Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patient Selection
2.2. Genomic Profiling
2.3. Variant Analysis
Family ID | Ind. | Relationship | Age/Sex | HM | Cytogenetics | Additional Somatic Variants | Germline Variant | FH/PH | Affected Relatives | Unaffected Relatives |
---|---|---|---|---|---|---|---|---|---|---|
1 | A1.1 | Daughter | 16/F | HL | NA | NA | NFATC2 | Unknown | Unknown | Unknown |
A1.2 | Mother ¥ | 49/F | HL | NA | NA | |||||
2 | A2.1 | Sister ¥ | 65/F | MDS | 46,XX(20) | NA | Not detected | AML, breast cancer | Father, two sisters, and one brother | Mother, two sisters, and one brother |
A2.2 | Brother | NA | AML | NA | NA | |||||
3 | A3.1 | Sister ¥ | 69/F | CLL | 46,XX,t(1;18)(q12;q22)(5)/44,XX,-2,add(4)(q31), -10,-16,-17,der(18)t(1;18)(q12;q22),+mar1,+mar2(2)/46,XX(13) | NA | TC2N | CLL | Two sisters | Two brothers |
A3.2 | Sister | 70/F | CLL | 46,XX(11) | NA | |||||
4 | A4.1 | Sister ¥ | NA/F | AML | NA | NA | CHEK2 | Gallbladder cancer, lung cancer, AML | Father and two brothers | Mother and one unaffected sister |
A4.2 | Brother | 60/M | AML | NA | NA | |||||
5 | A5.1 | Sister | NA | MDS | 46,XX,inv(9)(p12q13)(20) | NA | RAD54L | Breast cancer, LMS, MDS, lung cancer | Two brothers and three sisters | Two brothers and two nephews |
A5.2 | Brother ¥ | NA | MDS | 46,XY(20) | CSF3R, DNMT3A, TET2, ASXL1, RUNX1, ZRSR2 | |||||
6 | A6.1 | Son | 46/M | MDS | 46,XY(7) | Not detected | Not detected | Unknown | Unknown | Unknown |
A6.2 | Father ¥ | 86/M | AML | 45,XY,t(3;21)(q13; q22),-7(17)/46,XY(3) | SRSF2, SETBP1 | |||||
B1 | 57/F | PV, AML | 45,XX,-7(10) | JAK2, RUNX1, ASXL1, KRAS | PRF1 | MDS uterine cancer (personal) | Mother | Four brothers and one daughter | ||
B2 | 69/F | AML | 46,XX,del(5)(q13q33)(1)/46,XX(19) | SF3B1, RUNX1 | Not detected | Leukemia, AML, PV | Grandfather, one brother, and one niece | Unknown | ||
B3 | 29/M | AML | 46,XY(20) | MPL | GATA1 | ALL (personal), GUS | Mother | Unknown | ||
B4 | 45 | ET | NA | Not detected | MSH4 | PV, ET | Mother and father | Unknown |
2.4. Variant Validation
2.5. SNP-Array
3. Results
3.1. Variant Analysis
3.2. Cohort A: Families with Two Affected Members Studied
3.3. Cohort B: Families with Only the Index Case Studied
3.4. SNP-Array
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taeubner, J.; Wieczorek, D.; Yasin, L.; Brozou, T.; Borkhardt, A.; Kuhlen, M. Penetrance and Expressivity in Inherited Cancer Predisposing Syndromes. Trends Cancer 2018, 4, 718–728. [Google Scholar] [CrossRef] [PubMed]
- McGee, R.B.; Nichols, K.E. Introduction to cancer genetic susceptibility syndromes. Hematology 2016, 2016, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Galera, P.; Dulau-Florea, A.; Calvo, K.R. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int. J. Lab. Hematol. 2019, 41, 131–141. [Google Scholar] [CrossRef]
- Brown, A.L.; Arts, P.; Carmichael, C.; Babic, M.; Dobbins, J.; Chong, C.-E.; Schreiber, A.W.; Feng, J.; Phillips, K.; Wang, P.P.S.; et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020, 4, 1131–1144. [Google Scholar] [CrossRef]
- Geyer, J.T. Myeloid Neoplasms with Germline Predisposition. Pathobiology 2018, 86, 53–61. [Google Scholar] [CrossRef]
- Klco, J.M.; Mullighan, C.G. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat. Rev. Cancer 2020, 21, 122–137. [Google Scholar] [CrossRef]
- Baptista, R.L.R.; Dos Santos, A.C.E.; Gutiyama, L.M.; Solza, C.; Zalcberg, I.R. Familial Myelodysplastic/Acute Leukemia Syndromes—Myeloid Neoplasms with Germline Predisposition. Front. Oncol. 2017, 7, 206. [Google Scholar] [CrossRef]
- Cheah, J.J.C.; Hahn, C.N.; Hiwase, D.K.; Scott, H.S.; Brown, A.L. Myeloid neoplasms with germline DDX41 mutation. Int. J. Hematol. 2017, 106, 163–174. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Kozyra, E.J.; Wlodarski, M.W. Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract. Res. Clin. Haematol. 2020, 33, 101197. [Google Scholar] [CrossRef]
- Godley, L.A.; Shimamura, A. Genetic predisposition to hematologic malignancies: Management and surveillance. Blood 2017, 130, 424–432. [Google Scholar] [CrossRef]
- Kraft, I.L.; Godley, L.A. Identifying potential germline variants from sequencing hematopoietic malignancies. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 219–227. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Carbonell, D.; Suárez-González, J.; Chicano, M.; Andrés-Zayas, C.; Triviño, J.C.; Rodríguez-Macías, G.; Bastos-Oreiro, M.; Font, P.; Ballesteros, M.; Muñiz, P.; et al. Next-Generation Sequencing Improves Diagnosis, Prognosis and Clinical Management of Myeloid Neoplasms. Cancers 2019, 11, 1364. [Google Scholar] [CrossRef]
- Yang, F.; Anekpuritanang, T.; Press, R.D. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol. Diagn. Ther. 2019, 24, 1–13. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Andrés-Zayas, C.; Suárez-González, J.; Rodríguez-Macías, G.; Dorado, N.; Osorio, S.; Font, P.; Carbonell, D.; Chicano, M.; Muñiz, P.; Bastos, M. Clinical utility of targeted next-generation sequencing for the diagnosis of myeloid neoplasms with germline predisposition. Mol. Oncol. 2021, 15, 2273–2284. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesthesia Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Yang, Y.; Jain, R.K.; Glenn, S.T.; Xu, B.; Singh, P.K.; Wei, L.; Hu, Q.; Long, M.; Hutson, N.; Wang, J.; et al. Complete response to anti-PD-L1 antibody in a metastatic bladder cancer associated with novel MSH4 mutation and microsatellite instability. J. Immunother. Cancer 2019, 8, e000128. [Google Scholar] [CrossRef] [Green Version]
- Rio-Machin, A.; Vulliamy, T.; Hug, N.; Walne, A.; Tawana, K.; Cardoso, S.; Ellison, A.; Pontikos, N.; Wang, J.; Tummala, H.; et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat. Commun. 2020, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Baliakas, P.; Tesi, B.; Wartiovaara-Kautto, U.; Stray-Pedersen, A.; Friis, L.S.; Dybedal, I.; Hovland, R.; Jahnukainen, K.; Raaschou-Jensen, K.; Ljungman, P.; et al. Nordic Guidelines for Germline Predisposition to Myeloid Neoplasms in Adults: Recommendations for Genetic Diagnosis, Clinical Management and Follow-up. Hemasphere 2019, 3, e321. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, F. NFAT Gene Family in Inflammation and Cancer. Curr. Mol. Med. 2013, 13, 543–554. [Google Scholar] [CrossRef]
- Hao, X.-L.; Han, F.; Zhang, N.; Chen, H.-Q.; Jiang, X.; Yin, L.; Liu, W.-B.; Wang, D.-D.; Chen, J.-P.; Cui, Z.-H.; et al. TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ. 2018, 26, 1235–1250. [Google Scholar] [CrossRef]
- Hao, X.L.; Gao, L.Y.; Deng, X.J.; Han, F.; Chen, H.Q.; Jiang, X.; Liu, W.B.; Wang, D.D.; Chen, J.P.; Cui, Z.H. Identification of TC2N as a novel promising suppressor of PI3K-AKT signaling in breast cancer. Cell Death Dis. 2019, 10, 424. [Google Scholar] [CrossRef]
- Stolarova, L.; Kleiblova, P.; Janatova, M.; Soukupova, J.; Zemankova, P.; Macurek, L.; Kleibl, Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020, 9, 2675. [Google Scholar] [CrossRef]
- Vargas-Parra, G.; del Valle, J.; Rofes, P.; Gausachs, M.; Stradella, A.; Moreno-Cabrera, J.M.; Velasco, A.; Tornero, E.; Menéndez, M.; Muñoz, X.; et al. Comprehensive analysis and ACMG-based classification of CHEK2 variants in hereditary cancer patients. Hum. Mutat. 2020, 41, 2128–2142. [Google Scholar] [CrossRef]
- Decker, B.; Allen, J.; Luccarini, C.; A Pooley, K.; Shah, M.; Bolla, M.K.; Wang, Q.; Ahmed, S.; Baynes, C.; Conroy, D.M.; et al. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J. Med. Genet. 2017, 54, 732–741. [Google Scholar] [CrossRef]
- Bazinet, A.; Heath, J.; Chong, A.-S.; Simo-Cheyou, E.R.; Worme, S.; Polo, B.R.; Foulkes, W.D.; Caplan, S.; Johnson, N.A.; Orthwein, A.; et al. Common clonal origin of chronic myelomonocytic leukemia and B-cell acute lymphoblastic leukemia in a patient with a germline CHEK2 variant. Mol. Case Stud. 2021, 7, a006090. [Google Scholar] [CrossRef]
- Singhal, D.; Hahn, C.N.; Feurstein, S.; Wee, L.Y.A.; Moma, L.; Kutyna, M.M.; Chhetri, R.; Eshraghi, L.; Schreiber, A.W.; Feng, J.; et al. Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer. Leukemia 2021, 35, 3245–3256. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Ohta, T.; Oh, J.E.; Le Calvez-Kelm, F.; McKay, J.; Voegele, C.; Durand, G.; Mittelbronn, M.; Kleihues, P.; Paulus, W.; et al. TP53, MSH4, and LATS1 Germline Mutations in a Family with Clustering of Nervous System Tumors. Am. J. Pathol. 2014, 184, 2374–2381. [Google Scholar] [CrossRef]
- Gargallo, P.; Yáñez, Y.; Segura, V.; Juan, A.; Torres, B.; Balaguer, J.; Oltra, S.; Castel, V.; Cañete, A. Li-Fraumeni syndrome heterogeneity. Clin. Transl. Oncol. 2020, 22, 978–988. [Google Scholar] [CrossRef]
- Zohud, B.A.; Wang, M.; Cai, X. Germline RAD54L with somatic POLE defect implicated in Hypermutation phenotype: Case report. BMC Gastroenterol. 2020, 20, 255. [Google Scholar] [CrossRef]
- Li, D.; Suzuki, H.; Liu, B.; Morris, J.; Liu, J.; Okazaki, T.; Li, Y.; Chang, P.; Abbruzzese, J.L. DNA Repair Gene Polymorphisms and Risk of Pancreatic Cancer. Clin. Cancer Res. 2009, 15, 740–746. [Google Scholar] [CrossRef]
- Crispino, J.D.; Horwitz, M.S. GATA factor mutations in hematologic disease. Blood 2017, 129, 2103–2110. [Google Scholar] [CrossRef]
- Ciovacco, W.A.; Raskind, W.H.; Kacena, M.A. Human phenotypes associated with GATA-1 mutations. Gene 2008, 427, 1–6. [Google Scholar] [CrossRef]
- Malinowska, I.; Machaczka, M.; Popko, K.; Siwicka, A.; Salamonowicz, M.; Nasilowska-Adamska, B. Hemophagocytic Syndrome in Children and Adults. Arch. Immunol. Ther. Exp. 2014, 62, 385–394. [Google Scholar] [CrossRef]
- Chaudhry, M.S.; Gilmour, K.C.; House, I.G.; Layton, M.; Panoskaltsis, N.; Sohal, M.; Trapani, J.A.; Voskoboinik, I. Missense mutations in the perforin (PRF1) gene as a cause of hereditary cancer predisposition. Oncoimmunology 2016, 5, e1179415. [Google Scholar] [CrossRef]
- El Abed, R.; Bourdon, V.; Voskoboinik, I.; Omri, H.; Youssef, Y.B.; Laatiri, M.A.; Huiart, L.; Eisinger, F.; Rabayrol, L.; Frenay, M. Molecular study of the perforin gene in familial hematological malignancies. Hered Cancer Clin. Pract. 2011, 9, 9. [Google Scholar] [CrossRef]
- Clementi, R.; Emmi, L.; Maccario, R.; Liotta, F.; Moretta, L.; Danesino, C.; Aricò, M. Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carryingPRF1 mutations. Blood 2002, 100, 2266. [Google Scholar] [CrossRef] [Green Version]
- Clementi, R.; Locatelli, F.; Dupré, L.; Garaventa, A.; Emmi, L.; Bregni, M.; Cefalo, G.; Moretta, A.; Danesino, C.; Comis, M.; et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 2005, 105, 4424–4428. [Google Scholar] [CrossRef] [PubMed]
- Clementi, R.; Chiocchetti, A.; Cappellano, G.; Cerutti, E.; Ferretti, M.; Orilieri, E.; Dianzani, I.; Ferrarini, M.; Bregni, M.; Danesino, C.; et al. Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective Fas function. Blood 2006, 108, 3079–3084. [Google Scholar] [CrossRef] [PubMed]
- Solomou, E.E.; Gibellini, F.; Stewart, B.; Malide, D.; Berg, M.; Visconte, V.; Green, S.; Childs, R.; Chanock, S.J.; Young, N.S. Perforin gene mutations in patients wbith acquired aplastic anemia. Blood 2007, 109, 5234–5237. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pomar, N.; Lanio, N.; Romo, N.; Lopez-Botet, M.; Matamoros, N. Functional impact of A91V mutation of the PRF1 perforin gene. Hum. Immunol. 2013, 74, 14–17. [Google Scholar] [CrossRef]
- Ripperger, T.; Bielack, S.S.; Borkhardt, A.; Brecht, I.B.; Burkhardt, B.; Calaminus, G.; Debatin, K.-M.; Deubzer, H.; Dirksen, U.; Eckert, C.; et al. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am. J. Med. Genet. Part A 2017, 173, 1017–1037. [Google Scholar] [CrossRef]
Family ID | Gene | Variant | Consequence | VAF (%) | Transcript | ExAC Frequency | ACMG Status | FH/PH |
---|---|---|---|---|---|---|---|---|
1 | NFATC2 | c.1101-1G>A; p.(?) | splice acceptor | 47.7 | NM_001136021 | No | Pathogenic | No |
2 | Not detected | Yes | ||||||
3 | TC2N | c.1327C>T; p.(Arg443*) | frameshift | 40 | NM_001128595 | 0 | Likely pathogenic | No |
4 | CHEK2 | c.478A>G; p.(Arg160Gly) | missense | 100 | NM_001005735 | 0.00018 | Pathogenic | Yes |
5 | RAD54L | c.863del; p.(Gly288Glufs*28) | framsehift | 42.4 | NM_001142548 | No | Likely pathogenic | Yes |
6 | Not detected | No |
Individual | Gene | Variant | Consequence | VAF (%) | Transcript | ExAC Frequency | ACMG Status | FH/PH |
---|---|---|---|---|---|---|---|---|
Pt. B1 | PRF1 | c.272C>T; p.(Ala91Val) | missense | 51.5 | NM_001083116 | 0.001 | Likely pathogenic | Yes |
Pt. B2 | Not detected | Yes | ||||||
Pt. B3 | GATA1 | c.-19-679_221-48delinsTC; p.(?) | no-start | 94.8 | NM_002049 | No | Pathogenic | Yes |
Pt. B4 | MSH4 | c.56C>A; p.(Ser19*) | nonsense | 48.1 | NM_002440 | 0.000004 | Likely pathogenic | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrés-Zayas, C.; Suárez-González, J.; Chicano-Lavilla, M.; Bastos Oreiro, M.; Rodríguez-Macías, G.; Font López, P.; Osorio Prendes, S.; Oarbeascoa Royuela, G.; García Ramírez, P.; Nieves Salgado, R.; et al. Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing. Cancers 2023, 15, 944. https://doi.org/10.3390/cancers15030944
Andrés-Zayas C, Suárez-González J, Chicano-Lavilla M, Bastos Oreiro M, Rodríguez-Macías G, Font López P, Osorio Prendes S, Oarbeascoa Royuela G, García Ramírez P, Nieves Salgado R, et al. Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing. Cancers. 2023; 15(3):944. https://doi.org/10.3390/cancers15030944
Chicago/Turabian StyleAndrés-Zayas, Cristina, Julia Suárez-González, María Chicano-Lavilla, Mariana Bastos Oreiro, Gabriela Rodríguez-Macías, Patricia Font López, Santiago Osorio Prendes, Gillen Oarbeascoa Royuela, Patricia García Ramírez, Rocío Nieves Salgado, and et al. 2023. "Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing" Cancers 15, no. 3: 944. https://doi.org/10.3390/cancers15030944
APA StyleAndrés-Zayas, C., Suárez-González, J., Chicano-Lavilla, M., Bastos Oreiro, M., Rodríguez-Macías, G., Font López, P., Osorio Prendes, S., Oarbeascoa Royuela, G., García Ramírez, P., Nieves Salgado, R., Gómez-Centurión, I., Carbonell Muñoz, D., Muñiz, P., Kwon, M., Díez-Martín, J. L., Buño, I., & Martínez-Laperche, C. (2023). Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing. Cancers, 15(3), 944. https://doi.org/10.3390/cancers15030944