Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of the Main Study Results and Patient Characteristics
3.2. Hyperparathyroidism Gene Panel Findings
3.3. PRUNE2 Mutations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryhänen, E.M.; Leijon, H.; Metso, S.; Eloranta, E.; Korsoff, P.; Ahtiainen, P.; Kekäläinen, P.; Tamminen, M.; Ristamäki, R.; Knutar, O.; et al. A nationwide study on parathyroid carcinoma. Acta Oncol. 2017, 56, 991–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, C.E.; Healy, J.; Lebastchi, A.H.; Brown, T.C.; Stein, J.E.; Prasad, M.L.; Callender, G.G.; Carling, T.; Udelsman, R. Modern experience with aggressive parathyroid tumors in a high-volume New England referral center. J. Am. Coll. Surg. 2015, 220, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.D. Epidemiology of parathyroid disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Cetani, F.; Pardi, E.; Marcocci, C. Parathyroid Carcinoma. Front. Horm. Res. 2018, 51, 63–76. [Google Scholar] [CrossRef]
- Marcocci, C.; Cetani, F.; Rubin, M.R.; Silverberg, S.J.; Pinchera, A.; Bilezikian, J.P. Parathyroid carcinoma. J. Bone Miner. Res. 2008, 23, 1869–1880. [Google Scholar] [CrossRef]
- Duan, K.; Hernandez, K.G.; Mete, O. Clinicopathological correlates of hyperparathyroidism. J. Clin. Pathol. 2015, 68, 771–787. [Google Scholar] [CrossRef]
- Schulte, K.; Talat, N.; Galat, G. Margin Free Resection Achieves Excellent Long Term Outcomes in Parathyroid Cancer. Cancers 2023, 15, 199. [Google Scholar] [CrossRef]
- Duan, K.; Mete, Ö. Parathyroid carcinoma: Diagnosis and clinical implications. Turk. J. Pathol. 2015, 31, 80–97. [Google Scholar] [CrossRef] [Green Version]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Cetani, F.; Marcocci, C.; Torregrossa, L.; Pardi, E. Atypical parathyroid adenomas: Challenging lesions in the differential diagnosis of endocrine tumors. Endocr. Relat. Cancer 2019, 26, R441–R464. [Google Scholar] [CrossRef] [Green Version]
- Korpi-Hyövälti, E.; Cranston, T.; Ryhänen, E.; Arola, J.; Aittomäki, K.; Sane, T.; Thakker, R.V.; Schalin-Jäntti, C. CDC73 intragenic deletion in familial primary hyperparathyroidism associated with parathyroid carcinoma. J. Clin. Endocrinol. Metab. 2014, 99, 3044–3048. [Google Scholar] [CrossRef]
- Cetani, F.; Banti, C.; Pardi, E.; Borsari, S.; Viacava, P.; Miccoli, P.; Torregrossa, L.; Basolo, F.; Pelizzo, M.R.; Rugge, M.; et al. CDC73 mutational status and loss of parafibromin in the outcome of parathyroid cancer. Endocr. Connect. 2013, 2, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segiet, O.A.; Deska, M.; Michalski, M.; Gawrychowski, J.; Wojnicz, R. Molecular profiling in primary hyperparathyroidism. Head Neck 2015, 37, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Juhlin, C.C.; Erickson, L.A. Genomics and Epigenomics in Parathyroid Neoplasia: From Bench to Surgical Pathology Practice. Endocr. Pathol. 2021, 32, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Minnetti, M.; Grossman, A. Somatic and germline mutations in NETs: Implications for their diagnosis and management. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 115–127. [Google Scholar] [CrossRef]
- Clarke, C.N.; Katsonis, P.; Hsu, T.-K.; Koire, A.M.; Silva-Figueroa, A.; Christakis, I.; Williams, M.D.; Kutahyalioglu, M.; Kwatampora, L.; Xi, Y.; et al. Comprehensive Genomic Characterization of Parathyroid Cancer Identifies Novel Candidate Driver Mutations and Core Pathways. J. Endocr. Soc. 2019, 3, 544–559. [Google Scholar] [CrossRef] [Green Version]
- Sharretts, J.M.; Simonds, W.F. Clinical and Molecular Genetics of Parathyroid Neoplasms John. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 24, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Brewer, K.; Costa-Guda, J.; Arnold, A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr. Relat. Cancer 2019, 26, R53–R72. [Google Scholar] [CrossRef]
- Cetani, F.; Pinchera, A.; Pardi, E.; Cianferotti, L.; Vignali, E.; Picone, A.; Miccoli, P.; Viacava, P.; Marcocci, C. No evidence for mutations in the calcium-sensing receptor gene in sporadic parathyroid adenomas. J. Bone Miner. Res. 1999, 14, 878–882. [Google Scholar] [CrossRef]
- Witteveen, J.E.; Hamdy, N.A.T.; Dekkers, O.M.; Kievit, J.; Van Wezel, T.; Teh, B.T.; Romijn, J.A.; Morreau, H. Downregulation of CASR expression and global loss of parafibromin staining are strong negative determinants of prognosis in parathyroid carcinoma. Mod. Pathol. 2011, 24, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, L.; Stevenson, M.; Thakker, R.V. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum. Mutat. 2017, 38, 1621–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollerslev, J.; Schalin-Jäntti, C.; Rejnmark, L.; Siggelkow, H.; Morreau, H.; Thakker, R.; Sitges-Serra, A.; Cetani, F.; Marcocci, C.; Guistina, A.; et al. Unmet therapeutic, educational and scientific needs in parathyroid disorders: Consensus statement from the first European Society of Endocrinology Workshop (PARAT). Eur. J. Endocrinol. 2019, 181, P1–P19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, X.; Wang, O.; Bi, Y.; Xing, X.; Cui, M.; Wang, M.; Tao, W.; Liao, Q.; Zhao, Y. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int. J. Cancer 2020, 147, 2446–2457. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; McPherson, J.R.; Stevenson, M.; Van Eijk, R.; Heng, H.L.; Newey, P.; Gan, A.; Ruano, D.; Huang, D.; Poon, S.L.; et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J. Clin. Endocrinol. Metab. 2015, 100, E360–E364. [Google Scholar] [CrossRef] [Green Version]
- Pandya, C.; Uzilov, A.V.; Bellizzi, J.; Lau, C.Y.; Moe, A.S.; Strahl, M.; Hamou, W.; Newman, L.C.; Fink, M.Y.; Antipin, Y.; et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017, 2, e92061. [Google Scholar] [CrossRef] [Green Version]
- Machida, T.; Fujita, T.; Ooo, M.L.; Ohira, M.; Isogai, E.; Mihara, M.; Hirato, J.; Tomotsune, D.; Hirata, T.; Fujimori, M.; et al. Increased expression of proapoptotic BMCC1, a novel gene with the BNIP2 and Cdc42GAP homology (BCH) domain, is associated with favorable prognosis in human neuroblastomas. Oncogene 2006, 25, 1931–1942. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Huang, S.; Yan, W.; Zhang, Y.; Guo, Q. PRUNE2 inhibits progression of colorectal cancer in vitro and in vivo. Exp. Ther. Med. 2021, 23, 169. [Google Scholar] [CrossRef]
- Salameh, A.; Lee, A.K.; Cardó-Vila, M.; Nunes, D.N.; Efstathiou, E.; Staquicini, F.I.; Dobroff, A.S.; Marchiò, S.; Navone, N.M.; Hosoya, H.; et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl. Acad. Sci. USA 2015, 112, 8403–8408. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.J. Biomarkers for prostate cancer: Prostate-specific antigen and beyond. Clin. Chem. Lab. Med. 2020, 58, 326–339. [Google Scholar] [CrossRef] [Green Version]
- Filella, X.; Foj, L. Novel biomarkers for prostate cancer detection and prognosis. Adv. Exp. Med. Biol. 2018, 1095, 15–39. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Baniahmad, A.; Taheri, M.; Rashnoo, F. A review on the role of PCA3 lncRNA in carcinogenesis with an especial focus on prostate cancer. Pathol. Res. Pract. 2022, 231, 153800. [Google Scholar] [CrossRef] [PubMed]
- Kääriäinen, H.; Muilu, J.; Perola, M.; Kristiansson, K. Genetics in an isolated population like Finland: A different basis for genomic medicine? J. Community Genet. 2017, 8, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The Human Genome Browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Katainen, R.; Donner, I.; Cajuso, T.; Kaasinen, E.; Palin, K.; Mäkinen, V.; Aaltonen, L.A.; Pitkänen, E. Discovery of potential causative mutations in human coding and noncoding genome with the interactive software BasePlayer. Nat. Protoc. 2018, 13, 2580–2600. [Google Scholar] [CrossRef] [PubMed]
- Kouvaraki, M.A.; Lee, J.E.; Shapiro, S.E.; Gagel, R.F.; Sherman, S.I.; Sellin, R.V.; Cote, G.J.; Evans, D.B. Genotype-phenotype analysis in multiple endocrine neoplasia type 1. Arch. Surg. 2002, 137, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, L.; Pickel, J.; Zinner, K.; Hering, U.; Höfler, M.; Goretzki, P.E.; Spelsberg, F.; Raue, F.; Von Zur Mühlen, A.; Gerl, H.; et al. Developing effective screening strategies in multiple endocrine neoplasia type 1 (MEN 1) on the basis of clinical and sequencing data of German patients with MEN 1. Exp. Clin. Endocrinol. Diabetes 2007, 115, 509–517. [Google Scholar] [CrossRef] [PubMed]
- DeRycke, M.S.; Gunawardena, S.; Balcom, J.R.; Pickart, A.M.; Waltman, L.A.; French, A.J.; McDonnell, S.; Riska, S.M.; Fogarty, Z.C.; Larson, M.C.; et al. Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Mol. Genet. Genom. Med. 2017, 5, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Yurgelun, M.B.; Allen, B.; Kaldate, R.R.; Bowles, K.R.; Judkins, T.; Kaushik, P.; Roa, B.B.; Wenstrup, R.J. Genes in Patients with Suspected Lynch Syndrome. Gastroenterology 2015, 149, 604–613.e20. [Google Scholar] [CrossRef] [Green Version]
- Chubb, D.; Broderick, P.; Frampton, M.; Kinnersley, B.; Sherborne, A.; Penegar, S.; Lloyd, A.; Ma, Y.P.; Dobbins, S.E.; Houlston, R.S. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing. J. Clin. Oncol. 2015, 33, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.; Maia, S.; Brandão, A.; Sahasrabudhe, R.; Lott, P.; Belter, N.; Carvajal-Carmona, L.G.; Paulo, P.; Teixeira, M.R. Exome sequencing of affected duos and trios uncovers PRUNE2 as a novel prostate cancer predisposition gene. Br. J. Cancer, 2022; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Palmini, G.; Perigli, G.; Santoro, R.; Brandi, M.L. Genetics and Epigenetics of Parathyroid Carcinoma. Front. Endocrinol. 2022, 13, 834362. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Karczewski, K.J.; Kerminen, S.; Kurki, M.I.; Sarin, A.P.; Artomov, M.; Eriksson, J.G.; Esko, T.; Genovese, G.; Havulinna, A.S.; et al. Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. Am. J. Hum. Genet. 2018, 102, 760–775. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Vitali, E.; Boemi, I.; Rosso, L.; Cambiaghi, V.; Novellis, P.; Mantovani, G.; Spada, A.; Alloisio, M.; Veronesi, G.; Ferrero, S.; et al. FLNA is implicated in pulmonary neuroendocrine tumors aggressiveness and progression. Oncotarget 2017, 8, 77330–77340. [Google Scholar] [CrossRef] [Green Version]
- Hjälm, G.; MacLeod, R.J.; Kifor, O.; Chattopadhyay, N.; Brown, E.M. Filamin-A Binds to the Carboxyl-terminal Tail of the Calcium-sensing Receptor, an Interaction that Participates in CaR-mediated Activation of Mitogen-activated Protein Kinase. J. Biol. Chem. 2001, 276, 34880–34887. [Google Scholar] [CrossRef] [Green Version]
- Awata, H.; Huang, C.; Handlogten, M.E.; Miller, R.T. Interaction of the Calcium-sensing Receptor and Filamin, a Potential Scaffolding Protein. J. Biol. Chem. 2001, 276, 34871–34879. [Google Scholar] [CrossRef] [Green Version]
- Mingione, A.; Verdelli, C.; Ferrero, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Vicentini, L.; Balza, G.; Beretta, E.; Terranegra, A.; et al. Filamin A is reduced and contributes to the CASR sensitivity in human parathyroid tumors. J. Mol. Endocrinol. 2017, 58, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Storvall, S.; Leijon, H.; Ryhänen, E.M.; Vesterinen, T.; Heiskanen, I.; Schalin-Jäntti, C.; Arola, J. Filamin A and parafibromin expression in parathyroid carcinoma. Eur. J. Endocrinol. 2021, 185, 803–812. [Google Scholar] [CrossRef]
- Rosano, D.; Di Croce, L.; Futreal, P.A.; The, B.T.; Tonon, G.; Segalla, S.; Frenquelli, M.; Antonini, E.; Huang, D.; Lazarevic, D.; et al. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J. Clin. Investig. 2016, 126, 4387. [Google Scholar] [CrossRef]
- Fang, X.; Svitkina, T.M. Adenomatous Polyposis Coli (APC) in cell migration. Eur. J. Cell Biol. 2022, 101, 151228. [Google Scholar] [CrossRef] [PubMed]
- Perrier, N.D.; Arnold, A.; Costa-guda, J.; Busaidy, N.L.; Nguyen, H.; Chuang, H.H. Thematic review, Hereditary endocrine tumours: Current state-of-the-art New and future perspectives for parathyroid carcinoma. Endocr. Relat. Cancer 2020, 27, T53–T63. [Google Scholar] [CrossRef] [PubMed]
- Walls, G.V.; Stevenson, M.; Lines, K.E.; Newey, P.J.; Reed, A.A.C.; Bowl, M.R.; Jeyabalan, J.; Harding, B.; Bradley, K.J.; Manek, S.; et al. Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: Model for the hyperparathyroidism-jaw tumour syndrome. Oncogene 2017, 36, 4025–4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, A.; Waring, A.; Fernandez-Ranvier, G.; Hwang, J.; Suh, I.; Mitmaker, E.; Shen, W.; Gosnell, J.; Duh, Q.Y.; Clark, O. Parathyroid carcinoma: A 43-year outcome and survival analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3679–3686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar Del Moral, J.; Jiménez-García, A.; Salvador-Egea, P.; Martos-Martínez, J.M.; Nuño-Vázquez-Garza, J.M.; Serradilla-Martín, M.; Gómez-Palacios, A.; Moreno-Llorente, P.; Ortega-Serrano, J.; De La Quintana-Basarrate, A. Prognostic factors and staging systems in parathyroid cancer: A multicenter cohort study. Surgery 2014, 156, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
PC | APT | PA | Total | p-Value | |
---|---|---|---|---|---|
n. | 15 | 16 | 6 | 37 | |
Sex (m:f) | 8:7 | 5:11 | 0:6 | 13:25 | 0.054 |
Age at diagnosis (years, median, range) | 61 (17–76) | 60 (33–80) | 58 (38–73) | 60 (17–80) | |
S-Ca-ion at diagnosis (mmol/L, median, range) | 2.05 (1.62–2.58) | 1.73 (1.32–2.39) | 1.50 (1.41–1.64) | 1.8 (1.32–2.58) | <0.001 * |
S-PTH at diagnosis ng/L (median, range) | 1743 (358–4000) | 330 (73–3500) | 138 (63–222) | 502 (63–4000) | <0.001 * |
More than one surgery for PHPT (n. of patients) | 9 | 3 | 0 | 8 | 0.271 |
Hypercalcemic crisis or hypercalcemia requiring in-hospital treatment | 10 | 6 | 0 | 16 | 0.015 * |
Palpable neck mass | 2 | 2 | 0 | 4 | 0.689 |
Renal failure (transient or permanent serum creatinine elevation) | 5 | 4 | 0 | 9 | 0.320 |
Skeletal manifestation (osteoporosis or osteitis fibrosa cystica) | 4 | 6 | 1 | 11 | 0.713 |
Number of patients with rare PRUNE2 mutations | 3 | 7 | 3 | 13 | 0.343 |
Patient ID | Diagnosis | Age at Diagnosis | Ethnicity (If Other Than Finnish) | Mutated Gene | Mutation | Predicted Consequence |
---|---|---|---|---|---|---|
152155 | PC | 49 | ||||
152161 | PC | 61 | Russian | |||
152163 | PC | 45 | ||||
152164 | PC | 53 | ||||
152165 | PC | 35 | RET | c.604G > A p.Val202Met | VUS | |
152168 | PC | 71 | ||||
152170 | PC | 71 | ||||
152171 | PC | 66 | ||||
152172 | PC | 67 | Estonian | MEN1 | c.1280G > T, p.Ser427Ile | Likely pathogenic |
152174 | PC | 65 | APC | 5′UTR variant c.-128G > A | VUS | |
156889 | PC | 76 | ||||
167873 | PC | 40 | ||||
167874 | PC | 17 | ||||
171375 | PC | 46 | Russian | |||
177360 | PC | 72 | ||||
152131 | APT | 63 | ||||
152133 | APT | 80 | ||||
152134 | APT | 52 | ||||
152135 | APT | 56 | ||||
152136 | APT | 68 | ||||
152137 | APT | 60 | ||||
152140 | APT | 70 | ||||
152142 | APT | 59 | Monosomy X (Turner syndrome) | |||
152143 | APT | 50 | ||||
152146 | APT | 52 | AIP | c.940C > T, p.Arg314Trp | VUS | |
152149 | APT | 67 | ||||
152169 | APT | 56 | ||||
152175 | APT | 70 | BRCA2 | Inframe deletion c.3900_3902del p.Met1300_Thr1301delinsIle | VUS | |
152176 | APT | 64 | ||||
152177 | APT | 33 | ||||
177359 | APT | 49 | ||||
152121 | PA | 44 | ||||
152123 | PA | 54 | ||||
152125 | PA | 73 | SDHA | 5′UTR variant c.-11C > T | VUS | |
152127 | PA | 38 | ||||
152128 | PA | 68 | ||||
152129 | PA | 61 | APC | c.2222A > G p.Asn741Ser | VUS |
Patient ID | Dg (Age at Onset/Sex) | PRUNE2 Mutation (Exon) | * MAF (Finnish) | * MAF (Global) | Predicted Effect SIFT /Polyphen | Phylop Conservation Score | rs Number |
---|---|---|---|---|---|---|---|
152155 | PC (49/F) | c.270C > T, Asp90Asn (3) | 0.01477 | 0.009245 | Deleterious/probably damaging | 5.56559 | rs41304230 |
152164 | PC (53/F) | c.7719C > T Ala2573Thr (9) | 0.01656 | 0.02567 | Tolerated/benign | 0.280654 | rs56261747 |
152171 | PC (66/M) | c.270C > T, Asp90Asn (3) | 0.01477 | 0.009245 | Deleterious/probably damaging | 5.56559 | rs41304230 |
c.3842G > A, Ser1281Phe (8) | 0.01263 | 0.01024 | Tolerated/possibly damaging | 2.67864 | rs41310047 | ||
152131 | APT (63/M) | c.2547TC > AA +, p.Glu2516Leu (9) | 0.001639, 0.001641 | 0.001639, 0.001641 | Deleterious/probably damaging | 0.104701, 0.36863 | rs187947807, rs190606277 |
152134 | APT (52/F) | c.2784T > C, Lys928Glu (8) | 0.03 | 0.03 | Tolerated/benign | 0.747535 | rs41289953 |
152140 | APT (70/F) | c.2784T > C, Lys928Glu (8) | 0.03 | 0.03 | Tolerated/benign | 0.747535 | rs41289953 |
152142 | APT (59/F) | c.1784G > T, Ser595Tyr (8) | 0.01447 | 0.001681 | Deleterious/probably damaging | 2.36166 | rs201792781 |
c.7707T > C, Arg2569Gly (9) | 0.01659 | 0.02568 | Tolerated/benign | 1.07244 | rs41288767 | ||
c.7719C > T, Ala2573Thr (9) | 0.01656 | 0.02567 | Tolerated/benign | 0.280654 | rs56261747 | ||
152149 | APT (67/F) | c.2784T > C, Lys928Glu (8) | 0.03 | 0.03 | Tolerated/benign | 0.747535 | rs41289953 |
152176 | APT (64/F) | c.2784T > C, Lys928Glu (8) | 0.03 | 0.03 | Tolerated/benign | 0.747535 | rs41289953 |
152121 | PA (44/F) | c.3339C > T, Asp1113Asn (8) | 0.004178 | 0.0032776 | Deleterious/possibly damaging | 4.12181 | rs200875180 |
152123 | PA (54/F) | c.270C > T, Asp90Asn (3) | 0.01477 | 0.009245 | Deleterious/probably damaging | 5.56559 | rs41304230 |
152127 | PA (38/F) | c.8711C > A, Arg2904Ile (12) | 0.0162 | 0.003269 | Deleterious/probably damaging | 1.7718 | rs80290481 |
c.7719C > T, Ala2573Thr (9) | 0.01656 | 0.02567 | Tolerated/benign | 0.280654 | rs56261747 | ||
c.7707T > C, Arg2569Gly (9) | 0.01659 | 0.02568 | Tolerated/benign | 1.07244 | rs41288767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storvall, S.; Ryhänen, E.; Karhu, A.; Schalin-Jäntti, C. Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms. Cancers 2023, 15, 1405. https://doi.org/10.3390/cancers15051405
Storvall S, Ryhänen E, Karhu A, Schalin-Jäntti C. Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms. Cancers. 2023; 15(5):1405. https://doi.org/10.3390/cancers15051405
Chicago/Turabian StyleStorvall, Sara, Eeva Ryhänen, Auli Karhu, and Camilla Schalin-Jäntti. 2023. "Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms" Cancers 15, no. 5: 1405. https://doi.org/10.3390/cancers15051405
APA StyleStorvall, S., Ryhänen, E., Karhu, A., & Schalin-Jäntti, C. (2023). Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms. Cancers, 15(5), 1405. https://doi.org/10.3390/cancers15051405