Association of Computed Tomography Measures of Muscle and Adipose Tissue and Progressive Changes throughout Treatment with Clinical Endpoints in Patients with Advanced Lung Cancer Treated with Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Muscle Mass and Fat Mass Parameters
2.3. Assessment of Outcomes
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Association of Body Composition Components with Disease Progression and Overall Survival
3.3. Association of Body Composition Components with Immune-Related Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Role of funding source
References
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin. Ther. 2015, 37, 764–782. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Fu, D.; Xu, F.; Zhang, Z. Unwrapping the genomic characteristics of urothelial bladder cancer and successes with immune checkpoint blockade therapy. Oncogenesis 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.R.; Dunne, R.F.; Giri, S.; Shachar, S.S.; Caan, B.J. Sarcopenia in the Older Adult With Cancer. J. Clin. Oncol. 2021, 39, 2068–2078. [Google Scholar] [CrossRef]
- Chindapasirt, J. Sarcopenia in Cancer Patients. Asian Pac. J. Cancer Prev. 2015, 16, 8075–8077. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, P.; Huang, J.; Liu, M.; Peng, D.; Li, Z.; Chen, T.; Hong, S.; Zhou, Y. Assessment of sarcopenia as a predictor of poor overall survival for advanced non-small-cell lung cancer patients receiving salvage anti-PD-1 immunotherapy. Ann. Transl. Med. 2021, 9, 1801. [Google Scholar] [CrossRef]
- Haik, L.; Gonthier, A.; Quivy, A.; Gross-Goupil, M.; Veillon, R.; Frison, E.; Ravaud, A.; Domblides, C.; Daste, A. The impact of sarcopenia on the efficacy and safety of immune checkpoint inhibitors in patients with solid tumours. Acta Oncol. 2021, 60, 1597–1603. [Google Scholar] [CrossRef]
- Xiao, J.; Mazurak, V.C.; Olobatuyi, T.A.; Caan, B.J.; Prado, C.M. Visceral adiposity and cancer survival: A review of imaging studies. Eur. J. Cancer Care 2018, 27, e12611. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.B.; Ravichandran, S.; Rushing, C.; Beasley, G.M.; Hanks, B.A.; Jung, S.H.; Salama, A.K.S.; Ho, L.; Mosca, P.J. Higher BMI, But Not Sarcopenia, Is Associated With Pembrolizumab-related Toxicity in Patients With Advanced Melanoma. Anticancer Res. 2020, 40, 5245–5254. [Google Scholar] [CrossRef]
- Collet, L.; Delrieu, L.; Bouhamama, A.; Crochet, H.; Swalduz, A.; Nerot, A.; Marchal, T.; Chabaud, S.; Heudel, P.E. Association between Body Mass Index and Survival Outcome in Metastatic Cancer Patients Treated by Immunotherapy: Analysis of a French Retrospective Cohort. Cancers 2021, 13, 2200. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Kind, M.; Toulmonde, M.; Italiano, A.; Cousin, S. Impact of CT-based body composition parameters at baseline, their early changes and response in metastatic cancer patients treated with immune checkpoint inhibitors. Eur. J. Radiol. 2020, 133, 109340. [Google Scholar] [CrossRef]
- Brown, J.C.; Cespedes Feliciano, E.M.; Caan, B.J. The evolution of body composition in oncology-epidemiology, clinical trials, and the future of patient care: Facts and numbers. J. Cachexia Sarcopenia Muscle 2018, 9, 1200–1208. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Giovannucci, E.L. The obesity paradox in cancer: Epidemiologic insights and perspectives. Curr. Nutr. Rep. 2019, 8, 175–181. [Google Scholar] [CrossRef]
- Deng, T.; Lyon, C.J.; Bergin, S.; Caligiuri, M.A.; Hsueh, W.A. Obesity, Inflammation, and Cancer. Annu. Rev. Pathol. 2016, 11, 421–449. [Google Scholar] [CrossRef] [Green Version]
- Ebadi, M.; Baracos, V.E.; Bathe, O.F.; Robinson, L.E.; Mazurak, V.C. Loss of visceral adipose tissue precedes subcutaneous adipose tissue and associates with n-6 fatty acid content. Clin. Nutr. 2016, 35, 1347–1353. [Google Scholar] [CrossRef]
- Ebadi, M.; Martin, L.; Ghosh, S.; Field, C.J.; Lehner, R.; Baracos, V.E.; Mazurak, V.C. Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br. J. Cancer 2017, 117, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Buentzel, J.; Heinz, J.; Bleckmann, A.; Bauer, C.; Röver, C.; Bohnenberger, H.; Saha, S.; Hinterthaner, M.; Baraki, H.; Kutschka, I.; et al. Sarcopenia as Prognostic Factor in Lung Cancer Patients: A Systematic Review and Meta-analysis. Anticancer Res. 2019, 39, 4603–4612. [Google Scholar] [CrossRef] [Green Version]
- Borggreve, A.S.; den Boer, R.B.; van Boxel, G.I.; de Jong, P.A.; Veldhuis, W.B.; Steenhagen, E.; van Hillegersberg, R.; Ruurda, J.P. The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Lopez, P.; Newton, R.U.; Taaffe, D.R.; Singh, F.; Buffart, L.M.; Spry, N.; Tang, C.; Saad, F.; Galvão, D.A. Associations of fat and muscle mass with overall survival in men with prostate cancer: A systematic review with meta-analysis. Prostate Cancer Prostatic Dis. 2022, 25, 615–626. [Google Scholar] [CrossRef]
- Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M.; et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers 2021, 13, 6355. [Google Scholar] [CrossRef]
- Gouez, M.; Delrieu, L.; Bouleuc, C.; Girard, N.; Raynard, B.; Marchal, T. Association between Nutritional Status and Treatment Response and Survival in Patients Treated with Immunotherapy for Lung Cancer: A Retrospective French Study. Cancers 2022, 14, 3439. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Ren, Y.; Liu, J.; Lv, S.; He, P.; Yang, Y.; Sun, Y.; Chang, J.; Luo, D.; et al. Sarcopenia Was a Poor Prognostic Predictor for Patients With Advanced Lung Cancer Treated With Immune Checkpoint Inhibitors. Front. Nutr. 2022, 9, 900823. [Google Scholar] [CrossRef]
- Nishioka, N.; Uchino, J.; Hirai, S.; Katayama, Y.; Yoshimura, A.; Okura, N.; Tanimura, K.; Harita, S.; Imabayashi, T.; Chihara, Y.; et al. Association of Sarcopenia with and Efficacy of Anti-PD-1/PD-L1 Therapy in Non-Small-Cell Lung Cancer. J. Clin. Med. 2019, 8, 450. [Google Scholar] [CrossRef] [Green Version]
- Orlandella, R.M.; Bail, J.R.; Behring, M.; Halilova, K.I.; Johnson, R.; Williams, V.; Norian, L.A.; Demark-Wahnefried, W. Body fat indices and survival in immunotherapy-treated patients with cancer. Cancer 2020, 126, 3156–3157. [Google Scholar] [CrossRef]
- Lysaght, J. The ‘obesity paradox’ in action with cancer immunotherapy. Nat. Rev. Endocrinol. 2019, 15, 132–133. [Google Scholar] [CrossRef]
- Porter, S.A.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; O’Donnel, C.J.; Fox, C.S. Abdominal subcutaneous adipose tissue: A protective fat depot? Diabetes Care 2009, 32, 1068–1075. [Google Scholar] [CrossRef] [Green Version]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography With Survival in Patients With Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef]
- Sheean, P.M.; O’Connor, P.; Joyce, C.; Vasilopoulos, V.; Badami, A.; Stolley, M. Clinical Features and Body Composition in Men with Hormone-Sensitive Metastatic Prostate Cancer: A Pilot Study Examining Differences by Race. Prostate Cancer 2022, 2022, 9242243. [Google Scholar] [CrossRef]
- Rier, H.N.; Jager, A.; Sleijfer, S.; van Rosmalen, J.; Kock, M.; Levin, M.D. Changes in body composition and muscle attenuation during taxane-based chemotherapy in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2018, 168, 95–105. [Google Scholar] [CrossRef]
- Minami, S.; Ihara, S.; Tanaka, T.; Komuta, K. Sarcopenia and Visceral Adiposity Did Not Affect Efficacy of Immune-Checkpoint Inhibitor Monotherapy for Pretreated Patients With Advanced Non-Small Cell Lung Cancer. World J. Oncol. 2020, 11, 9–22. [Google Scholar] [CrossRef]
- Bolte, F.J.; McTavish, S.; Wakefield, N.; Shantzer, L.; Hubbard, C.; Krishnaraj, A.; Novicoff, W.; Gentzler, R.D.; Hall, R.D. Association of sarcopenia with survival in advanced NSCLC patients receiving concurrent immunotherapy and chemotherapy. Front. Oncol. 2022, 12, 986236. [Google Scholar] [CrossRef]
- Marcus, R.L.; Addison, O.; Dibble, L.E.; Foreman, K.B.; Morrell, G.; Lastayo, P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J. Aging Res. 2012, 2012, 629637. [Google Scholar] [CrossRef] [Green Version]
- Hilton, T.N.; Tuttle, L.J.; Bohnert, K.L.; Mueller, M.J.; Sinacore, D.R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 2008, 88, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, P.M.; Fox, K.M.; Gandra, S.R.; Delmonico, M.J.; Chiou, C.F.; Anthony, M.S.; Sewall, A.; Goodpaster, B.; Satterfield, S.; Cummings, S.R.; et al. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J. Am. Geriatr. Soc. 2009, 57, 1411–1419. [Google Scholar] [CrossRef] [Green Version]
- Looijaard, W.G.; Dekker, I.M.; Stapel, S.N.; Girbes, A.R.; Twisk, J.W.; Oudemans-van Straaten, H.M.; Weijs, P.J. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit. Care 2016, 20, 386. [Google Scholar] [CrossRef] [Green Version]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer With Progression On or After Platinum-Based Chemotherapy. Oncologist 2016, 21, 634–642. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Patients (n = 97) |
---|---|
Age, mean ± SD, years | 67.5 ± 10.2 |
Males, n (%) | 55 (56.7%) |
Height, mean ± SD, cm | 168.1 ± 8.7 |
Weight, mean ± SD, kg | 73.8 ± 15.6 |
BMI, mean ± SD, kg·m−2 | 26.1 ± 4.9 |
BMI, categories, n (%) | |
Underweight | 4 (4.1%) |
Normal weight | 34 (35.1%) |
Overweight | 43 (44.3%) |
Obese | 16 (16.5%) |
Current smoker, n (%) a | 74 (83.1%) |
Tumour type, n (%) | |
Adenocarcinoma | 61 (62.9%) |
Adeno-squamous | 1 (1.0%) |
Large cell carcinoma | 2 (2.1%) |
Poorly differentiated | 3 (3.1%) |
Pleomorphic | 1 (1.0%) |
Squamous cell carcinoma | 29 (29.9%) |
Cancer stage, n (%) a | |
III | 15 (15.6%) |
IV | 81 (84.4%) |
Metastasis location, n (%) a | |
No metastasis | 14 (40%) |
Adrenal | 1 (2.9%) |
Bone | 6 (17.1%) |
Brain | 1 (2.9%) |
Liver | 2 (5.7%) |
Lymph node | 3 (8.6%) |
≥2 sites | 8 (22.9%) |
Treatment line, n (%) | |
First line treatment | 24 (24.7%) |
Second line treatment | 73 (75.3%) |
Treatment, n (%) | |
Atezolumab | 16 (16.5%) |
Nivolumab | 57 (58.8%) |
Pembrolizumab | 24 (24.7%) |
ECOG, n (%) a | |
0 | 49 (51.0%) |
1 | 34 (35.5%) |
2 | 12 (12.5%) |
3 | 1 (1.0%) |
Neutrophils, mean ± SD | 6.6 ± 4.4 |
Lymphocytes, mean ± SD | 1.5 ± 0.8 |
Haemoglobin, mean ± SD | 125.2 ± 20.4 |
Platelets, mean ± SD | 306.1 ± 122.0 |
Neutrophils-to-lymphocytes ratio, mean ± SD | 6.9 ± 11.6 |
PD-L1 levels, median (IQR), % | 60.0 (1.0 to 80.0) |
Variables | N | 5-Year Disease Progression | 5-Year Overall Survival | ||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
Sarcopenia | |||||
Non-sarcopenic | 44 | Reference | Reference | ||
Sarcopenic | 53 | 1.22 (0.81 to 1.85) | 0.338 | 1.29 (0.85 to 1.95) | 0.227 |
Intramuscular adipose tissue index | |||||
≤3.85 cm2·m−2 | 49 | Reference | Reference | ||
>3.85 cm2·m−2 | 48 | 0.83 (0.51 to 1.33) | 0.430 | 0.88 (0.54 to 1.42) | 0.594 |
Subcutaneous adipose tissue index | |||||
≤55.43 cm2·m−2 | 49 | Reference | Reference | ||
>55.43 cm2·m−2 | 48 | 0.69 (0.43 to 1.10) | 0.199 | 0.69 (0.43 to 1.10) | 0.123 |
Visceral adipose tissue index | |||||
≤41.90 cm2·m−2 | 49 | Reference | Reference | ||
>41.90 cm2·m−2 | 48 | 0.96 (0.58 to 1.60) | 0.877 | 1.10 (0.66 to 1.83) | 0.724 |
Visceral-to-Subcutaneous adipose tissue index | |||||
≤0.74 cm2·m−2 | 48 | Reference | Reference | ||
>0.74 cm2·m−2 | 49 | 1.25 (0.82 to 1.90) | 0.305 | 1.34 (0.88 to 2.04) | 0.178 |
Outcomes | n | Baseline | Post-Assessment | Mean Difference |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD (95% CI) | ||
Skeletal muscle index, cm2·m−2 | 88 | 43.8 ± 8.5 | 43.7 ± 9.4 | −0.1 ± 6.6 (−1.5 to 1.3) |
Intramuscular adipose tissue index, cm2·m−2 | 88 | 4.5 ± 2.3 | 4.7 ± 2.2 | 0.2 ± 1.3 (−0.1 to 0.5) |
Subcutaneous adipose tissue index, cm2·m−2 | 88 | 64.2 ± 36.5 | 65.5 ± 38.6 | 1.3 ± 17.5 (−2.4 to 5.0) |
Visceral adipose tissue index, cm2·m−2 | 88 | 52.5 ± 34.7 | 54.6 ± 36.8 | 2.1 ± 18.9 (−2.0 to 6.2) |
Visceral-to-subcutaneous adipose tissue ratio, cm2·m−2 | 88 | 1.0 ± 0.7 | 1.0 ± 0.7 | 0.0 ± 0.3 (−0.1 to 0.1) |
Variables | N | 5-Year Disease Progression | 5-Year Overall Survival | ||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
Sarcopenia | |||||
>10% of change | 74 | Reference | Reference | ||
≤10% of change | 14 | 1.24 (0.68 to 2.23) | 0.484 | 1.39 (0.77 to 2.52) | 0.277 |
Intramuscular adipose tissue index | |||||
≤10% of change | 52 | Reference | Reference | ||
>10% of change | 36 | 0.60 (0.38 to 0.95) | 0.028 | 0.60 (0.37 to 0.95) | 0.031 |
Subcutaneous adipose tissue index | |||||
≤10% of change | 61 | Reference | Reference | ||
>10% of change | 27 | 0.59 (0.36 to 0.95) | 0.029 | 0.64 (0.39 to 1.03) | 0.066 |
Visceral adipose tissue index | |||||
≤10% of change | 48 | Reference | Reference | ||
>10% of change | 36 | 0.66 (0.42 to 1.04) | 0.075 | 0.67 (0.43 to 1.07) | 0.093 |
Visceral-to-Subcutaneous adipose tissue index | |||||
≤10% of change | 50 | Reference | Reference | ||
>10% of change | 34 | 0.63 (0.39 to 1.03) | 0.064 | 0.61 (0.38 to 0.99) | 0.045 |
Variables | N | Treatment Toxicity | ||
---|---|---|---|---|
OR | 95% CI | p-Value | ||
Sarcopenia | ||||
Non-sarcopenic | 44 | Reference | ||
Sarcopenic | 53 | 2.00 | 0.59 to 7.66 | 0.279 |
Intramuscular adipose tissue index | ||||
≤3.85 | 49 | Reference | ||
>3.85 | 48 | 0.95 | 0.21 to 4.22 | 0.947 |
Subcutaneous adipose tissue index | ||||
≤55.43 | 49 | Reference | ||
>55.43 | 48 | 1.23 | 0.28 to 5.48 | 0.782 |
Visceral adipose tissue index | ||||
≤41.90 | 49 | Reference | ||
>41.90 | 48 | 1.35 | 0.30 to 6.50 | 0.696 |
Visceral-to-Subcutaneous adipose tissue index | ||||
≤0.74 | 48 | Reference | ||
>0.74 | 49 | 1.57 | 0.44 to 5.95 | 0.490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Welman, C.J.; Abed, A.; O’Hanlon, S.; Redfern, A.; Azim, S.; Lopez, P.; Singh, F.; Khattak, A. Association of Computed Tomography Measures of Muscle and Adipose Tissue and Progressive Changes throughout Treatment with Clinical Endpoints in Patients with Advanced Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers 2023, 15, 1382. https://doi.org/10.3390/cancers15051382
Khan A, Welman CJ, Abed A, O’Hanlon S, Redfern A, Azim S, Lopez P, Singh F, Khattak A. Association of Computed Tomography Measures of Muscle and Adipose Tissue and Progressive Changes throughout Treatment with Clinical Endpoints in Patients with Advanced Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers. 2023; 15(5):1382. https://doi.org/10.3390/cancers15051382
Chicago/Turabian StyleKhan, Azim, Christopher J. Welman, Afaf Abed, Susan O’Hanlon, Andrew Redfern, Sara Azim, Pedro Lopez, Favil Singh, and Adnan Khattak. 2023. "Association of Computed Tomography Measures of Muscle and Adipose Tissue and Progressive Changes throughout Treatment with Clinical Endpoints in Patients with Advanced Lung Cancer Treated with Immune Checkpoint Inhibitors" Cancers 15, no. 5: 1382. https://doi.org/10.3390/cancers15051382
APA StyleKhan, A., Welman, C. J., Abed, A., O’Hanlon, S., Redfern, A., Azim, S., Lopez, P., Singh, F., & Khattak, A. (2023). Association of Computed Tomography Measures of Muscle and Adipose Tissue and Progressive Changes throughout Treatment with Clinical Endpoints in Patients with Advanced Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers, 15(5), 1382. https://doi.org/10.3390/cancers15051382