Technical Aspects of Motor and Language Mapping in Glioma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Maximizing Extent of Resection Is the Standard of Care
3. Nuances of Intraoperative Motor Mapping Techniques and Measurements
3.1. Cortical and Subcortical Motor Mapping
3.2. Tractography for the Corticospinal Tract (CST)
3.3. Motor Evoked Potentials (MEPs)
3.4. Awake versus Asleep Motor Mapping
3.5. Stimulation Techniques and Nuances
Cortical | Subcortical | Transcranial | |||
---|---|---|---|---|---|
Monopolar | Bipolar | Monopolar | Bipolar | Scalp Electrodes | |
Frequency (Hz) | 250–500 | 50–60 | 250–500 | 50–60 | 200–1000 |
Wave form | Monophasic rectangular | Biphasic square | Monophasic rectangular | Biphasic square | Monophasic |
Polarity | Anodal | Alternating | Cathodal | Alternating | Anodal |
Intensity | 0–20 mA | 0–16 mA | 0–20 mA | 1–6 mA | 0–800 V |
Duration (ms) | 0.5–0.8 | 1 | 0.5–0.8 | 1 | 0.75 |
Pulses (Trains) | 5–10 | 60/s | 5–9 | 60/s | 3–9 |
Interstimulus interval (ms) | 2–4 | 16.7 | 2–4 | 16.7 | 1–5 |
MEP threshold (mA) | |||||
Awake | 5–15 | 2–7 | |||
Asleep | 2–7 | 7–16 | |||
Stimulation amplitudes * (mA) [42,72,73] | |||||
Awake | 1–20 | 2–8 | 1–20 | 2–8 | |
Asleep | 1–20 | 3–16 | 1–20 | 3–16 |
4. Sensory Mapping
5. Language Mapping
5.1. Patient Selection and Preoperative Assessment
5.2. Anesthetic Considerations
5.3. Current Technique
6. Executive Function—Beyond Language and Sensorimotor
7. Managing Expected and Unexpected Intraoperative Events
7.1. Intraoperative Seizures
7.2. Changes in Neuromonitoring or Task Performance
7.3. Avoiding Intra-Operative Awake Craniotomy Failures
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinaro, A.M.; Hervey-Jumper, S.; Morshed, R.A.; Young, J.; Han, S.J.; Chunduru, P.; Zhang, Y.; Phillips, J.J.; Shai, A.; Lafontaine, M.; et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non–Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma. JAMA Oncol. 2020, 6, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection With Survival in Glioblastoma. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Ambrogi, F.; Gay, L.; Gallucci, M.; Nibali, M.C.; Leonetti, A.; Puglisi, G.; Sciortino, T.; Howells, H.; Riva, M.; et al. Is supratotal resection achievable in low-grade gliomas? Feasibility, putative factors, safety, and functional outcome. J. Neurosurg. 2020, 132, 1692–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Gay, L.; Ambrogi, F.; Conti Nibali, M.; Sciortino, T.; Puglisi, G.; Leonetti, A.; Mocellini, C.; Caroli, M.; Cordera, S.; et al. Association of supratotal resection with progression-free survival, malignant transformation, and overall survival in lower-grade gliomas. Neuro-oncology 2021, 23, 812–826. [Google Scholar] [CrossRef]
- Khalafallah, A.M.; Rakovec, M.; Bettegowda, C.; Jackson, C.M.; Gallia, G.L.; Weingart, J.D.; Lim, M.; Esquenazi, Y.; Zacharia, B.E.; Goldschmidt, E.; et al. A Crowdsourced Consensus on Supratotal Resection Versus Gross Total Resection for Anatomically Distinct Primary Glioblastoma. Neurosurgery 2021, 89, 712–719. [Google Scholar] [CrossRef]
- Jackson, C.; Choi, J.; Khalafallah, A.M.; Price, C.; Bettegowda, C.; Lim, M.; Gallia, G.; Weingart, J.; Brem, H.; Mukherjee, D. A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J. Neurooncol. 2020, 148, 419–431. [Google Scholar] [CrossRef]
- McGirt, M.J.; Mukherjee, D.; Chaichana, K.L.; Than, K.D.; Weingart, J.D.; Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 2009, 65, 463–469; discussion 469–470. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Abbatematteo, J.; Leo, E.K.D.; Kubilis, P.S.; Vaziri, S.; Bova, F.; Sayour, E.; Mitchell, D.; Quinones-Hinojosa, A. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J. Neurosurg. 2016, 127, 123–131. [Google Scholar] [CrossRef]
- Aabedi, A.A.; Young, J.S.; Zhang, Y.; Ammanuel, S.; Morshed, R.A.; Dalle Ore, C.; Brown, D.; Phillips, J.J.; Oberheim Bush, N.A.; Taylor, J.W.; et al. Association of Neurological Impairment on the Relative Benefit of Maximal Extent of Resection in Chemoradiation-Treated Newly Diagnosed Isocitrate Dehydrogenase Wild-Type Glioblastoma. Neurosurgery 2022, 90, 124–130. [Google Scholar] [CrossRef]
- Feng, C.; Wu, Y.; Gao, L.; Guo, X.; Wang, Z.; Xing, B. Publication Landscape Analysis on Gliomas: How Much Has Been Done in the Past 25 Years? Front. Oncol. 2020, 9, 1463. [Google Scholar] [CrossRef] [PubMed]
- Hamer, P.C.D.W.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of Intraoperative Stimulation Brain Mapping on Glioma Surgery Outcome: A Meta-Analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penfield, W.; Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937, 60, 389–443. [Google Scholar] [CrossRef]
- Ojemann, G.A.; Whitaker, H.A. Language localization and variability. Brain Lang. 1978, 6, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Mirzadeh, Z.; Berger, M.S. Functional Outcome after Language Mapping for Glioma Resection. N. Engl. J. Med. 2008, 358, 18–27. [Google Scholar] [CrossRef]
- Gerritsen, J.K.W.; Broekman, M.L.D.; De Vleeschouwer, S.; Schucht, P.; Nahed, B.V.; Berger, M.S.; Vincent, A.J.P.E. Safe surgery for glioblastoma: Recent advances and modern challenges. Neuro-Oncol. Pract. 2022, 9, 364–379. [Google Scholar] [CrossRef]
- Ille, S.; Sollmann, N.; Hauck, T.; Maurer, S.; Tanigawa, N.; Obermueller, T.; Negwer, C.; Droese, D.; Zimmer, C.; Meyer, B.; et al. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J. Neurosurg. 2015, 123, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.M.; Sollmann, N.; Obermueller, T.; Sabih, J.; Bulubas, L.; Negwer, C.; Moser, T.; Droese, D.; Boeckh-Behrens, T.; Ringel, F.; et al. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer 2015, 15, 231. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.M.; Sollmann, N.; Hauck, T.; Ille, S.; Meyer, B.; Ringel, F. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy. BMC Neurosci. 2014, 15, 20. [Google Scholar] [CrossRef] [Green Version]
- Ille, S.; Sollmann, N.; Butenschoen, V.M.; Meyer, B.; Ringel, F.; Krieg, S.M. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir. 2016, 158, 2265–2275. [Google Scholar] [CrossRef]
- Raabe, A.; Beck, J.; Schucht, P.; Seidel, K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: Evaluation of a new method. J. Neurosurg. 2014, 120, 1015–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J.; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.; Abdullah, K.G.; Verma, R.; Brem, S. Tractography and the connectome in neurosurgical treatment of gliomas: The premise, the progress, and the potential. Neurosurg. Focus 2020, 48, E6. [Google Scholar] [CrossRef] [Green Version]
- Gerritsen, J.K.W.; Zwarthoed, R.H.; Kilgallon, J.L.; Nawabi, N.L.; Jessurun, C.A.C.; Versyck, G.; Pruijn, K.P.; Fisher, F.L.; Larivière, E.; Solie, L.; et al. Effect of awake craniotomy in glioblastoma in eloquent areas (GLIOMAP): A propensity score-matched analysis of an international, multicentre, cohort study. Lancet Oncol. 2022, 23, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Nibali, M.C.; Torregrossa, F.; Bello, L.; Grasso, G. Innovation in Neurosurgery: The Concept of Cognitive Mapping. World Neurosurg. 2019, 131, 364–370. [Google Scholar] [CrossRef]
- Müller, D.M.J.; Robe, P.A.; Ardon, H.; Barkhof, F.; Bello, L.; Berger, M.S.; Bouwknegt, W.; Van den Brink, W.A.; Nibali, M.C.; Eijgelaar, R.S.; et al. Quantifying eloquent locations for glioblastoma surgery using resection probability maps. J. Neurosurg. 2021, 134, 1091–1101. [Google Scholar] [CrossRef]
- Seidel, K.; Szelényi, A.; Bello, L. Intraoperative mapping and monitoring during brain tumor surgeries. Handb. Clin. Neurol. 2022, 186, 133–149. [Google Scholar] [CrossRef]
- Hervey-Jumper, S.L.; Zhang, Y.; Phillips, J.J.; Morshed, R.A.; Young, J.S.; McCoy, L.; Lafontaine, M.; Luks, T.; Ammanuel, S.; Kakaizada, S.; et al. Interactive Effects of Molecular, Therapeutic, and Patient Factors on Outcome of Diffuse Low-Grade Glioma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, JCO2102929. [Google Scholar] [CrossRef]
- Young, J.S.; Al-Adli, N.; Sibih, Y.E.; Scotford, K.L.; Casey, M.; James, S.; Berger, M.S. Recognizing the psychological impact of a glioma diagnosis on mental and behavioral health: A systematic review of what neurosurgeons need to know. J. Neurosurg. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, F.; Zhang, L.; Hu, K.; Liu, S.; Zhong, S.; Yang, J.; Zeng, X.; Peng, X. Depression and Quality of Life in Patients with Gliomas: A Narrative Review. J. Clin. Med. 2022, 11, 4811. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Halthore, A.N.; Parker, S.L.; Olivi, A.; Weingart, J.D.; Brem, H.; Quinones-Hinojosa, A. Factors involved in maintaining prolonged functional independence following supratentorial glioblastoma resection. J. Neurosurg. 2011, 114, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Gerritsen, J.K.W.; Arends, L.; Klimek, M.; Dirven, C.M.F.; Vincent, A.J.-P.E. Impact of intraoperative stimulation mapping on high-grade glioma surgery outcome: A meta-analysis. Acta Neurochir. 2019, 161, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Sciortino, T.; Nibali, M.C.; Gay, L.; Viganò, L.; Puglisi, G.; Leonetti, A.; Howells, H.; Fornia, L.; Cerri, G.; et al. Clinical pearls and methods for intraoperative motor mapping. Neurosurgery 2021, 88, 457–467. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018, 15, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, L.H.; Fichtner, J.; Andres, R.; Schucht, P.; Krähenbühl, A.-K.; Raabe, A.; Beck, J. The silent loss of neuronavigation accuracy: A systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 2013, 72, 796–807. [Google Scholar] [CrossRef] [Green Version]
- Gogos, A.J.; Young, J.S.; Morshed, R.A.; Avalos, L.N.; Noss, R.S.; Villanueva-Meyer, J.E.; Hervey-Jumper, S.L.; Berger, M.S. Triple motor mapping: Transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J. Neurosurg. 2020, 134, 1728–1737. [Google Scholar] [CrossRef]
- Spena, G.; Schucht, P.; Seidel, K.; Rutten, G.-J.; Freyschlag, C.F.; D’Agata, F.; Costi, E.; Zappa, F.; Fontanella, M.; Fontaine, D.; et al. Brain tumors in eloquent areas: A European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis. Neurosurg. Rev. 2017, 40, 287–298. [Google Scholar] [CrossRef]
- Gallet, C.; Clavreul, A.; Morandi, X.; Delion, M.; Madec, N.; Menei, P.; Lemée, J.-M. What surgical approach for left-sided eloquent glioblastoma: Biopsy, resection under general anesthesia or awake craniotomy? J. Neurooncol. 2022, 160, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, J. The PROGRAM-Study: Awake Mapping versus Asleep Mapping versus No Mapping for Glioblastoma Resections; National Library of Medicine: Bethesda, MD, USA, 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04708171 (accessed on 7 March 2023).
- Gerritsen, J.K.W.; Klimek, M.; Dirven, C.M.F.; Hoop, E.O.; Wagemakers, M.; Rutten, G.J.M.; Kloet, A.; Hallaert, G.G.; Vincent, A.J.P.E. The SAFE-trial: Safe surgery for glioblastoma multiforme: Awake craniotomy versus surgery under general anesthesia. Study protocol for a multicenter prospective randomized controlled trial. Contemp. Clin. Trials 2020, 88, 105876. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Tzarfati, G.G.; Serafimova, M.; Valdes, P.; Meller, A.; Korn, A.; Kahana Levy, N.; Aviram, D.; Ram, Z.; Grossman, R. Risk factors and prognostic implications of surgery-related strokes following resection of high-grade glioma. Sci. Rep. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Han, S.J.; Morshed, R.A.; Troncon, I.; Jordan, K.M.; Henry, R.G.; Hervey-Jumper, S.L.; Berger, M.S. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: Assessment of morbidity and functional outcome in 702 cases. J. Neurosurg. 2018, 131, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.S.; Zhou, L.F.; Tang, W.J.; Mao, Y.; Hu, J.; Song, Y.Y.; Hong, X.N.; Du, G.H. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: A prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007, 61, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Abboud, T.; Asendorf, T.; Heinrich, J.; Faust, K.; Krieg, S.M.; Seidel, K.; Mielke, D.; Matthies, C.; Ringel, F.; Rohde, V.; et al. Transcranial versus Direct Cortical Stimulation for Motor-Evoked Potentials during Resection of Supratentorial Tumors under General Anesthesia (The TRANSEKT-Trial): Study Protocol for a Randomized Controlled Trial. Biomedicines 2021, 9, 1490. [Google Scholar] [CrossRef] [PubMed]
- Krieg, S.M.; Shiban, E.; Droese, D.; Gempt, J.; Buchmann, N.; Pape, H.; Ryang, Y.M.; Meyer, B.; Ringel, F. Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery 2012, 70, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Abboud, T.; Schaper, M.; Dührsen, L.; Schwarz, C.; Schmidt, N.O.; Westphal, M.; Martens, T. A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway. J. Neurosurg. 2016, 125, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gelb, A.W. Awake craniotomy: Indications, benefits, and techniques. Colomb. J. Anesthesiol. 2018, 46, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Meade, P.; Marenco-Hillembrand, L.; Prevatt, C.; Murguia-Fuentes, R.; Mohamed, A.; Alsaeed, T.; Lehrer, E.J.; Brigham, T.; Ruiz-Garcia, H.; Sabsevitz, D.; et al. Awake vs. asleep motor mapping for glioma resection: A systematic review and meta-analysis. Acta Neurochir. 2020, 162, 1709–1720. [Google Scholar] [CrossRef]
- Eseonu, C.I.; Rincon-Torroella, J.; ReFaey, K.; Lee, Y.M.; Nangiana, J.; Vivas-Buitrago, T.; Quiñones-Hinojosa, A. Awake Craniotomy vs. Craniotomy Under General Anesthesia for Perirolandic Gliomas: Evaluating Perioperative Complications and Extent of Resection. Neurosurgery 2017, 81, 481. [Google Scholar] [CrossRef]
- Rossi, M.; Puglisi, G.; Nibali, M.C.; Viganò, L.; Sciortino, T.; Gay, L.; Leonetti, A.; Zito, P.; Riva, M.; Bello, L. Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere? Development and validation of a multimodal score to tailor the surgical strategy. J. Neurosurg. 2021, 136, 16–29. [Google Scholar] [CrossRef]
- Rossi, M.; Nibali, M.C.; Viganò, L.; Puglisi, G.; Howells, H.; Gay, L.; Sciortino, T.; Leonetti, A.; Riva, M.; Fornia, L.; et al. Resection of tumors within the primary motor cortex using high-frequency stimulation: Oncological and functional efficiency of this versatile approach based on clinical conditions. J. Neurosurg. 2020, 133, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Szelényi, A.; Bello, L.; Duffau, H.; Fava, E.; Feigl, G.C.; Galanda, M.; Neuloh, G.; Signorelli, F.; Sala, F. Intraoperative electrical stimulation in awake craniotomy: Methodological aspects of current practice. Neurosurg. Focus 2010, 28, E7. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.T.; Han, S.J.; Li, J.; Berger, M.S. Resection of primary motor cortex tumors: Feasibility and surgical outcomes. J. Neurosurg. 2017, 129, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.K.; Chandra, P.S.; Ojha, B.K.; Sharma, B.S.; Mahapatra, A.K.; Mehta, V.S. Awake craniotomy versus surgery under general anesthesia for resection of intrinsic lesions of eloquent cortex—A prospective randomised study. Clin. Neurol. Neurosurg. 2007, 109, 335–343. [Google Scholar] [CrossRef]
- Shinoura, N.; Midorikawa, A.; Yamada, R.; Hiromitsu, K.; Itoi, C.; Saito, S.; Yagi, K. Operative Strategies during Awake Surgery Affect Deterioration of Paresis a Month after Surgery for Brain Lesions in the Primary Motor Area. J. Neurol. Surg. Part Cent. Eur. Neurosurg. 2017, 78, 368–373. [Google Scholar] [CrossRef]
- Young, J.S.; Gogos, A.J.; Aabedi, A.A.; Morshed, R.A.; Pereira, M.P.; Lashof-Regas, S.; Mansoori, Z.; Luks, T.; Hervey-Jumper, S.L.; Villanueva-Meyer, J.E.; et al. Resection of supplementary motor area gliomas: Revisiting supplementary motor syndrome and the role of the frontal aslant tract. J. Neurosurg. 2021, 136, 1278–1284. [Google Scholar] [CrossRef]
- Ulu, M.O.; Tanriverd, T.; Uzan, M. Surgical Treatment of Lesions Involving the Supplementary Motor Area: Clinical results of 12 patients. Turk. Neurosurg. 2008, 18, 286–293. [Google Scholar]
- Kumar, G.K.; Chigurupalli, C.; Balasubramaniam, A.; Rajesh, B.; Manohar, N. Role of Asleep Surgery for Supplementary Motor Area Tumors. Indian J. Neurosurg. 2022, s-0042-1743266. [Google Scholar] [CrossRef]
- Briggs, R.G.; Allan, P.G.; Poologaindran, A.; Dadario, N.B.; Young, I.M.; Ahsan, S.A.; Teo, C.; Sughrue, M.E. The Frontal Aslant Tract and Supplementary Motor Area Syndrome: Moving towards a Connectomic Initiation Axis. Cancers 2021, 13, 1116. [Google Scholar] [CrossRef] [PubMed]
- Palmisciano, P.; Haider, A.S.; Balasubramanian, K.; Dadario, N.B.; Robertson, F.C.; Silverstein, J.W.; D’Amico, R.S. Supplementary Motor Area Syndrome After Brain Tumor Surgery: A Systematic Review. World Neurosurg. 2022, 165, 160–171.e2. [Google Scholar] [CrossRef]
- Nakajima, R.; Kinoshita, M.; Yahata, T.; Nakada, M. Recovery time from supplementary motor area syndrome: Relationship to postoperative day 7 paralysis and damage of the cingulum. J. Neurosurg. 2019, 132, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, M.; Fekonja, L.; Ott, S.; Engelhardt, M.; Faust, K.; Karbe, A.-G.; Picht, T.; Dührsen, L.; Vajkoczy, P.; Onken, J.; et al. Supplementary Motor Area Syndrome in Glioma Surgery—Towards a Classification System Based on Clinical and Imaging Data; German Medical Science GMS Publishing House: Düsseldorf, Germany, 2021; p. DocV236. [Google Scholar]
- Kim, Y.-H.; Kim, C.H.; Kim, J.S.; Lee, S.K.; Han, J.H.; Kim, C.-Y.; Chung, C.K. Risk factor analysis of the development of new neurological deficits following supplementary motor area resection. J. Neurosurg. 2013, 119, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Peraud, A.; Meschede, M.; Eisner, W.; Ilmberger, J.; Reulen, H.-J. Surgical resection of grade II astrocytomas in the superior frontal gyrus. Neurosurgery 2002, 50, 966–977. [Google Scholar] [CrossRef]
- Young, J.S.; Morshed, R.A.; Mansoori, Z.; Cha, S.; Berger, M.S. Disruption of Frontal Aslant Tract Is Not Associated with Long-Term Postoperative Language Deficits. World Neurosurg. 2020, 133, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Viganò, L.; Puglisi, G.; Nibali, M.C.; Leonetti, A.; Gay, L.; Sciortino, T.; Fornia, L.; Callipo, V.; Lamperti, M.; et al. Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers 2021, 13, 3808. [Google Scholar] [CrossRef]
- Taniguchi, M.; Cedzich, C.; Schramm, J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: Technical description. Neurosurgery 1993, 32, 219–226. [Google Scholar] [CrossRef]
- Kombos, T.; Suess, O.; Kern, B.-C.; Funk, T.; Hoell, T.; Kopetsch, O.; Brock, M. Comparison Between Monopolar and Bipolar Electrical Stimulation of the Motor Cortex. Acta Neurochir. 1999, 141, 1295–1301. [Google Scholar] [CrossRef]
- Kombos, T.; Suess, O.; Funk, T.; Kern, B.C.; Brock, M. Intra-Operative Mapping of the Motor Cortex During Surgery in and Around the Motor Cortex. Acta Neurochir. 2000, 142, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Kombos, T.; Süss, O. Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex: A review. Neurosurg. Focus 2009, 27, E3. [Google Scholar] [CrossRef] [Green Version]
- Tate, M.C.; Guo, L.; McEvoy, J.; Chang, E.F. Safety and Efficacy of Motor Mapping Utilizing Short Pulse Train Direct Cortical Stimulation. Stereotact. Funct. Neurosurg. 2013, 91, 379–385. [Google Scholar] [CrossRef]
- Seidel, K.; Beck, J.; Stieglitz, L.; Schucht, P.; Raabe, A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors: Clinical article. J. Neurosurg. 2013, 118, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.M.; Huynh, N.T.; Nguyen, T.T.P. Intraoperative cortical and subcortical stimulation for lesions related to eloquent motor cortex and corticospinal tract in a developing country. Interdiscip. Neurosurg. 2022, 30, 101601. [Google Scholar] [CrossRef]
- Kreidenhuber, R.; De Tiège, X.; Rampp, S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front. Neurol. 2019, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Qiao, H. Intraoperative Neuromonitoring During Resection of Gliomas Involving Eloquent Areas. Front. Neurol. 2021, 12, 658680. [Google Scholar] [CrossRef]
- Borchers, S.; Himmelbach, M.; Logothetis, N.; Karnath, H.-O. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat. Rev. Neurosci. 2012, 13, 63–70. [Google Scholar] [CrossRef]
- MacDonald, D.B.; Dong, C.C.; Uribe, A. Intraoperative evoked potential techniques. Handb. Clin. Neurol. 2022, 186, 39–65. [Google Scholar] [CrossRef]
- Cedzich, C.; Taniguchi, M.; Schäfer, S.; Schramm, J. Somatosensory Evoked Potential Phase Reversal and Direct Motor Cortex Stimulation during Surgery in and around the Central Region. Neurosurgery 1996, 38, 962. [Google Scholar] [CrossRef] [PubMed]
- Holdefer, R.N.; MacDonald, D.B.; Skinner, S.A. Somatosensory and motor evoked potentials as biomarkers for post-operative neurological status. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2015, 126, 857–865. [Google Scholar] [CrossRef]
- Thirumala, P.; Lai, D.; Engh, J.; Habeych, M.; Crammond, D.; Balzer, J. Predictive Value of Somatosensory Evoked Potential Monitoring during Resection of Intraparenchymal and Intraventricular Tumors Using an Endoscopic Port. J. Clin. Neurol. 2013, 9, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, T.; Tuncer, M.S.; Münch, M.R.; Vajkoczy, P.; Picht, T.; Faust, K. Preoperative nTMS and Intraoperative Neurophysiology—A Comparative Analysis in Patients With Motor-Eloquent Glioma. Front. Oncol. 2021, 11, 676626. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H.; Capelle, L.; Denvil, D.; Sichez, N.; Gatignol, P.; Taillandier, L.; Lopes, M.; Mitchell, M.-C.; Roche, S.; Muller, J.-C.; et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: Functional results in a consecutive series of 103 patients. J. Neurosurg. 2003, 98, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Haglund, M.M.; Berger, M.S.; Shamseldin, M.; Lettich, E.; Ojemann, G.A. Cortical Localization of Temporal Lobe Language Sites in Patients with Gliomas. Neurosurgery 1994, 34, 567. [Google Scholar]
- Quiñones-Hinojosa, A.; Ojemann, S.G.; Sanai, N.; Dillon, W.P.; Berger, M.S. Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the Broca area. J. Neurosurg. 2003, 99, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Keles, G.E.; Lundin, D.A.; Lamborn, K.R.; Chang, E.F.; Ojemann, G.; Berger, M.S. Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: Evaluation of morbidity and assessment of functional outcome in 294 patients. J. Neurosurg. 2004, 100, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.F.; Clark, A.; Smith, J.S.; Polley, M.-Y.; Chang, S.M.; Barbaro, N.M.; Parsa, A.T.; McDermott, M.W.; Berger, M.S. Functional mapping–guided resection of low-grade gliomas in eloquent areas of the brain: Improvement of long-term survival: Clinical article. J. Neurosurg. 2011, 114, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Herholz, K.; Thiel, A.; Wienhard, K.; Pietrzyk, U.; von Stockhausen, H.-M.; Karbe, H.; Kessler, J.; Bruckbauer, T.; Halber, M.; Heiss, W.-D. Individual Functional Anatomy of Verb Generation. NeuroImage 1996, 3, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G.A. Individual variability in cortical localization of language. J. Neurosurg. 1979, 50, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Skirboll, S.S.; Ojemann, G.A.; Berger, M.S.; Lettich, E.; Winn, H.R. Functional Cortex and Subcortical White Matter Located within Gliomas. Neurosurgery 1996, 38, 678. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, J.G.; Miller, J.W.; Silbergeld, D.L. Preserved Function in Brain Invaded by Tumor. Neurosurgery 1996, 39, 253. [Google Scholar] [CrossRef]
- Ulmer, J.L.; Hacein-Bey, L.; Mathews, V.P.; Mueller, W.M.; DeYoe, E.A.; Prost, R.W.; Meyer, G.A.; Krouwer, H.G.; Schmainda, K.M. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: Implications for preoperative assessments. Neurosurgery 2004, 55, 569–581. [Google Scholar] [CrossRef]
- Pasquini, L.; Di Napoli, A.; Rossi-Espagnet, M.C.; Visconti, E.; Napolitano, A.; Romano, A.; Bozzao, A.; Peck, K.K.; Holodny, A.I. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front. Hum. Neurosci. 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, L.; Jenabi, M.; Yildirim, O.; Silveira, P.; Peck, K.K.; Holodny, A.I. Brain Functional Connectivity in Low- and High-Grade Gliomas: Differences in Network Dynamics Associated with Tumor Grade and Location. Cancers 2022, 14, 3327. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, L.; Jenabi, M.; Peck, K.K.; Holodny, A.I. Language reorganization in patients with left-hemispheric gliomas is associated with increased cortical volume in language-related areas and in the default mode network. Cortex 2022, 157, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Giussani, C.; Roux, F.-E.; Ojemann, J.; Sganzerla, E.P.; Pirillo, D.; Papagno, C. Is Preoperative Functional Magnetic Resonance Imaging Reliable for Language Areas Mapping in Brain Tumor Surgery? Review of Language Functional Magnetic Resonance Imaging and Direct Cortical Stimulation Correlation Studies. Neurosurgery 2010, 66, 113. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Y.; Yao, B.; Sun, P.; Hao, Y.; Piao, H.; Zhao, X. Application of Multiparametric Intraoperative Ultrasound in Glioma Surgery. BioMed Res. Int. 2021, 2021, 6651726. [Google Scholar] [CrossRef] [PubMed]
- Goryaynov, S.A.; Buklina, S.B.; Khapov, I.V.; Batalov, A.I.; Potapov, A.A.; Pronin, I.N.; Belyaev, A.U.; Aristov, A.A.; Zhukov, V.U.; Pavlova, G.V.; et al. 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: Single-center experience. Front. Oncol. 2022, 12, 940951. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, J.; Yao, C.; Zhuang, D.; Qiu, T.; Hu, X.; Zhang, J.; Gong, X.; Liang, W.; Mao, Y.; et al. Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J. Clin. Neurosci. 2013, 20, 1280–1287. [Google Scholar] [CrossRef]
- Hervey-Jumper, S.L.; Li, J.; Lau, D.; Molinaro, A.M.; Perry, D.W.; Meng, L.; Berger, M.S. Awake craniotomy to maximize glioma resection: Methods and technical nuances over a 27-year period. J. Neurosurg. 2015, 123, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morshed, R.A.; Young, J.S.; Lee, A.T.; Berger, M.S.; Hervey-Jumper, S.L. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020, 89, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Krivosheya, D.; Prabhu, S.S.; Weinberg, J.S.; Sawaya, R. Technical principles in glioma surgery and preoperative considerations. J. Neurooncol. 2016, 130, 243–252. [Google Scholar] [CrossRef]
- Gerritsen, J.K.W.; Rizopoulos, D.; Schouten, J.W.; Haitsma, I.K.; Eralp, I.; Klimek, M.; Dirven, C.M.F.; Vincent, A.J.P.E. Impact of dedicated neuro-anesthesia management on clinical outcomes in glioblastoma patients: A single-institution cohort study. PLoS ONE 2022, 17, e0278864. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, A.; Rossaint, R.; Veldeman, M.; Bilotta, F.; Coburn, M. Anaesthesia Management for Awake Craniotomy: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0156448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogos, A.J.; Young, J.S.; Morshed, R.A.; Hervey-Jumper, S.L.; Berger, M.S. Awake glioma surgery: Technical evolution and nuances. J. Neurooncol. 2020, 147, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.S.; Schipmann, S.; Mueller, I.; Wölfer, J.; Ewelt, C.; Maas, M.; Brokinkel, B.; Stummer, W. Conscious sedation with dexmedetomidine compared with asleep-awake-asleep craniotomies in glioma surgery: An analysis of 180 patients. J. Neurosurg. 2018, 129, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- De Witte, E.; Satoer, D.; Robert, E.; Colle, H.; Verheyen, S.; Visch-Brink, E.; Mariën, P. The Dutch Linguistic Intraoperative Protocol: A valid linguistic approach to awake brain surgery. Brain Lang. 2015, 140, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Aabedi, A.A.; Kakaizada, S.; Young, J.S.; Ahn, E.; Weissman, D.H.; Berger, M.S.; Brang, D.; Hervey-Jumper, S.L. Balancing task sensitivity with reliability for multimodal language assessments. J. Neurosurg. 2021, 135, 1817–1824. [Google Scholar] [CrossRef]
- Roux, F.-E.; Durand, J.-B.; Djidjeli, I.; Moyse, E.; Giussani, C. Variability of intraoperative electrostimulation parameters in conscious individuals: Language cortex. J. Neurosurg. 2017, 126, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics 2009, 6, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Verst, S.M.; de Aguiar, P.H.P.; Joaquim, M.A.S.; Vieira, V.G.; Sucena, A.B.C.; Maldaun, M.V.C. Monopolar 250–500 Hz language mapping: Results of 41 patients. Clin. Neurophysiol. Pract. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Riva, M.; Fava, E.; Gallucci, M.; Comi, A.; Casarotti, A.; Alfiero, T.; Raneri, F.A.; Pessina, F.; Bello, L. Monopolar high-frequency language mapping: Can it help in the surgical management of gliomas? A comparative clinical study. J. Neurosurg. 2016, 124, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Muster, R.H.; Young, J.S.; Woo, P.Y.M.; Morshed, R.A.; Warrier, G.; Kakaizada, S.; Molinaro, A.M.; Berger, M.S.; Hervey-Jumper, S.L. The Relationship Between Stimulation Current and Functional Site Localization During Brain Mapping. Neurosurgery 2021, 88, 1043–1050. [Google Scholar] [CrossRef]
- LeRoux, P.D.; Berger, M.S.; Ojemann, G.A.; Wang, K.; Mack, L.A. Correlation of intraoperative ultrasound tumor volumes and margins with preoperative computerized tomography scans. An intraoperative method to enhance tumor resection. J. Neurosurg. 1989, 71, 691–698. [Google Scholar] [CrossRef]
- Duffau, H. The huge plastic potential of adult brain and the role of connectomics: New insights provided by serial mappings in glioma surgery. Cortex 2014, 58, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Aabedi, A.A.; Young, J.S.; Chang, E.F.; Berger, M.S.; Hervey-Jumper, S.L. Involvement of White Matter Language Tracts in Glioma: Clinical Implications, Operative Management, and Functional Recovery After Injury. Front. Neurosci. 2022, 16, 932478. [Google Scholar] [CrossRef] [PubMed]
- Young, J.S.; Lee, A.T.; Chang, E.F. A Review of Cortical and Subcortical Stimulation Mapping for Language. Neurosurgery 2021, 89, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Rofes, A.; Miceli, G. Language Mapping with Verbs and Sentences in Awake Surgery: A Review. Neuropsychol. Rev. 2014, 24, 185–199. [Google Scholar] [CrossRef]
- Coello, A.F.; Moritz-Gasser, S.; Martino, J.; Martinoni, M.; Matsuda, R.; Duffau, H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks: A review. J. Neurosurg. 2013, 119, 1380–1394. [Google Scholar] [CrossRef] [Green Version]
- Mandonnet, E.; Sarubbo, S.; Duffau, H. Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurg. Rev. 2017, 40, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Satoer, D.; Visch-Brink, E.; Dirven, C.; Vincent, A. Glioma surgery in eloquent areas: Can we preserve cognition? Acta Neurochir. 2016, 158, 35–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruis, C. Monitoring cognition during awake brain surgery in adults: A systematic review. J. Clin. Exp. Neuropsychol. 2018, 40, 1081–1104. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.; Lu, J.; Zhang, J.; Wu, J. Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Front. Hum. Neurosci. 2021, 15, 612891. [Google Scholar] [CrossRef]
- Weyer-Jamora, C.; Brie, M.S.; Luks, T.L.; Smith, E.M.; Braunstein, S.E.; Villanueva-Meyer, J.E.; Bracci, P.M.; Chang, S.; Hervey-Jumper, S.L.; Taylor, J.W. Cognitive impact of lower-grade gliomas and strategies for rehabilitation. Neuro-Oncol. Pract. 2020, 8, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Cochereau, J.; Lemaitre, A.-L.; Wager, M.; Moritz-Gasser, S.; Duffau, H.; Herbet, G. Network-behavior mapping of lasting executive impairments after low-grade glioma surgery. Brain Struct. Funct. 2020, 225, 2415–2429. [Google Scholar] [CrossRef] [PubMed]
- Wager, M.; Du Boisgueheneuc, F.; Pluchon, C.; Bouyer, C.; Stal, V.; Bataille, B.; Guillevin, C.M.; Gil, R. Intraoperative Monitoring of an Aspect of Executive Functions: Administration of the Stroop Test in 9 Adult Patients During Awake Surgery for Resection of Frontal Glioma. Oper. Neurosurg. 2013, 72, ons169–ons181. [Google Scholar] [CrossRef]
- Puglisi, G.; Sciortino, T.; Rossi, M.; Leonetti, A.; Fornia, L.; Nibali, M.C.; Casarotti, A.; Pessina, F.; Riva, M.; Cerri, G.; et al. Preserving executive functions in nondominant frontal lobe glioma surgery: An intraoperative tool. J. Neurosurg. 2018, 131, 474–480. [Google Scholar] [CrossRef]
- Erez, Y.; Assem, M.; Coelho, P.; Romero-Garcia, R.; Owen, M.; McDonald, A.; Woodberry, E.; Morris, R.C.; Price, S.J.; Suckling, J.; et al. Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochir. 2021, 163, 1299–1309. [Google Scholar] [CrossRef]
- Nakajima, R.; Kinoshita, M.; Okita, H.; Yahata, T.; Matsui, M.; Nakada, M. Neural Networks Mediating High-Level Mentalizing in Patients With Right Cerebral Hemispheric Gliomas. Front. Behav. Neurosci. 2018, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, R.; Kinoshita, M.; Okita, H.; Liu, Z.; Nakada, M. Preserving Right Pre-motor and Posterior Prefrontal Cortices Contribute to Maintaining Overall Basic Emotion. Front. Hum. Neurosci. 2021, 15, 612890. [Google Scholar] [CrossRef] [PubMed]
- Giussani, C.; Pirillo, D.; Roux, F.-E. Mirror of the soul: A cortical stimulation study on recognition of facial emotions: Clinical article. J. Neurosurg. 2010, 112, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Sartorius, C.J.; Berger, M.S. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J. Neurosurg. 1998, 88, 349–351. [Google Scholar] [CrossRef]
- Larkin, C.J.; Yerneni, K.; Karras, C.L.; Abecassis, Z.A.; Zhou, G.; Zelano, C.; Selner, A.N.; Templer, J.W.; Tate, M.C. Impact of intraoperative direct cortical stimulation dynamics on perioperative seizures and afterdischarge frequency in patients undergoing awake craniotomy. J. Neurosurg. 2022, 137, 1853–1861. [Google Scholar] [CrossRef]
- Morsy, A.A.; Ismail, A.M.; Nasr, Y.M.; Waly, S.H.; Abdelhameed, E.A. Predictors of stimulation-induced seizures during perirolandic glioma resection using intraoperative mapping techniques. Surg. Neurol. Int. 2021, 12, 117. [Google Scholar] [CrossRef]
- Nossek, E.; Matot, I.; Shahar, T.; Barzilai, O.; Rapoport, Y.; Gonen, T.; Sela, G.; Korn, A.; Hayat, D.; Ram, Z. Failed awake craniotomy: A retrospective analysis in 424 patients undergoing craniotomy for brain tumor: Clinical article. J. Neurosurg. 2013, 118, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Mamani, R.; Jacobo, J.A.; Mejia, S.; Nuñez-Velasco, S.; Aragon-Arreola, J.; Moreno, S. Analysis of Intraoperative Seizures During Bipolar Brain Mapping in Eloquent Areas: Intraoperative Seizures in brain mapping. Clin. Neurol. Neurosurg. 2020, 199, 106304. [Google Scholar] [CrossRef] [PubMed]
- Abecassis, Z.A.; Ayer, A.B.; Templer, J.W.; Yerneni, K.; Murthy, N.K.; Tate, M.C. Analysis of risk factors and clinical sequelae of direct electrical cortical stimulation–induced seizures and afterdischarges in patients undergoing awake mapping. J. Neurosurg. 2020, 134, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.B.; Skinner, S.; Shils, J.; Yingling, C. Intraoperative motor evoked potential monitoring—A position statement by the American Society of Neurophysiological Monitoring. Clin. Neurophysiol. 2013, 124, 2291–2316. [Google Scholar] [CrossRef] [PubMed]
- Neuloh, G.; Pechstein, U.; Schramm, J. Motor tract monitoring during insular glioma surgery. J. Neurosurg. 2007, 106, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Wiedemayer, H.; Fauser, B.; Sandalcioglu, I.E.; Schäfer, H.; Stolke, D. The impact of neurophysiological intraoperative monitoring on surgical decisions: A critical analysis of 423 cases. J. Neurosurg. 2002, 96, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Collée, E.; Vincent, A.; Dirven, C.; Satoer, D. Speech and Language Errors during Awake Brain Surgery and Postoperative Language Outcome in Glioma Patients: A Systematic Review. Cancers 2022, 14, 5466. [Google Scholar] [CrossRef]
- Conte, V.; Magni, L.; Songa, V.; Tomaselli, P.; Ghisoni, L.; Magnoni, S.; Bello, L.; Stocchetti, N. Analysis of Propofol/Remifentanil Infusion Protocol for Tumor Surgery With Intraoperative Brain Mapping. J. Neurosurg. Anesthesiol. 2010, 22, 119. [Google Scholar] [CrossRef]
- Sarang, A.; Dinsmore, J. Anaesthesia for awake craniotomy—Evolution of a technique that facilitates awake neurological testing. Br. J. Anaesth. 2003, 90, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Keifer, J.C.; Dentchev, D.; Little, K.; Warner, D.S.; Friedman, A.H.; Borel, C.O. A Retrospective Analysis of a Remifentanil/Propofol General Anesthetic for Craniotomy Before Awake Functional Brain Mapping. Anesth. Analg. 2005, 101, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skucas, A.P.; Artru, A.A. Anesthetic Complications of Awake Craniotomies for Epilepsy Surgery. Anesth. Analg. 2006, 102, 882. [Google Scholar] [CrossRef]
- Elia, A.; Young, J.S.; Simboli, G.A.; Roux, A.; Moiraghi, A.; Trancart, B.; Al-Adli, N.; Aboubakr, O.; Bedioui, A.; Leclerc, A.; et al. A preoperative scoring system to predict function-based resection limitation due to insufficient participation during awake surgery. Neurosurgery 2023, 12, 938996. [Google Scholar] [CrossRef] [PubMed]
- Abaziou, T.; Tincres, F.; Mrozek, S.; Brauge, D.; Marhar, F.; Delamarre, L.; Menut, R.; Larcher, C.; Osinski, D.; Cinotti, R.; et al. Incidence and predicting factors of perioperative complications during monitored anesthesia care for awake craniotomy. J. Clin. Anesth. 2020, 64, 109811. [Google Scholar] [CrossRef] [PubMed]
- Eseonu, C.I.; ReFaey, K.; Garcia, O.; John, A.; Quiñones-Hinojosa, A.; Tripathi, P. Awake Craniotomy Anesthesia: A Comparison of the Monitored Anesthesia Care and Asleep-Awake-Asleep Techniques. World Neurosurg. 2017, 104, 679–686. [Google Scholar] [CrossRef]
Study Name (NCT) | Interventions | Primary Endpoint | Secondary Endpoint | Est. Enrollment | Start Date | Est. End Date |
---|---|---|---|---|---|---|
PROGRAM (NCT04708171) [39] | Awake mapping Asleep mapping Asleep no mapping | NIHSS, EOR | OS, PFS, Onco-functional outcome, SAE, RTV, MRC motor | 453 | 1 January 2022 | 1 October 2026 |
SAFE (NCT03861299) [40] | Awake craniotomy Asleep craniotomy | NIHSS, EOR | EQ-5D, EORTC-QLQ-BN20/C30, OS, PFS, SAE | 246 | 1 April 2019 | 1 April 2024 |
Task | Function | Result |
---|---|---|
ST/iST [125,126] | Selective attention and inhibition | Feasible and associated with improved deficits at 3 months |
WAIS-III-PA [128] | Social cognition | Feasible and associated with maintenance of baseline performance at 3 months |
mJFE [129] | Basic emotion | Positive sites preserved, postoperative decline in function, 3-month improvement |
Facial expression pictures [130] | Emotional recognition | No postoperative deficits when positive sites were preserved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Adli, N.N.; Young, J.S.; Sibih, Y.E.; Berger, M.S. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers 2023, 15, 2173. https://doi.org/10.3390/cancers15072173
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers. 2023; 15(7):2173. https://doi.org/10.3390/cancers15072173
Chicago/Turabian StyleAl-Adli, Nadeem N., Jacob S. Young, Youssef E. Sibih, and Mitchel S. Berger. 2023. "Technical Aspects of Motor and Language Mapping in Glioma Patients" Cancers 15, no. 7: 2173. https://doi.org/10.3390/cancers15072173
APA StyleAl-Adli, N. N., Young, J. S., Sibih, Y. E., & Berger, M. S. (2023). Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers, 15(7), 2173. https://doi.org/10.3390/cancers15072173