Prognostic Significance of the Post-Treatment Neutrophil-to-Lymphocyte Ratio in Pharyngeal Cancers Treated with Concurrent Chemoradiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Data
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McNamara, M.G.; Templeton, A.J.; Maganti, M.; Walter, T.; Horgan, A.M.; McKeever, L.; Min, T.; Amir, E.; Knox, J.J. Neutrophil/lymphocyte ratio as a prognostic factor in biliary tract cancer. Eur. J. Cancer 2014, 50, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jiang, Y.Z.; Qian, W.H. Prognostic role of NLR in urinary cancers: A meta-analysis. PLoS ONE 2014, 9, e92079. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Kanai, M.; Mori, Y.; Nishimura, T.; Uza, N.; Kodama, Y.; Kawaguchi, Y.; Takaori, K.; Matsumoto, S.; Uemoto, S.; et al. Neutrophil-to-lymphocyte ratio for predicting palliative chemotherapy outcomes in advanced pancreatic cancer patients. Cancer Med. 2014, 3, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.K.; Chen, D.; Li, S.Q.; Fu, S.J.; Peng, B.G.; Liang, L.J. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: A meta-analysis. BMC Cancer 2014, 14, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachidi, S.; Wallace, K.; Wrangle, J.M.; Day, T.A.; Alberg, A.J.; Li, Z. Neutrophil-to-lymphocyte ratio and overall survival in all sites of head and neck squamous cell carcinoma. Head Neck 2016, 38 (Suppl. S1), E1068–E1074. [Google Scholar] [CrossRef] [Green Version]
- Rosculet, N.; Zhou, X.C.; Ha, P.; Tang, M.; Levine, M.A.; Neuner, G.; Califano, J. Neutrophil-to-lymphocyte ratio: Prognostic indicator for head and neck squamous cell carcinoma. Head Neck 2017, 39, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.Y.; Huang, X.Y.; Chien, H.T.; Chang, J.T.; Liao, C.T.; Huang, J.J.; Wei, F.C.; Wang, H.M.; Chen, I.H.; Kang, C.J.; et al. Refining the role of preoperative C-reactive protein by neutrophil/lymphocyte ratio in oral cavity squamous cell carcinoma. Laryngoscope 2013, 123, 2690–2699. [Google Scholar] [CrossRef]
- Huang, S.H.; Waldron, J.N.; Milosevic, M.; Shen, X.; Ringash, J.; Su, J.; Tong, L.; Perez-Ordonez, B.; Weinreb, I.; Bayley, A.J.; et al. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer 2015, 121, 545–555. [Google Scholar] [CrossRef]
- Li, J.; Jiang, R.; Liu, W.S.; Liu, Q.; Xu, M.; Feng, Q.S.; Chen, L.Z.; Bei, J.X.; Chen, M.Y.; Zeng, Y.X. A large cohort study reveals the association of elevated peripheral blood lymphocyte-to-monocyte ratio with favorable prognosis in nasopharyngeal carcinoma. PLoS ONE 2013, 8, e83069. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.D.; Wang, C.P.; Chen, C.Y.; Lin, L.W.; Hwang, T.Z.; Lu, L.F.; Hsu, H.F.; Chung, F.M.; Lee, Y.J.; Houng, J.Y. Pretreatment circulating monocyte count associated with poor prognosis in patients with oral cavity cancer. Head Neck 2014, 36, 947–953. [Google Scholar] [CrossRef]
- Ocana, A.; Nieto-Jimenez, C.; Pandiella, A.; Templeton, A.J. Neutrophils in cancer: Prognostic role and therapeutic strategies. Mol. Cancer 2017, 16, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perisanidis, C.; Kornek, G.; Poschl, P.W.; Holzinger, D.; Pirklbauer, K.; Schopper, C.; Ewers, R. High neutrophil-to-lymphocyte ratio is an independent marker of poor disease-specific survival in patients with oral cancer. Med. Oncol. 2013, 30, 334. [Google Scholar] [CrossRef]
- Marchi, F.; Missale, F.; Incandela, F.; Filauro, M.; Mazzola, F.; Mora, F.; Paderno, A.; Parrinello, G.; Piazza, C.; Peretti, G. Prognostic Significance of Peripheral T-Cell Subsets in Laryngeal Squamous Cell Carcinoma. Laryngoscope Investig. Otolaryngol. 2019, 4, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Venkatesulu, B.P.; Mallick, S.; Lin, S.H.; Krishnan, S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. Hematol. 2018, 123, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Campian, J.L.; Sarai, G.; Ye, X.; Marur, S.; Grossman, S.A. Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. Head Neck 2014, 36, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Cho, O.; Oh, Y.T.; Chun, M.; Noh, O.K.; Hoe, J.S.; Kim, H. Minimum absolute lymphocyte count during radiotherapy as a new prognostic factor for nasopharyngeal cancer. Head Neck 2016, 38 (Suppl. S1), E1061–E1067. [Google Scholar] [CrossRef]
- Bosetti, C.; Carioli, G.; Santucci, C.; Bertuccio, P.; Gallus, S.; Garavello, W.; Negri, E.; La Vecchia, C. Global trends in oral and pharyngeal cancer incidence and mortality. Int. J. Cancer 2020, 147, 1040–1049. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92. [Google Scholar] [CrossRef]
- Pabst, R. Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol. Lett. 2007, 112, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Kusunoki, Y.; Akiyama, M. Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay. Radiat. Res. 1990, 123, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Gamberale, R.; Galmarini, C.M.; Fernandez-Calotti, P.; Jordheim, L.; Sanchez-Avalos, J.; Dumontet, C.; Geffner, J.; Giordano, M. In vitro susceptibility of CD4+ and CD8+ T cell subsets to fludarabine. Biochem. Pharmacol. 2003, 66, 2185–2191. [Google Scholar] [CrossRef] [PubMed]
- Visacri, M.B.; Pincinato, E.C.; Ferrari, G.B.; Quintanilha, J.C.F.; Mazzola, P.G.; Lima, C.S.P.; Moriel, P. Adverse drug reactions and kinetics of cisplatin excretion in urine of patients undergoing cisplatin chemotherapy and radiotherapy for head and neck cancer: A prospective study. Daru 2017, 25, 12. [Google Scholar] [CrossRef] [Green Version]
- Saroha, S.; Uzzo, R.G.; Plimack, E.R.; Ruth, K.; Al-Saleem, T. Lymphopenia is an independent predictor of inferior outcome in clear cell renal carcinoma. J. Urol. 2013, 189, 454–461. [Google Scholar] [CrossRef] [Green Version]
- American Society of Health-System Pharmacists. AHFS Drug Information 2012; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2012. [Google Scholar]
- Kim, S.K.; Demetri, G.D. Chemotherapy and neutropenia. Hematol. Oncol. Clin. N. Am. 1996, 10, 377–395. [Google Scholar] [CrossRef]
- Hellerstein, M.; Hanley, M.B.; Cesar, D.; Siler, S.; Papageorgopoulos, C.; Wieder, E.; Schmidt, D.; Hoh, R.; Neese, R.; Macallan, D.; et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med. 1999, 5, 83–89. [Google Scholar] [CrossRef]
- Meyer, K.K. Radiation-induced lymphocyte-immune deficiency. A factor in the increased visceral metastases and decreased hormonal responsiveness of breast cancer. Arch. Surg. 1970, 101, 114–121. [Google Scholar] [CrossRef]
- Petrini, B.; Wasserman, J.; Blomgren, H.; Baral, E. Blood lymphocyte subpopulations in breast cancer patients following radiotherapy. Clin. Exp. Immunol. 1977, 29, 36–42. [Google Scholar]
- Lin, A.J.; Rao, Y.J.; Chin, R.I.; Campian, J.; Mullen, D.; Thotala, D.; Daly, M.; Gay, H.; Oppelt, P.; Hallahan, D.; et al. Post-operative radiation effects on lymphopenia, neutrophil to lymphocyte ratio, and clinical outcomes in palatine tonsil cancers. Oral Oncol. 2018, 86, 1–7. [Google Scholar] [CrossRef]
- Liu, L.T.; Chen, Q.Y.; Tang, L.Q.; Guo, S.S.; Guo, L.; Mo, H.Y.; Chen, M.Y.; Zhao, C.; Guo, X.; Qian, C.N.; et al. The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Res. Treat. 2018, 50, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, R.; Venkatesulu, B.P.; Giridhar, P.; Kim, B.K.; Sharma, A.; Elghazawy, H.; Dhanireddy, B.; Elumalai, T.; Mallick, S.; Harkenrider, M. Risk and impact of radiation related lymphopenia in lung cancer: A systematic review and meta-analysis. Radiother. Oncol. 2021, 157, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, D.; Li, A.; Wang, P.; Teng, F.; Yu, J. The post-treatment neutrophil-to-lymphocyte ratio and changes in this ratio predict survival after treatment of stage III non-small-cell lung cancer with conventionally fractionated radiotherapy. Future Oncol. 2020, 16, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.I.; Kim, D.; Ahn, S.G.; Bae, S.J.; Cha, C.; Park, S.; Park, S.; Kim, S.I.; Lee, H.S.; Park, J.Y.; et al. Radiotherapy-Induced High Neutrophil-to-Lymphocyte Ratio is a Negative Prognostic Factor in Patients with Breast Cancer. Cancers 2020, 12, 1896. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Yuan, B.Y.; Hu, Y.; Chen, G.W.; Zhang, L.; Zhao, X.M.; Chen, Y.X.; Zeng, Z.C. Pre/Post-Treatment Dynamic of Inflammatory Markers Has Prognostic Value in Patients with Small Hepatocellular Carcinoma Managed by Stereotactic Body Radiation Therapy. Cancer Manag. Res. 2019, 11, 10929–10937. [Google Scholar] [CrossRef] [Green Version]
- Suh, K.J.; Kim, S.H.; Kim, Y.J.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.W.; Heo, D.S.; Lee, J.S. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol. Immunother. 2018, 67, 459–470. [Google Scholar] [CrossRef]
- Xiong, Q.; Huang, Z.; Xin, L.; Qin, B.; Zhao, X.; Zhang, J.; Shi, W.; Yang, B.; Zhang, G.; Hu, Y. Post-treatment neutrophil-to-lymphocyte ratio (NLR) predicts response to anti-PD-1/PD-L1 antibody in SCLC patients at early phase. Cancer Immunol. Immunother. 2021, 70, 713–720. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, H.; Wang, Y.; Shi, Y.; Dai, G. Significance of baseline and change in neutrophil-to-lymphocyte ratio in predicting prognosis: A retrospective analysis in advanced pancreatic ductal adenocarcinoma. Sci. Rep. 2017, 7, 753. [Google Scholar] [CrossRef] [Green Version]
Variables | Values |
---|---|
no. of patients | 461 |
age | |
age, years | 60.24 ± 13.53 * |
<60 | 195 (42.3%) |
≥60 | 266 (57.7%) |
sex | |
male | 380 (82.4%) |
female | 81 (17.6%) |
smoking (%) | 140 (30.4%) |
DM (%) | 50 (10.85%) |
T classification ** | |
1 | 113 (24.5%) |
2 | 155 (33.6%) |
3 | 120 (26.0%) |
4 | 72 (15.6%) |
N classification | |
0 | 30 (6.5%) |
1 | 117 (25.4%) |
2 | 289 (62.7%) |
3 | 25 (5.4%) |
stage | |
I | 6 (1.3%) |
II | 52 (11.3%) |
III | 134 (29.1%) |
IV | 269 (58.4%) |
follow-up period, days | 1102.0 (444.0–1964.5) † |
OS, days | 1163.0 (514.0–2039.5) † |
5-year OS rate | 86.1% |
RFS, days | 885.0 (345.5–1809.5) † |
5-year RFS rate | 70.9% |
Variables | Low Post-Treatment NLR (n = 348) | High Post-Treatment NLR (n = 113) | p Value |
---|---|---|---|
age, years * | 61.0 (54.0–69.0) | 63.0 (51.0–71.0) | 0.815 |
male gender | 285 (81.9%) | 95 (84.1%) | 0.598 |
smoking | 109 (32.1%) | 31 (28.2%) | 0.445 |
DM | 37 (10.6%) | 13 (11.5%) | 0.786 |
advanced T (III and IV) | 133 (38.2%) | 59 (52.7%) | 0.007 |
advanced N (II and III) | 234 (67.2%) | 80 (70.8%) | 0.481 |
stage IV (%) | 207(59.5%) | 62 (54.9%) | 0.387 |
pre-treatment NLR ** | 1.91 (1.46–2.43) | 2.51 (1.91–3.42) | <0.001 |
pre-treatment PLR ** | 111.98 (88.47–142.23) | 137.32 (111.32–173.33) | <0.001 |
OS | RFS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | ||||||||
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
age (≥60) | 2.43 | 1.30–4.55 | 0.006 | 2.16 | 1.14–4.08 | 0.018 | 1.28 | 0.88–1.86 | 0.205 | |||
male gender | 1.36 | 0.74–3.60 | 0.228 | 0.61 | 0.36–1.06 | 0.077 | ||||||
smoking | 1.05 | 0.59–1.87 | 0.858 | 1.17 | 0.79–1.73 | 0.424 | ||||||
DM | 1.01 | 0.40–2.55 | 0.984 | 1.06 | 0.58–1.93 | 0.853 | ||||||
site | ||||||||||||
stage IV | 2.09 | 1.15–3.79 | 0.015 | 2.11 | 1.15–3.89 | 0.017 | 1.80 | 1.22–2.66 | 0.003 | 1.91 | 1.28–2.83 | 0.001 |
pre-treatment | ||||||||||||
high NLR | 2.77 | 1.62–4.73 | <0.001 | 2.19 | 1.17–4.08 | 0.014 | 1.75 | 1.21–2.51 | 0.003 | 1.65 | 1.08–2.52 | 0.022 |
high PLR | 2.15 | 1.26–3.66 | 0.005 | 1.47 | 0.82–2.64 | 0.198 | 1.49 | 1.04–2.14 | 0.031 | 1.20 | 0.80–1.80 | 0.376 |
post-treatment | ||||||||||||
high NLR | 1.97 | 1.14–3.41 | 0.044 | 1.72 | 0.83–3.56 | 0.143 | 1.55 | 1.05–2.28 | 0.028 | 1.28 | 0.76–2.16 | 0.359 |
high PLR | 1.68 | 0.91–3.10 | 0.096 | 1.34 | 0.85–2.12 | 0.204 | ||||||
high ΔNLR | 1.97 | 1.14–3.41 | 0.015 | 0.96 | 0.81–1.14 | 0.636 * | 1.55 | 1.05–2.23 | 0.028 | 1.03 | 0.91–1.17 | 0.614 * |
high ΔPLR | 1.71 | 0.93–3.15 | 0.086 | 1.37 | 0.87–2.17 | 0.174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.M.; Chung, M.K.; Baek, C.H.; Son, Y.I.; Ahn, M.J.; Oh, D.; Kim, K.W.; So, Y.K. Prognostic Significance of the Post-Treatment Neutrophil-to-Lymphocyte Ratio in Pharyngeal Cancers Treated with Concurrent Chemoradiotherapy. Cancers 2023, 15, 1248. https://doi.org/10.3390/cancers15041248
Yun JM, Chung MK, Baek CH, Son YI, Ahn MJ, Oh D, Kim KW, So YK. Prognostic Significance of the Post-Treatment Neutrophil-to-Lymphocyte Ratio in Pharyngeal Cancers Treated with Concurrent Chemoradiotherapy. Cancers. 2023; 15(4):1248. https://doi.org/10.3390/cancers15041248
Chicago/Turabian StyleYun, Ji Min, Man Ki Chung, Chung Hwan Baek, Young Ik Son, Myung Ju Ahn, Dongryul Oh, Ki Won Kim, and Yoon Kyoung So. 2023. "Prognostic Significance of the Post-Treatment Neutrophil-to-Lymphocyte Ratio in Pharyngeal Cancers Treated with Concurrent Chemoradiotherapy" Cancers 15, no. 4: 1248. https://doi.org/10.3390/cancers15041248
APA StyleYun, J. M., Chung, M. K., Baek, C. H., Son, Y. I., Ahn, M. J., Oh, D., Kim, K. W., & So, Y. K. (2023). Prognostic Significance of the Post-Treatment Neutrophil-to-Lymphocyte Ratio in Pharyngeal Cancers Treated with Concurrent Chemoradiotherapy. Cancers, 15(4), 1248. https://doi.org/10.3390/cancers15041248