A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Immunohistochemical (IHC) Staining
2.3. Image Analysis
2.4. Statistical Analysis
2.5. Single-Cell RNA-Seq Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Munjal, A. Interplay between inflammation and cancer. Adv. Protein Chem. Struct. Biol. 2020, 119, 199–245. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 2000, 248, 171–183. [Google Scholar] [CrossRef]
- Rossi, J.F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 595722. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, G.Q.; Sun, Z.K.; Song, H.J.; Shen, C.T.; Chen, X.Y.; Sun, J.W.; Qiu, Z.L.; Luo, Q.Y. Interleukins in Thyroid Cancer: From Basic Researches to Applications in Clinical Practice. Front. Immunol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef]
- Choudhary, M.M.; France, T.J.; Teknos, T.N.; Kumar, P. Interleukin-6 role in head and neck squamous cell carcinoma progression. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 90–97. [Google Scholar] [CrossRef]
- Perkins, N.D. Achieving transcriptional specificity with NF-kappa B. Int. J. Biochem. Cell Biol. 1997, 29, 1433–1448. [Google Scholar] [CrossRef]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Ito, T.; Azuma, S.; Ito, E.; Honma, R.; Yanagisawa, Y.; Nishikawa, A.; Kawamura, M.; Imai, J.; Watanabe, S.; et al. Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 2009, 100, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Jäättelä, M.; Mouritzen, H.; Elling, F.; Bastholm, L. A20 zinc finger protein inhibits TNF and IL-1 signaling. J. Immunol. 1996, 156, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Rothe, M.; Goeddel, D.V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc. Natl. Acad. Sci. USA 1996, 93, 6721–6725. [Google Scholar] [CrossRef] [PubMed]
- Shembade, N.; Ma, A.; Harhaj, E.W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327, 1135–1139. [Google Scholar] [CrossRef]
- Malynn, B.A.; Ma, A. A20: A multifunctional tool for regulating immunity and preventing disease. Cell. Immunol. 2019, 340, 103914. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sanada, M.; Kato, I.; Sato, Y.; Takita, J.; Takeuchi, K.; Niwa, A.; Chen, Y.; Nakazaki, K.; Nomoto, J.; et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009, 459, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef]
- Fischer, J.C.; Otten, V.; Kober, M.; Drees, C.; Rosenbaum, M.; Schmickl, M.; Heidegger, S.; Beyaert, R.; van Loo, G.; Li, X.C.; et al. A20 Restrains Thymic Regulatory T Cell Development. J. Immunol. 2017, 199, 2356–2365. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.S.; Shu, Y.; Bi, W.X.; Zheng, X.B.; Feng, W.J.; He, L.Y.; Li, J.S. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma. J. Cell. Physiol. 2019, 234, 21479–21484. [Google Scholar] [CrossRef]
- Yoon, C.I.; Ahn, S.G.; Bae, S.J.; Shin, Y.J.; Cha, C.; Park, S.E.; Lee, J.H.; Ooshima, A.; Lee, H.S.; Yang, K.M.; et al. High A20 expression negatively impacts survival in patients with breast cancer. PLoS ONE 2019, 14, e0221721. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zang, W.; Tang, Z.; Ji, Y.; Xu, R.; Yang, Y.; Luo, A.; Hu, B.; Zhang, Z.; Liu, Z.; et al. A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy. Cancer Res. 2018, 78, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Song, X.T.; Evel-Kabler, K.; Shen, L.; Rollins, L.; Huang, X.F.; Chen, S.Y. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat. Med. 2008, 14, 258–265. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Spanier, G.; Böttcher, J.; Gerken, M.; Fischer, R.; Roth, G.; Lehn, P.; Klingelhöffer, C.; Meier, J.K.; Fraccaroli, A.; Tischer, J.; et al. Prognostic value of perioperative red blood cell transfusion and anemia on survival and recurrence in oral squamous cell carcinoma. Oral Oncol. 2020, 107, 104773. [Google Scholar] [CrossRef]
- Erber, R.; Spoerl, S.; Mamilos, A.; Krupar, R.; Hartmann, A.; Ruebner, M.; Taxis, J.; Wittenberg, M.; Reichert, T.E.; Spanier, G.; et al. Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Bavi, P.; Abubaker, J.; Al-Sanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.; Uddin, S.; Siraj, A.K.; Al-Kuraya, K.S. Clinico-pathological significance of TNF alpha-induced protein3 (TNFAIP3) in Middle Eastern colorectal carcinoma. Clin. Epigenetics 2011, 2, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, X.; Wang, J.; Wang, X.; Zhou, H.; Zhang, L. The dual roles of A20 in cancer. Cancer Lett. 2021, 511, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.; Priem, D.; Hoste, E.; Vetters, J.; Rennen, S.; Catrysse, L.; Voet, S.; Deelen, L.; Sze, M.; Vikkula, H.; et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 2020, 21, 381–387. [Google Scholar] [CrossRef]
- Du, B.; Liu, M.; Li, C.; Geng, X.; Zhang, X.; Ning, D.; Liu, M. The potential role of TNFAIP3 in malignant transformation of gastric carcinoma. Pathol. Res. Pract. 2019, 215, 152471. [Google Scholar] [CrossRef]
- Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Compagno, M.; Lim, W.K.; Grunn, A.; Nandula, S.V.; Brahmachary, M.; Shen, Q.; Bertoni, F.; Ponzoni, M.; Scandurra, M.; Califano, A.; et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009, 459, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jung, S.M.; Yang, K.M.; Bae, E.; Ahn, S.G.; Park, J.S.; Seo, D.; Kim, M.; Ha, J.; Lee, J.; et al. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat. Cell Biol. 2017, 19, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Codd, J.D.; Salisbury, J.R.; Packham, G.; Nicholson, L.J. A20 RNA expression is associated with undifferentiated nasopharyngeal carcinoma and poorly differentiated head and neck squamous cell carcinoma. J. Pathol. 1999, 187, 549–555. [Google Scholar] [CrossRef]
- Guo, W.; Ma, J.; Guo, S.; Wang, H.; Wang, S.; Shi, Q.; Liu, L.; Zhao, T.; Yang, F.; Chen, S.; et al. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J. ImmunoTherapy Cancer 2020, 8, e001866. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, A.; Cirillo, A.; Strigari, L.; Valentini, F.; Cerbelli, B.; Scagnoli, S.; Cerbelli, E.; Zizzari, I.G.; Rocca, C.D.; D’Amati, G.; et al. Anti-PD-1 and Anti-PD-L1 in Head and Neck Cancer: A Network Meta-Analysis. Front. Immunol. 2021, 12, 705096. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
A20 Expression within Stromal CD3+ T Cells at A20 Stromal Peripheral Tumor Periphery | ||||||||
A20-low | A20-high | Total | X2 | |||||
Count | % | Count | % | Count | % | p | ||
Sex | Female | 29 | 26.1% | 20 | 32.8% | 49 | 28.5% | 0.354 |
Male | 82 | 73.9% | 41 | 67.2% | 123 | 71.5% | ||
Age at diagnosis | <50 | 20 | 18.0% | 10 | 16.4% | 30 | 17.4% | 0.352 |
50.0–59.9 | 42 | 37.8% | 17 | 27.9% | 59 | 34.3% | ||
60.0–69.9 | 24 | 21.6% | 22 | 36.1% | 46 | 26.7% | ||
70.0–79.9 | 19 | 17.1% | 9 | 14.8% | 28 | 16.3% | ||
≥80.0 | 6 | 5.4% | 3 | 4.9% | 9 | 5.2% | ||
CCI age adjusted | 0–1 | 32 | 28.8% | 19 | 31.1% | 51 | 29.7% | 0.731 |
2 | 21 | 18.9% | 14 | 23.0% | 35 | 20.3% | ||
3 | 23 | 20.7% | 10 | 16.4% | 33 | 19.2% | ||
4 | 12 | 10.8% | 9 | 14.8% | 21 | 12.2% | ||
≥5 | 23 | 20.7% | 9 | 14.8% | 32 | 18.6% | ||
Positive smoking anamnesis | No | 20 | 18.0% | 14 | 23.0% | 34 | 19.8% | 0.437 |
Yes | 91 | 82.0% | 47 | 77.0% | 138 | 80.2% | ||
Positive alcohol anamnesis | No | 30 | 27.0% | 19 | 31.1% | 49 | 28.5% | 0.567 |
Yes | 81 | 73.0% | 42 | 68.9% | 123 | 71.5% | ||
Anatomical site | Buccal mucosa | 14 | 12.6% | 7 | 11.5% | 21 | 12.2% | 0.798 |
Upper alveolus and gingiva | 7 | 6.3% | 1 | 1.6% | 8 | 4.7% | ||
Lower alveolus and gingiva | 23 | 20.7% | 14 | 23.0% | 37 | 21.5% | ||
Hard palate | 4 | 3.6% | 2 | 3.3% | 6 | 3.5% | ||
Tongue | 11 | 9.9% | 8 | 13.1% | 19 | 11.0% | ||
Floor of mouth | 52 | 46.8% | 29 | 47.5% | 81 | 47.1% | ||
Tumor size | T1 | 24 | 21.6% | 17 | 27.9% | 41 | 23.8% | 0.164 |
T2 | 40 | 36.0% | 28 | 45.9% | 68 | 39.5% | ||
T3 | 7 | 6.3% | 4 | 6.6% | 11 | 6.4% | ||
T4 | 40 | 36.0% | 12 | 19.7% | 52 | 30.2% | ||
Cervical node status | N0 | 55 | 49.5% | 34 | 55.7% | 89 | 51.7% | 0.223 |
N1 | 17 | 15.3% | 13 | 21.3% | 30 | 17.4% | ||
N2/3 | 39 | 35.1% | 14 | 23.0% | 53 | 30.8% | ||
Extranodal spread | No | 42 | 37.8% | 22 | 36.1% | 64 | 37.2% | 0.601 |
Yes | 14 | 12.6% | 5 | 8.2% | 19 | 11.0% | ||
not applicable | 55 | 49.5% | 34 | 55.7% | 89 | 51.7% | ||
Tumor grade | G1 | 5 | 4.5% | 3 | 4.9% | 8 | 4.7% | 0.992 |
G2 | 93 | 83.8% | 51 | 83.6% | 144 | 83.7% | ||
G3/4 | 13 | 11.7% | 7 | 11.5% | 20 | 11.6% | ||
Lymph vessel invasion | L0 | 87 | 78.4% | 51 | 83.6% | 138 | 80.2% | 0.410 |
L1 | 24 | 21.6% | 10 | 16.4% | 34 | 19.8% | ||
Blood vessel invasion | V0 | 104 | 93.7% | 59 | 96.7% | 163 | 94.8% | 0.394 |
V1 | 7 | 6.3% | 2 | 3.3% | 9 | 5.2% | ||
UICC stage | I | 17 | 15.3% | 11 | 18.0% | 28 | 16.3% | 0.666 |
II | 21 | 18.9% | 13 | 21.3% | 34 | 19.8% | ||
III | 15 | 13.5% | 11 | 18.0% | 26 | 15.1% | ||
IV | 58 | 52.3% | 26 | 42.6% | 84 | 48.8% | ||
Adjuvant therapy | No | 48 | 43.2% | 24 | 39.3% | 72 | 41.9% | 0.570 |
Radiotherapy | 44 | 39.6% | 29 | 47.5% | 73 | 42.4% | ||
Radiochemotherapy | 19 | 17.1% | 8 | 13.1% | 27 | 15.7% | ||
Recurrence | No recurrence | 79 | 71.2% | 47 | 77.0% | 126 | 73.3% | 0.405 |
Recurrence | 32 | 28.8% | 14 | 23.0% | 46 | 26.7% | ||
Death | Alive | 30 | 27.0% | 22 | 36.1% | 52 | 30.2% | 0.217 |
Total | 111 | 100.0% | 61 | 100.0% | 172 | 100.0% |
Univariable Cox-Regression | Multivariable Cox-Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
95%-CI | 95%-CI | ||||||||
p | HR | Lower | Upper | p | HR | Lower | Upper | ||
CD3+ A20 stromal peripheral | A20-low | ||||||||
A20-high | 0.018 | 0.620 | 0.417 | 0.920 | 0.009 | 0.582 | 0.388 | 0.873 | |
Sex | Female | ||||||||
Male | 0.876 | 1.033 | 0.689 | 1.549 | |||||
CCI age adjusted | 0–1 | <0.001 | <0.001 | ||||||
2 | 0.319 | 1.327 | 0.760 | 2.317 | 0.237 | 1.408 | 0.798 | 2.485 | |
3 | 0.651 | 1.143 | 0.641 | 2.040 | 0.768 | 1.091 | 0.611 | 1.950 | |
4 | 0.001 | 2.645 | 1.455 | 4.807 | <0.001 | 3.115 | 1.696 | 5.721 | |
≥5 | <0.001 | 2.583 | 1.551 | 4.302 | <0.001 | 2.600 | 1.539 | 4.395 | |
Positive smoking anamnesis | No | ||||||||
Yes | 0.809 | 0.945 | 0.598 | 1.494 | |||||
Positive alcohol anamnesis | No | ||||||||
Yes | 0.667 | 1.093 | 0.729 | 1.640 | |||||
Anatomical site | Upper alveolus and gingiva and hard palate | 0.388 | |||||||
Tongue | 0.196 | 0.558 | 0.230 | 1.352 | |||||
Buccal mucosa and lower alveolus and gingiva and floor of mouth | 0.560 | 0.816 | 0.411 | 1.618 | |||||
UICC stage | I and II | ||||||||
III and IV | 0.015 | 1.610 | 1.095 | 2.368 | 0.052 | 1.486 | 0.996 | 2.217 | |
Tumor grade | G1/2 | ||||||||
G3/4 | 0.143 | 1.484 | 0.875 | 2.517 | |||||
Lymph vessel invasion | L0 | ||||||||
L1 | 0.046 | 1.559 | 1.008 | 2.412 | 0.163 | 1.417 | 0.869 | 2.313 | |
Blood vessel invasion | V0 | ||||||||
V1 | 0.023 | 2.313 | 1.121 | 4.775 | 0.347 | 1.475 | 0.656 | 3.320 | |
Adjuvant/additive therapy | No | 0.263 | |||||||
Radiotherapy | 0.123 | 1.363 | 0.920 | 2.021 | |||||
Radiochemotherapy | 0.266 | 1.357 | 0.793 | 2.324 |
Univariable Cox-Regression | Multivariable Cox-Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
95%-CI | 95%-CI | ||||||||
p | HR | Lower | Upper | p | HR | Lower | Upper | ||
CD3+ A20 stromal peripheral | A20-low | ||||||||
A20-high | 0.021 | 0.643 | 0.441 | 0.936 | 0.011 | 0.605 | 0.411 | 0.889 | |
Sex | Female | ||||||||
Male | 0.509 | 1.143 | 0.769 | 1.698 | |||||
CCI age adjusted | 0–1 | 0.005 | 0.002 | ||||||
2 | 0.588 | 1.157 | 0.682 | 1.962 | 0.648 | 1.132 | 0.665 | 1.928 | |
3 | 0.612 | 1.150 | 0.670 | 1.974 | 0.718 | 1.105 | 0.642 | 1.902 | |
4 | 0.002 | 2.443 | 1.374 | 4.346 | 0.001 | 2.619 | 1.464 | 4.684 | |
≥5 | 0.006 | 1.993 | 1.217 | 3.265 | 0.006 | 2.025 | 1.226 | 3.346 | |
Positive smoking anamnesis | No | ||||||||
Yes | 0.836 | 0.954 | 0.611 | 1.489 | |||||
Positive alcohol anamnesis | No | ||||||||
Yes | 0.804 | 0.952 | 0.648 | 1.401 | |||||
Anatomical site | Upper alveolus and gingiva and hard palate | 0.296 | |||||||
Tongue | 0.242 | 0.590 | 0.244 | 1.427 | |||||
Buccal mucosa and lower alveolus and gingiva and floor of mouth | 0.911 | 0.962 | 0.486 | 1.902 | |||||
UICC stage | I and II | ||||||||
III and IV | 0.015 | 1.587 | 1.095 | 2.301 | 0.207 | 1.317 | 0.859 | 2.021 | |
Tumor grade | G1/2 | ||||||||
G3/4 | 0.102 | 1.535 | 0.919 | 2.563 | |||||
Lymph vessel invasion | L0 | ||||||||
L1 | 0.128 | 1.392 | 0.909 | 2.129 | |||||
Blood vessel invasion | V0 | ||||||||
V1 | 0.083 | 1.894 | 0.920 | 3.898 | 0.362 | 1.425 | 0.666 | 3.047 | |
Adjuvant/additive therapy | No | 0.097 | 0.297 | ||||||
Radiotherapy | 0.060 | 1.441 | 0.985 | 2.109 | 0.149 | 1.379 | 0.891 | 2.134 | |
Radiochemotherapy | 0.083 | 1.577 | 0.943 | 2.639 | 0.211 | 1.435 | 0.815 | 2.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoerl, S.; Erber, R.; Gerken, M.; Taxis, J.; Ludwig, N.; Nieberle, F.; Biermann, N.; Geppert, C.I.; Ettl, T.; Hartmann, A.; et al. A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers 2023, 15, 675. https://doi.org/10.3390/cancers15030675
Spoerl S, Erber R, Gerken M, Taxis J, Ludwig N, Nieberle F, Biermann N, Geppert CI, Ettl T, Hartmann A, et al. A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers. 2023; 15(3):675. https://doi.org/10.3390/cancers15030675
Chicago/Turabian StyleSpoerl, Steffen, Ramona Erber, Michael Gerken, Juergen Taxis, Nils Ludwig, Felix Nieberle, Niklas Biermann, Carol Immanuel Geppert, Tobias Ettl, Arndt Hartmann, and et al. 2023. "A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma" Cancers 15, no. 3: 675. https://doi.org/10.3390/cancers15030675
APA StyleSpoerl, S., Erber, R., Gerken, M., Taxis, J., Ludwig, N., Nieberle, F., Biermann, N., Geppert, C. I., Ettl, T., Hartmann, A., Beckhove, P., Reichert, T. E., Spanier, G., & Spoerl, S. (2023). A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers, 15(3), 675. https://doi.org/10.3390/cancers15030675