A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Immunohistochemical (IHC) Staining
2.3. Image Analysis
2.4. Statistical Analysis
2.5. Single-Cell RNA-Seq Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Munjal, A. Interplay between inflammation and cancer. Adv. Protein Chem. Struct. Biol. 2020, 119, 199–245. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 2000, 248, 171–183. [Google Scholar] [CrossRef]
- Rossi, J.F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 595722. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, G.Q.; Sun, Z.K.; Song, H.J.; Shen, C.T.; Chen, X.Y.; Sun, J.W.; Qiu, Z.L.; Luo, Q.Y. Interleukins in Thyroid Cancer: From Basic Researches to Applications in Clinical Practice. Front. Immunol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef]
- Choudhary, M.M.; France, T.J.; Teknos, T.N.; Kumar, P. Interleukin-6 role in head and neck squamous cell carcinoma progression. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Perkins, N.D. Achieving transcriptional specificity with NF-kappa B. Int. J. Biochem. Cell Biol. 1997, 29, 1433–1448. [Google Scholar] [CrossRef]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Ito, T.; Azuma, S.; Ito, E.; Honma, R.; Yanagisawa, Y.; Nishikawa, A.; Kawamura, M.; Imai, J.; Watanabe, S.; et al. Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 2009, 100, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Jäättelä, M.; Mouritzen, H.; Elling, F.; Bastholm, L. A20 zinc finger protein inhibits TNF and IL-1 signaling. J. Immunol. 1996, 156, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Rothe, M.; Goeddel, D.V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc. Natl. Acad. Sci. USA 1996, 93, 6721–6725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shembade, N.; Ma, A.; Harhaj, E.W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Malynn, B.A.; Ma, A. A20: A multifunctional tool for regulating immunity and preventing disease. Cell. Immunol. 2019, 340, 103914. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sanada, M.; Kato, I.; Sato, Y.; Takita, J.; Takeuchi, K.; Niwa, A.; Chen, Y.; Nakazaki, K.; Nomoto, J.; et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009, 459, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef]
- Fischer, J.C.; Otten, V.; Kober, M.; Drees, C.; Rosenbaum, M.; Schmickl, M.; Heidegger, S.; Beyaert, R.; van Loo, G.; Li, X.C.; et al. A20 Restrains Thymic Regulatory T Cell Development. J. Immunol. 2017, 199, 2356–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, P.S.; Shu, Y.; Bi, W.X.; Zheng, X.B.; Feng, W.J.; He, L.Y.; Li, J.S. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma. J. Cell. Physiol. 2019, 234, 21479–21484. [Google Scholar] [CrossRef]
- Yoon, C.I.; Ahn, S.G.; Bae, S.J.; Shin, Y.J.; Cha, C.; Park, S.E.; Lee, J.H.; Ooshima, A.; Lee, H.S.; Yang, K.M.; et al. High A20 expression negatively impacts survival in patients with breast cancer. PLoS ONE 2019, 14, e0221721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Zang, W.; Tang, Z.; Ji, Y.; Xu, R.; Yang, Y.; Luo, A.; Hu, B.; Zhang, Z.; Liu, Z.; et al. A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy. Cancer Res. 2018, 78, 1069–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.T.; Evel-Kabler, K.; Shen, L.; Rollins, L.; Huang, X.F.; Chen, S.Y. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat. Med. 2008, 14, 258–265. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Spanier, G.; Böttcher, J.; Gerken, M.; Fischer, R.; Roth, G.; Lehn, P.; Klingelhöffer, C.; Meier, J.K.; Fraccaroli, A.; Tischer, J.; et al. Prognostic value of perioperative red blood cell transfusion and anemia on survival and recurrence in oral squamous cell carcinoma. Oral Oncol. 2020, 107, 104773. [Google Scholar] [CrossRef]
- Erber, R.; Spoerl, S.; Mamilos, A.; Krupar, R.; Hartmann, A.; Ruebner, M.; Taxis, J.; Wittenberg, M.; Reichert, T.E.; Spanier, G.; et al. Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Bavi, P.; Abubaker, J.; Al-Sanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.; Uddin, S.; Siraj, A.K.; Al-Kuraya, K.S. Clinico-pathological significance of TNF alpha-induced protein3 (TNFAIP3) in Middle Eastern colorectal carcinoma. Clin. Epigenetics 2011, 2, 417–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Wang, X.; Wang, J.; Wang, X.; Zhou, H.; Zhang, L. The dual roles of A20 in cancer. Cancer Lett. 2021, 511, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.; Priem, D.; Hoste, E.; Vetters, J.; Rennen, S.; Catrysse, L.; Voet, S.; Deelen, L.; Sze, M.; Vikkula, H.; et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 2020, 21, 381–387. [Google Scholar] [CrossRef]
- Du, B.; Liu, M.; Li, C.; Geng, X.; Zhang, X.; Ning, D.; Liu, M. The potential role of TNFAIP3 in malignant transformation of gastric carcinoma. Pathol. Res. Pract. 2019, 215, 152471. [Google Scholar] [CrossRef]
- Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compagno, M.; Lim, W.K.; Grunn, A.; Nandula, S.V.; Brahmachary, M.; Shen, Q.; Bertoni, F.; Ponzoni, M.; Scandurra, M.; Califano, A.; et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009, 459, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Jung, S.M.; Yang, K.M.; Bae, E.; Ahn, S.G.; Park, J.S.; Seo, D.; Kim, M.; Ha, J.; Lee, J.; et al. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat. Cell Biol. 2017, 19, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Codd, J.D.; Salisbury, J.R.; Packham, G.; Nicholson, L.J. A20 RNA expression is associated with undifferentiated nasopharyngeal carcinoma and poorly differentiated head and neck squamous cell carcinoma. J. Pathol. 1999, 187, 549–555. [Google Scholar] [CrossRef]
- Guo, W.; Ma, J.; Guo, S.; Wang, H.; Wang, S.; Shi, Q.; Liu, L.; Zhao, T.; Yang, F.; Chen, S.; et al. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J. ImmunoTherapy Cancer 2020, 8, e001866. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, A.; Cirillo, A.; Strigari, L.; Valentini, F.; Cerbelli, B.; Scagnoli, S.; Cerbelli, E.; Zizzari, I.G.; Rocca, C.D.; D’Amati, G.; et al. Anti-PD-1 and Anti-PD-L1 in Head and Neck Cancer: A Network Meta-Analysis. Front. Immunol. 2021, 12, 705096. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
A20 Expression within Stromal CD3+ T Cells at A20 Stromal Peripheral Tumor Periphery | ||||||||
A20-low | A20-high | Total | X2 | |||||
Count | % | Count | % | Count | % | p | ||
Sex | Female | 29 | 26.1% | 20 | 32.8% | 49 | 28.5% | 0.354 |
Male | 82 | 73.9% | 41 | 67.2% | 123 | 71.5% | ||
Age at diagnosis | <50 | 20 | 18.0% | 10 | 16.4% | 30 | 17.4% | 0.352 |
50.0–59.9 | 42 | 37.8% | 17 | 27.9% | 59 | 34.3% | ||
60.0–69.9 | 24 | 21.6% | 22 | 36.1% | 46 | 26.7% | ||
70.0–79.9 | 19 | 17.1% | 9 | 14.8% | 28 | 16.3% | ||
≥80.0 | 6 | 5.4% | 3 | 4.9% | 9 | 5.2% | ||
CCI age adjusted | 0–1 | 32 | 28.8% | 19 | 31.1% | 51 | 29.7% | 0.731 |
2 | 21 | 18.9% | 14 | 23.0% | 35 | 20.3% | ||
3 | 23 | 20.7% | 10 | 16.4% | 33 | 19.2% | ||
4 | 12 | 10.8% | 9 | 14.8% | 21 | 12.2% | ||
≥5 | 23 | 20.7% | 9 | 14.8% | 32 | 18.6% | ||
Positive smoking anamnesis | No | 20 | 18.0% | 14 | 23.0% | 34 | 19.8% | 0.437 |
Yes | 91 | 82.0% | 47 | 77.0% | 138 | 80.2% | ||
Positive alcohol anamnesis | No | 30 | 27.0% | 19 | 31.1% | 49 | 28.5% | 0.567 |
Yes | 81 | 73.0% | 42 | 68.9% | 123 | 71.5% | ||
Anatomical site | Buccal mucosa | 14 | 12.6% | 7 | 11.5% | 21 | 12.2% | 0.798 |
Upper alveolus and gingiva | 7 | 6.3% | 1 | 1.6% | 8 | 4.7% | ||
Lower alveolus and gingiva | 23 | 20.7% | 14 | 23.0% | 37 | 21.5% | ||
Hard palate | 4 | 3.6% | 2 | 3.3% | 6 | 3.5% | ||
Tongue | 11 | 9.9% | 8 | 13.1% | 19 | 11.0% | ||
Floor of mouth | 52 | 46.8% | 29 | 47.5% | 81 | 47.1% | ||
Tumor size | T1 | 24 | 21.6% | 17 | 27.9% | 41 | 23.8% | 0.164 |
T2 | 40 | 36.0% | 28 | 45.9% | 68 | 39.5% | ||
T3 | 7 | 6.3% | 4 | 6.6% | 11 | 6.4% | ||
T4 | 40 | 36.0% | 12 | 19.7% | 52 | 30.2% | ||
Cervical node status | N0 | 55 | 49.5% | 34 | 55.7% | 89 | 51.7% | 0.223 |
N1 | 17 | 15.3% | 13 | 21.3% | 30 | 17.4% | ||
N2/3 | 39 | 35.1% | 14 | 23.0% | 53 | 30.8% | ||
Extranodal spread | No | 42 | 37.8% | 22 | 36.1% | 64 | 37.2% | 0.601 |
Yes | 14 | 12.6% | 5 | 8.2% | 19 | 11.0% | ||
not applicable | 55 | 49.5% | 34 | 55.7% | 89 | 51.7% | ||
Tumor grade | G1 | 5 | 4.5% | 3 | 4.9% | 8 | 4.7% | 0.992 |
G2 | 93 | 83.8% | 51 | 83.6% | 144 | 83.7% | ||
G3/4 | 13 | 11.7% | 7 | 11.5% | 20 | 11.6% | ||
Lymph vessel invasion | L0 | 87 | 78.4% | 51 | 83.6% | 138 | 80.2% | 0.410 |
L1 | 24 | 21.6% | 10 | 16.4% | 34 | 19.8% | ||
Blood vessel invasion | V0 | 104 | 93.7% | 59 | 96.7% | 163 | 94.8% | 0.394 |
V1 | 7 | 6.3% | 2 | 3.3% | 9 | 5.2% | ||
UICC stage | I | 17 | 15.3% | 11 | 18.0% | 28 | 16.3% | 0.666 |
II | 21 | 18.9% | 13 | 21.3% | 34 | 19.8% | ||
III | 15 | 13.5% | 11 | 18.0% | 26 | 15.1% | ||
IV | 58 | 52.3% | 26 | 42.6% | 84 | 48.8% | ||
Adjuvant therapy | No | 48 | 43.2% | 24 | 39.3% | 72 | 41.9% | 0.570 |
Radiotherapy | 44 | 39.6% | 29 | 47.5% | 73 | 42.4% | ||
Radiochemotherapy | 19 | 17.1% | 8 | 13.1% | 27 | 15.7% | ||
Recurrence | No recurrence | 79 | 71.2% | 47 | 77.0% | 126 | 73.3% | 0.405 |
Recurrence | 32 | 28.8% | 14 | 23.0% | 46 | 26.7% | ||
Death | Alive | 30 | 27.0% | 22 | 36.1% | 52 | 30.2% | 0.217 |
Total | 111 | 100.0% | 61 | 100.0% | 172 | 100.0% |
Univariable Cox-Regression | Multivariable Cox-Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
95%-CI | 95%-CI | ||||||||
p | HR | Lower | Upper | p | HR | Lower | Upper | ||
CD3+ A20 stromal peripheral | A20-low | ||||||||
A20-high | 0.018 | 0.620 | 0.417 | 0.920 | 0.009 | 0.582 | 0.388 | 0.873 | |
Sex | Female | ||||||||
Male | 0.876 | 1.033 | 0.689 | 1.549 | |||||
CCI age adjusted | 0–1 | <0.001 | <0.001 | ||||||
2 | 0.319 | 1.327 | 0.760 | 2.317 | 0.237 | 1.408 | 0.798 | 2.485 | |
3 | 0.651 | 1.143 | 0.641 | 2.040 | 0.768 | 1.091 | 0.611 | 1.950 | |
4 | 0.001 | 2.645 | 1.455 | 4.807 | <0.001 | 3.115 | 1.696 | 5.721 | |
≥5 | <0.001 | 2.583 | 1.551 | 4.302 | <0.001 | 2.600 | 1.539 | 4.395 | |
Positive smoking anamnesis | No | ||||||||
Yes | 0.809 | 0.945 | 0.598 | 1.494 | |||||
Positive alcohol anamnesis | No | ||||||||
Yes | 0.667 | 1.093 | 0.729 | 1.640 | |||||
Anatomical site | Upper alveolus and gingiva and hard palate | 0.388 | |||||||
Tongue | 0.196 | 0.558 | 0.230 | 1.352 | |||||
Buccal mucosa and lower alveolus and gingiva and floor of mouth | 0.560 | 0.816 | 0.411 | 1.618 | |||||
UICC stage | I and II | ||||||||
III and IV | 0.015 | 1.610 | 1.095 | 2.368 | 0.052 | 1.486 | 0.996 | 2.217 | |
Tumor grade | G1/2 | ||||||||
G3/4 | 0.143 | 1.484 | 0.875 | 2.517 | |||||
Lymph vessel invasion | L0 | ||||||||
L1 | 0.046 | 1.559 | 1.008 | 2.412 | 0.163 | 1.417 | 0.869 | 2.313 | |
Blood vessel invasion | V0 | ||||||||
V1 | 0.023 | 2.313 | 1.121 | 4.775 | 0.347 | 1.475 | 0.656 | 3.320 | |
Adjuvant/additive therapy | No | 0.263 | |||||||
Radiotherapy | 0.123 | 1.363 | 0.920 | 2.021 | |||||
Radiochemotherapy | 0.266 | 1.357 | 0.793 | 2.324 |
Univariable Cox-Regression | Multivariable Cox-Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
95%-CI | 95%-CI | ||||||||
p | HR | Lower | Upper | p | HR | Lower | Upper | ||
CD3+ A20 stromal peripheral | A20-low | ||||||||
A20-high | 0.021 | 0.643 | 0.441 | 0.936 | 0.011 | 0.605 | 0.411 | 0.889 | |
Sex | Female | ||||||||
Male | 0.509 | 1.143 | 0.769 | 1.698 | |||||
CCI age adjusted | 0–1 | 0.005 | 0.002 | ||||||
2 | 0.588 | 1.157 | 0.682 | 1.962 | 0.648 | 1.132 | 0.665 | 1.928 | |
3 | 0.612 | 1.150 | 0.670 | 1.974 | 0.718 | 1.105 | 0.642 | 1.902 | |
4 | 0.002 | 2.443 | 1.374 | 4.346 | 0.001 | 2.619 | 1.464 | 4.684 | |
≥5 | 0.006 | 1.993 | 1.217 | 3.265 | 0.006 | 2.025 | 1.226 | 3.346 | |
Positive smoking anamnesis | No | ||||||||
Yes | 0.836 | 0.954 | 0.611 | 1.489 | |||||
Positive alcohol anamnesis | No | ||||||||
Yes | 0.804 | 0.952 | 0.648 | 1.401 | |||||
Anatomical site | Upper alveolus and gingiva and hard palate | 0.296 | |||||||
Tongue | 0.242 | 0.590 | 0.244 | 1.427 | |||||
Buccal mucosa and lower alveolus and gingiva and floor of mouth | 0.911 | 0.962 | 0.486 | 1.902 | |||||
UICC stage | I and II | ||||||||
III and IV | 0.015 | 1.587 | 1.095 | 2.301 | 0.207 | 1.317 | 0.859 | 2.021 | |
Tumor grade | G1/2 | ||||||||
G3/4 | 0.102 | 1.535 | 0.919 | 2.563 | |||||
Lymph vessel invasion | L0 | ||||||||
L1 | 0.128 | 1.392 | 0.909 | 2.129 | |||||
Blood vessel invasion | V0 | ||||||||
V1 | 0.083 | 1.894 | 0.920 | 3.898 | 0.362 | 1.425 | 0.666 | 3.047 | |
Adjuvant/additive therapy | No | 0.097 | 0.297 | ||||||
Radiotherapy | 0.060 | 1.441 | 0.985 | 2.109 | 0.149 | 1.379 | 0.891 | 2.134 | |
Radiochemotherapy | 0.083 | 1.577 | 0.943 | 2.639 | 0.211 | 1.435 | 0.815 | 2.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoerl, S.; Erber, R.; Gerken, M.; Taxis, J.; Ludwig, N.; Nieberle, F.; Biermann, N.; Geppert, C.I.; Ettl, T.; Hartmann, A.; et al. A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers 2023, 15, 675. https://doi.org/10.3390/cancers15030675
Spoerl S, Erber R, Gerken M, Taxis J, Ludwig N, Nieberle F, Biermann N, Geppert CI, Ettl T, Hartmann A, et al. A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers. 2023; 15(3):675. https://doi.org/10.3390/cancers15030675
Chicago/Turabian StyleSpoerl, Steffen, Ramona Erber, Michael Gerken, Juergen Taxis, Nils Ludwig, Felix Nieberle, Niklas Biermann, Carol Immanuel Geppert, Tobias Ettl, Arndt Hartmann, and et al. 2023. "A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma" Cancers 15, no. 3: 675. https://doi.org/10.3390/cancers15030675
APA StyleSpoerl, S., Erber, R., Gerken, M., Taxis, J., Ludwig, N., Nieberle, F., Biermann, N., Geppert, C. I., Ettl, T., Hartmann, A., Beckhove, P., Reichert, T. E., Spanier, G., & Spoerl, S. (2023). A20 as a Potential New Tool in Predicting Recurrence and Patient’s Survival in Oral Squamous Cell Carcinoma. Cancers, 15(3), 675. https://doi.org/10.3390/cancers15030675