High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tissue Microarray Construction
2.3. Immunohistochemistry and In Situ Hybridization
2.4. Digitization/Immunohistochemistry Scoring
2.5. Statistics
3. Results
3.1. Patient Characteristics
3.2. Expression of SMAD4, RUNX3, IRS-1, and IRS-2 and Their Correlations with Clinicopathological Variables
3.3. Correlations between Investigated Biomarkers and CD3, CD8, miR-17-5p, miR-20a-5p and miR-126
3.4. Univariate Analyses
3.5. Multivariate Analyses
3.6. Co-Expressions
4. Discussion
5. Future Works
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Selven, H.; Busund, L.T.R.; Andersen, S.; Bremnes, R.M.; Kilvær, T.K. High expression of microRNA-126 relates to favorable prognosis for colon cancer patients. Sci. Rep. 2021, 11, 9592. [Google Scholar] [CrossRef] [PubMed]
- Selven, H.; Andersen, S.; Pedersen, M.I.; Lombardi, A.P.G.; Busund, L.T.R.; Kilvær, T.K. High expression of miR-17-5p and miR-20a-5p predicts favorable disease-specific survival in stage I-III colon cancer. Sci. Rep. 2022, 12, 7080. [Google Scholar] [CrossRef]
- Shaw, L.M. The insulin receptor substrate (IRS) proteins. Cell Cycle 2011, 10, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Levanon, D.; Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 2004, 23, 4211–4219. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Chetty, R. Smad4/DPC4. J. Clin. Pathol. 2018, 71, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Feng, X.; Liu, Y.l.; Ye, S.c.; Wang, H.; Tan, W.k.; Tian, T.; Qiu, Y.m.; Luo, H.s. Down-Regulation of miR-126 Is Associated with Colorectal Cancer Cells Proliferation, Migration and Invasion by Targeting IRS-1 via the AKT and ERK1/2 Signaling Pathways. PLoS ONE 2013, 8, e81203. [Google Scholar] [CrossRef]
- Ito, Y.; Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 2003, 13, 43–47. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Hennige, A.; Lammers, R.; Arlt, D.; Höppner, W.; Strack, V.; Niederfellner, G.; Seif, F.; Häring, H.U.; Kellerer, M. Ret oncogene signal transduction via a IRS-2/PI 3-kinase/PKB and a SHC/Grb-2 dependent pathway: Possible implication for transforming activity in NIH3T3 cells. Mol. Cell. Endocrinol. 2000, 167, 69–76. [Google Scholar] [CrossRef]
- Isaksson-Mettävainio, M.; Palmqvist, R.; Forssell, J.; Stenling, R.; Oberg, A. SMAD4/DPC4 Expression and Prognosis in Human Colorectal Cancer. Anticancer Res. 2006, 26, 507–510. [Google Scholar] [PubMed]
- Mu, W.P.; Wang, J.; Niu, Q.; Shi, N.; Lian, H.F. Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: A meta-analysis. OncoTargets Ther. 2014, 7, 1237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Li, D.; Zhu, Z.; Pei, D. A functional polymorphism within the distal promoter of RUNX3 confers risk of colorectal cancer. Int. J. Biol. Markers 2022, 37, 40–46. [Google Scholar] [CrossRef]
- Sesti, G.; Federici, M.; Hribal, M.L.; Lauro, D.; Sbraccia, P.; Lauro, R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 2001, 15, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Dearth, R.K.; Cui, X.; Kim, H.J.; Hadsell, D.L.; Lee, A.V. Oncogenic Transformation by the Signaling Adaptor Proteins Insulin Receptor Substrate (IRS)-1 and IRS-2. Cell Cycle 2007, 6, 705–713. [Google Scholar] [CrossRef]
- Nehrbass, D.; Klimek, F.; Bannasch, P. Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glycogenosis. Am. J. Pathol. 1998, 152, 341–345. [Google Scholar]
- Boissan, M.; Beurel, E.; Wendum, D.; Rey, C.; Lécluse, Y.; Housset, C.; Lacombe, M.L.; Desbois-Mouthon, C. Overexpression of Insulin Receptor Substrate-2 in Human and Murine Hepatocellular Carcinoma. Am. J. Pathol. 2005, 167, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, U.; Funatomi, H.; Kornmann, M.; Beger, H.G.; Korc, M. Increased Expression of Insulin Receptor Substrate-1 in Human Pancreatic Cancer. Biochem. Biophys. Res. Commun. 1996, 220, 886–890. [Google Scholar] [CrossRef]
- Kornmann, M.; Maruyama, H.; Bergmann, U.; Tangvoranuntakul, P.; Beger, H.G.; White, M.F.; Korc, M. Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res. 1998, 58, 4250–4254. [Google Scholar]
- Chang, Q.; Li, Y.; White, M.F.; Fletcher, J.A.; Xiao, S. Constitutive activation of insulin receptor substrate 1 is a frequent event in human tumors: Therapeutic implications. Cancer Res. 2002, 62, 6035–6038. [Google Scholar]
- Ito, Y. RUNX genes in development and cancer: Regulation of viral gene expression and the discovery of RUNX family genes. Adv. Cancer Res. 2008, 99, 33–76. [Google Scholar]
- Ragnarsson, G.; Eiriksdottir, G.; Johannsdottir, J.T.; Jonasson, J.G.; Egilsson, V.; Ingvarsson, S. Loss of heterozygosity at chromosome 1p in different solid human tumours: Association with survival. Brit. J. Cancer 1999, 79, 1468–1474. [Google Scholar] [CrossRef]
- Soong, R.; Shah, N.; Peh, B.K.; Chong, P.Y.; Ng, S.S.; Zeps, N.; Joseph, D.; Salto-Tellez, M.; Iacopetta, B.; Ito, Y. The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Brit. J. Cancer 2009, 100, 676–679. [Google Scholar] [CrossRef]
- Seo, W.; Nomura, A.; Taniuchi, I. The Roles of RUNX Proteins in Lymphocyte Function and Anti-Tumor Immunity. Cells 2022, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.S.; Rogoz, A.; Costa-Pinto, F.A.; Taniuchi, I.; Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 2013, 14, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef]
- Javelaud, D.; Mauviel, A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: Implications for carcinogenesis. Oncogene 2005, 24, 5742–5750. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Pardoux, C.; Hall, M.C.; Lee, P.S.; Warburton, D.; Qing, J.; Smith, S.M.; Derynck, R. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007, 26, 3957–3967. [Google Scholar] [CrossRef]
- Bakin, A.V.; Tomlinson, A.K.; Bhowmick, N.A.; Moses, H.L.; Arteaga, C.L. Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration. J. Biol. Chem. 2000, 275, 36803–36810. [Google Scholar] [CrossRef]
- Hahn, S.A.; Schutte, M.; Shamsul Hoque, A.T.M.; Moskaluk, C.A.; da Costa, L.T.; Rozenblum, E.; Weinstein, C.L.; Fischer, A.; Yeo, C.J.; Hruban, R.H.; et al. DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1. Science 1996, 271, 350–353. [Google Scholar] [CrossRef]
- Xu, X.; Kobayashi, S.; Qiao, W.; Li, C.; Xiao, C.; Radaeva, S.; Stiles, B.; Wang, R.H.; Ohara, N.; Yoshino, T.; et al. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J. Clin. Investig. 2006, 116, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, M.; Kuroki, T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 2003, 306, 799–804. [Google Scholar] [CrossRef]
- Bremnes, R.M.; Veve, R.; Gabrielson, E.; Hirsch, F.R.; Baron, A.; Bemis, L.; Gemmill, R.M.; Drabkin, H.A.; Franklin, W.A. High-Throughput Tissue Microarray Analysis Used to Evaluate Biology and Prognostic Significance of the E-Cadherin Pathway in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2002, 20, 2417–2428. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Jahanifar, M.; Azam, A.; Nimir, M.; Tsang, Y.W.; Dodd, K.; Hero, E.; Sahota, H.; Tank, A.; Benes, K.; et al. Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 684–693. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U. Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist. In Proceedings of the 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India, 28–31 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 265–273. [Google Scholar]
- Cheng, D.; Zhao, S.; Tang, H.; Zhang, D.; Sun, H.; Yu, F.; Jiang, W.; Yue, B.; Wang, J.; Zhang, M.; et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget 2016, 7, 45199–45213. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Y.; Wang, T.; Li, B.; Zhang, S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed. Pharmacother. 2020, 128, 110246. [Google Scholar] [CrossRef]
- Shin, E.J.; Kim, H.J.; Son, M.W.; Ahn, T.S.; Lee, H.Y.; Lim, D.R.; Bae, S.B.; Jeon, S.; Kim, H.; Jeong, D.; et al. Epigenetic inactivation of RUNX3 in colorectal cancer. Ann. Surg. Treat. Res. 2018, 94, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ogino, S.; Meyerhardt, J.A.; Kawasaki, T.; Clark, J.W.; Ryan, D.P.; Kulke, M.H.; Enzinger, P.C.; Wolpin, B.M.; Loda, M.; Fuchs, C.S. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch. 2007, 450, 529–537. [Google Scholar] [CrossRef]
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006, 38, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Nordgaard, O.; Kørner, H.; Oltedal, S.; Smaaland, R.; Søreide, J.A.; Søreide, K. Molecular Subtypes in Stage II-III Colon Cancer Defined by Genomic Instability: Early Recurrence-Risk Associated with a High Copy-Number Variation and Loss of RUNX3 and CDKN2A. PLoS ONE 2015, 10, e0122391. [Google Scholar] [CrossRef]
- Kim, B.R.; Na, Y.J.; Kim, J.L.; Jeong, Y.A.; Park, S.H.; Jo, M.J.; Jeong, S.; Kang, S.; Oh, S.C.; Lee, D.H. RUNX3 suppresses metastasis and stemness by inhibiting Hedgehog signaling in colorectal cancer. Cell Death Differ. 2019, 27, 676–694. [Google Scholar] [CrossRef]
- Sugai, M.; Aoki, K.; Osato, M.; Nambu, Y.; Ito, K.; Taketo, M.M.; Shimizu, A. Runx3 Is Required for Full Activation of Regulatory T Cells To Prevent Colitis-Associated Tumor Formation. J. Immunol. 2011, 186, 6515–6520. [Google Scholar] [CrossRef] [PubMed]
- Garrity-Park, M.M.; Loftus, E.V.; Bryant, S.C.; Smyrk, T.C. A Biomarker Panel to Detect Synchronous Neoplasm in Non-neoplastic Surveillance Biopsies from Patients with Ulcerative Colitis. Inflamm. Bowel Dis. 2016, 22, 1568–1574. [Google Scholar] [CrossRef]
- Voorneveld, P.W.; Jacobs, R.J.; Kodach, L.L.; Hardwick, J.C. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl. Oncol. 2015, 8, 18–24. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kopetz, S.; Panettieri, E.; Hwang, H.; Wang, X.; Cao, H.S.T.; Tzeng, C.W.D.; Chun, Y.S.; Aloia, T.A.; Vauthey, J.N. Improved Survival over Time After Resection of Colorectal Liver Metastases and Clinical Impact of Multigene Alteration Testing in Patients with Metastatic Colorectal Cancer. J. Gastrointest. Surg. 2021, 26, 583–593. [Google Scholar] [CrossRef]
- Bacman, D.; Merkel, S.; Croner, R.; Papadopoulos, T.; Brueckl, W.; Dimmler, A. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: A retrospective study. BMC Cancer 2007, 7, 156. [Google Scholar] [CrossRef]
- Mesker, W.E.; Liefers, G.J.; Junggeburt, J.M.C.; van Pelt, G.W.; Alberici, P.; Kuppen, P.J.K.; Miranda, N.F.; van Leeuwen, K.A.M.; Morreau, H.; Szuhai, K.; et al. Presence of a High Amount of Stroma and Downregulation of SMAD4 Predict for Worse Survival for Stage I–II Colon Cancer Patients. Anal. Cell. Pathol. 2009, 31, 169–178. [Google Scholar] [CrossRef]
- Kim, B.G.; Li, C.; Qiao, W.; Mamura, M.; Kasperczak, B.; Anver, M.; Wolfraim, L.; Hong, S.; Mushinski, E.; Potter, M.; et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006, 441, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; Samowitz, W.; Curtin, K.; Ma, K.N.; Hoffman, M.; Caan, B.; Neuhausen, S. Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 1206–1214. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. JNCI J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef] [PubMed]
Tumor | Stromal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N(%) | 5 Year | Median | HR(95% CI) | p | N(%) | 5 Year | Median | HR(95% CI) | p | |
C-IRS1 | 0.380 | <0.001 | ||||||||
Low | 212(47) | 76 | NA | 1 | 88(19) | 66 | 182 | 1 | ||
High | 211(47) | 81 | NA | 0.84(0.57–1.24) | 335(74) | 82 | NA | 0.5(0.31–0.82) | ||
Missing | 29(6) | 29(6) | ||||||||
C-IRS2 | 0.068 | 0.220 | ||||||||
Low | 202(45) | 74 | NA | 1 | 203(45) | 74 | NA | 1 | ||
High | 202(45) | 84 | NA | 0.69(0.46–1.03) | 201(44) | 84 | NA | 0.78(0.52–1.16) | ||
Missing | 48(11) | 48(11) | ||||||||
N-SMAD4 | 0.004 | 0.150 | ||||||||
Low | 106(23) | 70 | NA | 1 | 209(46) | 76 | NA | 1 | ||
High | 311(69) | 83 | NA | 0.55(0.35–0.88) | 208(46) | 83 | NA | 0.74(0.5–1.11) | ||
Missing | 35(8) | 35(8) | ||||||||
C-SMAD4 | <0.001 | <0.001 | ||||||||
Low | 100(22) | 67 | NA | 1 | 152(34) | 71 | NA | 1 | ||
High | 317(70) | 83 | NA | 0.48(0.29–0.77) | 265(59) | 85 | NA | 0.49(0.32–0.74) | ||
Missing | 35(8) | 35(8) | ||||||||
N-RUNX3 | 0.002 | <0.001 | ||||||||
Low | 115(25) | 69 | NA | 1 | 268(59) | 74 | NA | 1 | ||
High | 304(67) | 83 | NA | 0.53(0.34–0.83) | 151(33) | 88 | NA | 0.37(0.25–0.56) | ||
Missing | 33(7) | 33(7) | ||||||||
C-RUNX3 | 0.009 | <0.001 | ||||||||
Low | 68(15) | 67 | NA | 1 | 106(23) | 63 | 182 | 1 | ||
High | 351(78) | 81 | NA | 0.55(0.32–0.95) | 313(69) | 84 | NA | 0.36(0.23–0.58) | ||
Missing | 33(7) | 33(7) |
Tumor | Stromal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | S1 | S2 | S3 | ||||||
HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | |
Age | 1.03(1.01–1.05) | 0.005 | 1.02(1–1.05) | 0.0141 | 1.02(1.01–1.04) | 0.013 | 1.02(1–1.04) | 0.020 | 1.02(1–1.05) | 0.018 |
pTNM | ||||||||||
pTNM I | 1 | 1 | 1 | 1 | 1 | |||||
pTNM II | 1.7(0.66–4.42) | 0.274 | 2.32(0.89–6.02) | 0.083 | 1.89(0.73–4.9) | 0.188 | 1.75(0.67–4.54) | 0.252 | 2.17(0.83–5.63) | 0.113 |
pTNM III | 5.24(2.07–13.28) | <0.001 | 6.71(2.65–16.99) | <0.001 | 6.16(2.44–15.56) | <0.001 | 5.39(2.13–13.67) | <0.001 | 5.65(2.23–14.32) | <0.001 |
Margins | ||||||||||
0 mm | 1 | 1 | 1 | 1 | 1 | |||||
<1 mm | 0.58(0.26–1.27) | 0.174 | 0.55(0.25–1.21) | 0.135 | 0.62(0.28–1.38) | 0.238 | 0.7(0.32–1.54) | 0.375 | 0.49(0.22–1.07) | 0.075 |
1–2 mm | 0.17(0.05–0.54) | 0.003 | 0.16(0.05–0.58) | 0.005 | 0.27(0.1–0.78) | 0.015 | 0.24(0.08–0.75) | 0.014 | 0.16(0.05–0.57) | 0.005 |
2–10 mm | 0.33(0.16–0.69) | 0.003 | 0.45(0.22–0.92) | 0.028 | 0.45(0.22–0.92) | 0.028 | 0.43(0.21–0.89) | 0.024 | 0.39(0.19–0.79) | 0.009 |
10–50 mm | 0.44(0.22–0.86) | 0.017 | 0.64(0.33–1.24) | 0.185 | 0.55(0.28–1.07) | 0.080 | 0.58(0.3–1.14) | 0.112 | 0.53(0.28–1.02) | 0.056 |
>50 mm | 0.35(0.14–0.89) | 0.028 | 0.41(0.17–0.99) | 0.049 | 0.41(0.17–1.01) | 0.054 | 0.42(0.17–1.09) | 0.074 | 0.35(0.15–0.86) | 0.022 |
C-IRS1 | ||||||||||
Low | 1 | |||||||||
High | 0.64(0.47–0.87) | 0.005 | ||||||||
N-SMAD4 | ||||||||||
Low | ||||||||||
High | NS | NS | ||||||||
C-SMAD4 | ||||||||||
Low | 1 | 1 | ||||||||
High | 0.58(0.43–0.8) | <0.001 | 0.67(0.5–0.91) | 0.009 | ||||||
N-RUNX3 | ||||||||||
Low | 1 | 1 | ||||||||
High | 0.62(0.45–0.84) | 0.002 | 0.68(0.44–1.03) | 0.068 | ||||||
C-RUNX3 | ||||||||||
Low | 1 | |||||||||
High | NS | 0.62(0.44–0.87) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selven, H.; Busund, L.-T.R.; Andersen, S.; Pedersen, M.I.; Lombardi, A.P.G.; Kilvaer, T.K. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers 2023, 15, 1448. https://doi.org/10.3390/cancers15051448
Selven H, Busund L-TR, Andersen S, Pedersen MI, Lombardi APG, Kilvaer TK. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers. 2023; 15(5):1448. https://doi.org/10.3390/cancers15051448
Chicago/Turabian StyleSelven, Hallgeir, Lill-Tove Rasmussen Busund, Sigve Andersen, Mona Irene Pedersen, Ana Paola Giometti Lombardi, and Thomas Karsten Kilvaer. 2023. "High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer" Cancers 15, no. 5: 1448. https://doi.org/10.3390/cancers15051448
APA StyleSelven, H., Busund, L.-T. R., Andersen, S., Pedersen, M. I., Lombardi, A. P. G., & Kilvaer, T. K. (2023). High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers, 15(5), 1448. https://doi.org/10.3390/cancers15051448