Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Attention Branch Network
2.1.1. Attention Branch
2.1.2. Perception Branch
2.2. Training of ABN
2.3. Manual Editing of Attention Map
2.4. SENet
2.5. Dataset
3. Results
3.1. Visualizing Attention Maps
3.2. Incorporating Manually Edited Attention Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleppe, A.; Skrede, O.-J.; De Raedt, S.; Liestøl, K.; Kerr, D.J.; Danielsen, H.E. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 2021, 21, 199–211. [Google Scholar] [CrossRef]
- Lotter, W.; Diab, A.R.; Haslam, B.; Kim, J.G.; Grisot, G.; Wu, E.; Wu, K.; Onieva, J.O.; Boyer, Y.; Boxerman, J.L.; et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 2021, 27, 244–249. [Google Scholar] [CrossRef]
- Xue, P.; Wang, J.; Qin, D.; Yan, H.; Qu, Y.; Seery, S.; Jiang, Y.; Qiao, Y. Deep learning in image-based breast and cervical cancer detection: A systematic review and meta-analysis. NPJ Digit. Med. 2022, 5, 19. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Zhu, S.C. Visual interpretability for deep learning: A survey. Front. Inf. Technol. Electron. Eng. 2018, 19, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3156–3164. [Google Scholar]
- Fukui, H.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Attention branch network: Learning of attention mechanism for visual explanation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10705–10714. [Google Scholar]
- Saisai, D.; Wu, Z.; Zheng, Y.; Liu, Z.; Yang, X.; Yang, X.; Yuan, G.; Xie, J. Deep attention branch networks for skin lesion classification. Comput. Methods Programs Biomed. 2021, 212, 106447. [Google Scholar]
- Budd, S.; Robinson, E.C.; Kainz, B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image Anal. 2021, 71, 102062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, P.; Scheidegger, C.; Ren, L. Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models. IEEE Trans. Vis. Comput. Graph. 2022, 28, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lu, Y.; Deng, R.; Yang, H.; Fogo, A.B.; Huo, Y. EasierPath: An open-source tool for human-in-the-loop deep learning of renal pathology. In Interpretable and Annotation-Efficient Learning for Medical Image Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 214–222. [Google Scholar]
- Linsley, D.; Shiebler, D.; Eberhardt, S.; Serre, T. Learning what and where to attend. arXiv 2018, arXiv:1805.08819. [Google Scholar]
- Mitsuhara, M.; Fukui, H.; Sakashita, Y.; Ogata, T.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Embedding Human Knowledge into Deep Neural Network via Attention Map. arXiv 2019, arXiv:1905.03540. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Uthoff, R.D.; Song, B.; Sunny, S.; Patrick, S.; Suresh, A.; Kolur, T.; Keerthi, G.; Spires, O.; Anbarani, A.; Wilder-Smith, P.; et al. Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities. PLoS ONE 2018, 13, e0207493. [Google Scholar] [CrossRef] [PubMed]
- Duran-Sierra, E.; Cheng, S.; Cuenca, R.; Ahmed, B.; Ji, J.; Yakovlev, V.V.; Martinez, M.; Al-Khalil, M.; Al-Enazi, H.; Cheng, Y.-S.L.; et al. Machine-Learning Assisted Discrimination of Precancerous and Cancerous from Healthy Oral Tissue Based on Multispectral Autofluorescence Lifetime Imaging Endoscopy. Cancers 2021, 13, 4751. [Google Scholar] [CrossRef] [PubMed]
- Huiping, L.; Hanshen, C.; Luxi, W.; Jiaqi, S.; Jun, L. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. J. Biomed. Opt. 2021, 26, 086007. [Google Scholar]
- Bofan, S.; Sumsum, S.; Shaobai, L.; Keerthi, G.; Pramila, M.; Nirza, M.; Sanjana, P.; Shubha, G.; Subhashini, R.; Tsusennaro, I.; et al. Mobile-based oral cancer classification for point-of-care screening. J. Biomed. Opt. 2021, 26, 065003. [Google Scholar]
- Warin, K.; Limprasert, W.; Suebnukarn, S.; Jinaporntham, S.; Jantana, P. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. J. Oral Pathol. Med. 2021, 50, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Sunny, S.; Li, S.; Gurushanth, K.; Mendonca, P.; Mukhia, N.; Patrick, S.; Gurudath, S.; Raghavan, S.; Tsusennaro, I.; et al. Bayesian deep learning for reliable oral cancer image classification. Biomed. Opt. Express 2021, 12, 6422. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://pypi.org/project/PyQt5/ (accessed on 4 December 2022).
- Ross, D.U.; Bofan, S.; Sumsum, S.; Sanjana, P.; Amritha, S.; Trupti, K.; Keerthi, G.; Kimberly, W.; Vishal, G.; Mary, E.P.; et al. Small form factor, flexible, dual-modality handheld probe for smartphone-based, point-of-care oral and oropharyngeal cancer screening. J. Biomed. Opt. 2019, 24, 106003. [Google Scholar]
- Birur, N.P.; Song, B.; Sunny, S.P.; Mendonca, P.; Mukhia, N.; Li, S.; Patrick, S.; AR, S.; Imchen, T.; Leivon, S.T.; et al. Field validation of deep learning based Point-of-Care device for early detection of oral malignant and potentially malignant disorders. Sci. Rep. 2022, 12, 14283. [Google Scholar] [CrossRef] [PubMed]
- Birur, N.P.; Gurushanth, K.; Patrick, S.; Sunny, S.P.; Raghavan, S.A.; Gurudath, S.; Hegde, U.; Tiwari, V.; Jain, V.; Imran, M.; et al. Role of community health worker in a mobile health program for early detection of oral cancer. Indian J. Cancer 2019, 56, 107–113. [Google Scholar] [CrossRef] [PubMed]
Five-Fold Cross-Validation Accuracy | ResNet18 | ResNet34 | ResNet50 | ResNet101 |
---|---|---|---|---|
Original Network | 0.846 | 0.851 | 0.850 | 0.844 |
ABN | 0.875 | 0.879 | 0.880 | 0.872 |
SE-ABN | 0.877 | 0.880 | 0.881 | 0.876 |
Original ResNet18 network | Sensitivity | 0.833 |
Specificity | 0.857 | |
Positive predictive value | 0.843 | |
Negative predictive value | 0.848 | |
Accuracy | 0.846 | |
ABN | Sensitivity | 0.860 |
Specificity | 0.887 | |
Positive predictive value | 0.876 | |
Negative predictive value | 0.873 | |
Accuracy | 0.875 | |
SE-ABN | Sensitivity | 0.868 |
Specificity | 0.886 | |
Positive predictive value | 0.875 | |
Negative predictive value | 0.879 | |
Accuracy | 0.877 | |
SE-ABN (incorporating manually edited attention maps) | Sensitivity | 0.898 |
Specificity | 0.908 | |
Positive predictive value | 0.899 | |
Negative predictive value | 0.906 | |
Accuracy | 0.903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Zhang, C.; Sunny, S.; KC, D.R.; Li, S.; Gurushanth, K.; Mendonca, P.; Mukhia, N.; Patrick, S.; Gurudath, S.; et al. Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map. Cancers 2023, 15, 1421. https://doi.org/10.3390/cancers15051421
Song B, Zhang C, Sunny S, KC DR, Li S, Gurushanth K, Mendonca P, Mukhia N, Patrick S, Gurudath S, et al. Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map. Cancers. 2023; 15(5):1421. https://doi.org/10.3390/cancers15051421
Chicago/Turabian StyleSong, Bofan, Chicheng Zhang, Sumsum Sunny, Dharma Raj KC, Shaobai Li, Keerthi Gurushanth, Pramila Mendonca, Nirza Mukhia, Sanjana Patrick, Shubha Gurudath, and et al. 2023. "Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map" Cancers 15, no. 5: 1421. https://doi.org/10.3390/cancers15051421
APA StyleSong, B., Zhang, C., Sunny, S., KC, D. R., Li, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., Tsusennaro, I., Leivon, S. T., Kolur, T., Shetty, V., Bushan, V., Ramesh, R., Pillai, V., Wilder-Smith, P., ... Liang, R. (2023). Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map. Cancers, 15(5), 1421. https://doi.org/10.3390/cancers15051421