, M.J.; et al. Preclinical safety assessment of MV-s-NAP, a novel oncolytic measles virus strain armed with an H. pylori immunostimulatory bacterial transgene. Mol. Ther. Methods Clin. Dev. 2022, 26, 532–546. [Google Scholar] [CrossRef]
- Kawamura, Y.; Hua, L.; Gurtner, A.; Wong, E.; Kiyokawa, J.; Shah, N.; Gorham, J.; Wakimoto, H.H.; Rabkin, S.D.; Martuza, R.L.; et al. Histone deacetylase inhibitors enhance oncolytic herpes simplex virus therapy for malignant meningioma. Biomed. Pharmacother. 2022, 155, 113843. [Google Scholar] [CrossRef]
Virus Platform | Viral Recombinant | Genetic Modifications | Adjuvant Therapies | References |
---|---|---|---|---|
Adenovirus | OBP-401 | hTERT GFP | - | [117,118] |
P55-HTERT-HRE-TRAIL | hTERT HRE promoter TRAIL | - | [69] | |
OAd-mCherry | ΔE1ACR2 (Δ24) ADV serotype 3 surface receptor binding protein mCherry | - | [119] | |
AdSVP-lncRNAi9 | Synthetic ORF of nine oncogenic miRNAs expressed in TNBCs inserted into the E3 region | - | [120] | |
rAd.GM | hTERT hGM-CSF | Atezolizumab Ipilimumab | [121] | |
Ad5-3Δ-A20T | ΔE1ACR2 ΔE1B19K Surface receptor targeting of αvβ6 integrin | HDACis: Scriptaid MS275 Romidepsin Trichostatin A | [122] | |
Ad5F11bSP-Rantes | Fiber knob sequence of Ad11b Rantes | - | [123] | |
Herpes simplex virus | Canerpaturev | ΔUL43 ΔUL49.5 ΔUL55 ΔUL56 Overexpression of UL53 and UL54 | 5-FU S-1 | [124] |
Chimeric poxvirus | CF33-hNIS-anti-PD-L1 | Chimera of nine parental poxvirus strains (cowpox virus, raccoonpox virus, rabbitpox virus, WR, IHD, Elstree, CL, AS, and Lederle-Chorioallantoic strains of VV) hNIS Anti-PD-L1 antibody | - | [135,136] |
CF189 | Chimera of orf virus strain NZ2 and pseudocowpox virus strain TJS | - | [74] | |
Tanapoxvirus | TPV/Δ66R/mIL-2 | Δ66R (viral TK) Mouse interleukin-2 | - | [73] |
TPV/Δ66R/mCCL2 | Δ66R Monocyte chemoattractant protein 1 | - | [73] | |
Vaccinia virus | GLV-1h153 | ΔJ2R (viral TK) ΔA56R (viral hemagglutinin) Renilla luciferase-Aequorea green fluorescent protein fusion Beta-galactosidase Beta-glucuronidase hNIS | Radioactive iodine and SPECT imaging | [71] |
GLV-1h164 | ΔJ2R (viral TK) ΔA56R (viral hemagglutinin) Renilla luciferase-Aequorea GFPfusion Beta-galactosidase Beta-glucuronidase Anti-VEGF antibody | - | [72] |
Virus Platform | Viral Recombinant | Genetic Modifications | Adjuvant Therapies | References |
---|---|---|---|---|
Alphavirus | M1 | GFP | Doxorubicin | [147,148] |
Coxsackievirus B3 | miR-CVB3-1.1 | Targeting sequences of oncogenic miRNAs (miR-145, miR-143, muscle-specific miR-1, and miR-216) | - | [150,151] |
Marabavirus | MG1-GFP | L123W in M protein Q242R in G protein GFP | Paclitaxel Anti-PD-L1 antibody Anti-CTLA-4 antibody | [75,152,153] |
Measles virus | rMV-BNiP3 | BNiP3 | Paclitaxel H2 compound | [154] |
MV-m-uPA MV-h-uPA | Retargeting to mouse (m) or human (h) urokinase receptor (uPAR) | - | [77] | |
Mumps virus | MuV-UA/MuV-UC | None | - | [158] |
Newcastle disease virus | NDV (LaSota strain) | None | Doxorubicin | [159] |
Reovirus | r2Reovirus | Chimera of T1L (serotype 1) and T3D (serotype 3) segments Doxorubicin conjugation | Topoisomerase inhibitors | [160,161,162] |
Virus | Phase | Title | Treatment Composition (OVs bolded) | Trial Status | Clinicaltrial.gov identifier |
---|---|---|---|---|---|
Adenovirus (MEM-288) | I | Study of MEM-288 oncolytic virus in solid tumors, including non-small-cell lung cancer (NSCLC) | MEM-288 | Recruiting | NCT05076760 |
Adenovirus (ADV/HSV-tk) | II | SBRT and oncolytic virus therapy before pembrolizumab for metastatic TNBC and NSCLC (STOMP) | ADV/HSV-tk Valacyclovir SBRT Pembrolizumab | Active, not recruiting | NCT03004183 |
Herpes simplex virus (ONCR-177) | I | Study of ONCR-177 alone and in combination with PD-1 blockade in adult subjects with advanced and/or refractory cutaneous, subcutaneous, or metastatic nodal solid tumors, or with liver metastases of solid tumors | ONCR-177 Pembrolizumab | Active, not recruiting | NCT04348916 |
Herpes simplex virus (Imlygic) | I | Ipilimumab, nivolumab, and talimogene laherparepvec before surgery in treating participants with localized, triple-negative, or estrogen receptor-positive HER2-negative breast cancer | Talimogene Laherparepvec Ipilimumab Nivolumab | Active, not recruiting | NCT04185311 |
Herpes simplex virus (Imlygic) | I/II | Talimogene laherparepvec in combination with neoadjuvant chemotherapy in triple-negative breast cancer | Talimogene Laherparepvec Paclitaxel Doxorubicin Cyclophosphamide Surgery | Active, not recruiting | NCT02779855 |
Reovirus (Pelareorep) | II | INCMGA00012 and pelareorep for the treatment of metastatic triple-negative breast cancer, IRENE study | Pelareorep Retifanlimab | Recruiting | NCT04445844 |
Reovirus (Pelareorep) | I | A window-of-opportunity study on pelareorep in early breast cancer (AWARE-1) | Pelareorep Letrozole Atezolizumab Trastuzumab | Terminated (enrollment concluded and primary objectives were met) | NCT04102618 |
Vaccinia virus (BT-001) | I/IIa | A clinical trial assessing BT-001 alone and in combination with pembrolizumab in metastatic or advanced solid tumors | BT-001 Pembrolizumab | Recruiting | NCT04725331 |
Measles virus (MV-NIS) | I | Viral therapy in treating patients with recurrent or metastatic squamous cell carcinoma of head and neck cancer or metastatic breast cancer | MV-NIS | Completed | NCT01846091 |
Measles virus (MV-s-NAP) | I | A vaccine (MV-s-NAP) for the treatment of patients with invasive metastatic breast cancer | MV-s-NAP | Recruiting | NCT04521764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaco, M.L.; Idris, O.A.; Essani, K. Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers 2023, 15, 2393. https://doi.org/10.3390/cancers15082393
Monaco ML, Idris OA, Essani K. Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers. 2023; 15(8):2393. https://doi.org/10.3390/cancers15082393
Chicago/Turabian StyleMonaco, Michael L., Omer A. Idris, and Karim Essani. 2023. "Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses" Cancers 15, no. 8: 2393. https://doi.org/10.3390/cancers15082393
APA StyleMonaco, M. L., Idris, O. A., & Essani, K. (2023). Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers, 15(8), 2393. https://doi.org/10.3390/cancers15082393