Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Characteristics of CTCs
3. Clinical Use of CTC Enumeration/Counting
3.1. Early Detection of Cancer
3.2. Prognosis Evaluation of Cancer
Application | Cancer | Technique | Cutoff Value (CTCs/mL Blood) | Performance | References |
---|---|---|---|---|---|
Cancer Diagnosis | Breast cancer | CytoSorter® microfluidic platform | ≥2 CTCs/4 mL | AUC = 0.86 | [59] |
Lung cancer | Cytelligen CTC Enrichment Kit and Human Tumor Cell Identification Kit | ≥6 CTCs/6 mL | AUC = 0.780 | [61] | |
CellCollector + immunocytochemical staining | ≥1 CTCs | AUC = 0.715 | [60] | ||
Colorectal cancer | Negative immunomagnetic selection + Flow cytometry | ≥3 CTCs/7 mL | AUC = 0.664 | [62] | |
Pancreatic cancer | The NE-imFISH enrichment system + fluorescence microscope | ≥2 CTCs/3.2 mL | AUC = 0.85 | [63] | |
Prognosis evaluation of Cancer | Breast cancer | Cell search | ≥5 CTCs/7.5 mL | PFS: HR 1.79; OS: HR 2.72 | [66] |
Cell search | ≥5 CTCs/7.5 mL | DFS: HR 1.82; DDFS: HR 1.89; OS: HR 1.97 | [11] | ||
CytoSorter® microfluidic platform | ≥5 CTCs/7.5 mL | PFS: HR 2.11; OS: HR 3.15 | [25] | ||
Lung cancer | Negative immunomagnetic selection + FISH | ≥10 CTCs/5 mL | Highly CTC is positively correlated with TNM stage and poor prognosis | [12] | |
Cell Search | ≥5 CTCs/7.5 mL | Poor PSF (4.1 months) and OS (4.6 months). | [67] | ||
Colorectal cancer | Cell search | ≥1 CTCs/7.5 mL | CTC-positive patients showed distant metastasis and shorter PFS and OS than CTC-negative patients. | [18] | |
Cell search | ≥3 CTCs/7.5 mL | CTC-positive patients showed shorter PFS and OS than CTC-negative patients. | [68] | ||
Pancreatic cancer | MACS | ≥1 CTCs/7.5 mL | CTC-positive patients had over four times shorter PFS and over two times shorter OS than CTC-negative patients. | [19] | |
Ficoll-Paque PLUS | ≥1 CTC/7.5 mL | Early recurrence: OR 8.770; systemic recurrence: OR 5.600 | [36] | ||
Therapeutic Response Monitoring of Cancer | Breast cancer | Cell search | ≥5 CTCs/7.5 mL | After chemotherapy, the CTC positivity rate decreased. (T0:31% to T3:15%) | [66] |
Lung cancer | Cell search | ≥1 CTC/7.5 mL | During immunotherapy, patients whose CTCs did not decline had poorer outcomes of the primary tumor. | [56] | |
EasySep + Flow cytometry | ≥3 CTCs/mL | After surgery, CTCs decreased, and the early rebound of CTC counts was positively associated with recurrence. | [70] | ||
Colorectal cancer | Cell search | ≥2 CTCs/7.5 mL | During chemotherapy, the number of CTCs reflects the progression of the primary tumor. | [13] | |
Immunofluorescence staining + RT-qPCR | ≥3 CTCs/8 mL | After surgery, CTC appeared in stage T4 (nine months later) with local recurrence. | [71] |
3.3. Therapeutic Response Monitoring of Cancer
4. The Technologies for CTC Enrichment
4.1. Cell Biophysical-Based Techniques
(A) | ||||||
Category | Typical Platform | Description | Capture Efficiency | Advantages | Disadvantages | References |
Size-based | ISET® | Filtration device | 87% | Recovery of a heterogeneous population of CTCs, high purity, rapid, simple process | Sample loss during mononuclear cell depletion | [85] |
ScreenCell | Microfiltration device (pores of defined size for CTC capture) | 74–91% | Recovery of a heterogeneous population of CTCs, high throughput, cheap and easy to produce, rapid process | Limited to larger CTCs, require additional enrichment step | [86] | |
Vortex VTX-1 | Inertial microfluidic chip (size-based separation) | 53.8–71.6% | Recovery of a heterogeneous population of CTCs, fully automated process, high throughput (7.5 mL/20 min) | Limited to larger CTCs may require additional specific staining for cell identification. | [87] | |
Density | Ficoll-Hypaque | Blood is layered over a Ficoll-Hypaque | >90% | Simple and inexpensive | Low throughput (0.01−1.0 mL/h), high WBC contamination, loss of CTCs | [83,88] |
OncoQuick | Porous membrane filtration followed by density-grade centrifugation | 84% | Simple and inexpensive | Loss of CTC, low purity | [88] | |
Bioelectrical properties | APOCELL | Dielectrophoresis field flow fractionation (size-based separation) | 75% | Recovery of a heterogeneous population of CTCs, high throughput (7.5–10 mL/h), cell high viability, high purity | Require electric field frequency | [90] |
ODEP | Optically induced dielectrophoretic force-based cell manipulation in a microfluidic system (size-based separation) | 63.6–85.6% | Recovery of a heterogeneous population of CTCs, label-free, high cell viability, high purity | Specific cell types and specific parameters require electric field frequency. | [91] | |
(B) | ||||||
Category | Typical Platform | Description | Capture Efficiency | Advantages | Disadvantages | References |
Positive selection | Cell Search® | EpCAM antibody-coated magnetic beads + immunostaining | 42–90% | (FDA)-cleared CTC detection technique | Low sensitivity, loss of CTCs | [11,17] |
AdnaTest | Immunomagnetic beads (cocktail antibody) + PCR | 60–80% | Providing molecular characteristics of CTCs | High contamination of WBCs | [94,95] | |
MagSweeper | A rod coated with EpCAM antibody-labeled magnetic beads | 60–70% | High purity, high throughput (9 mL/h) | Expensive, loss of CTCs | [96] | |
Isoflux | EpCAM antibody-coated beads in a microfluidic chip | 73–81% | High purity, high cell viability | Time-consuming | [97] | |
MACS | Immunomagnetic bead separation | 40–90% | Low-cost, technically simple | Time-consuming, high cell loss, low purity (around 50%) | [98] | |
CTC-chip | Microfluidic chip of microposts conjugated with anti-EpCAM antibody | 60–90% | High capture specificity, high purity | Low throughput (1 mL/h) | [99] | |
Herringbone chip | EpCAM antibody-coated microfluidic chip + immunofluorescence microscopy | >90% | High throughput (4.8 mL/h) | Low purity of captured CTCs (around 14%) | [100] | |
Negative selection | RosetteSep | Blood cells depletion by pelleting the RBC-WBC crosslinked immunorosettes | 40–62.5% | High specificity, recovery of a heterogeneous population of CTCs, | Time-consuming, exclusion of CTC-WBC clusters | [101] |
EasySep | Immunomagnetic beads and anti-CD45 antibodies for WBC removal | 19–65% | High throughput (1–4 mL/h), simple operation, recovery of a heterogeneous population of CTCs, | Variable recovery, exclusion of CTC-WBC clusters | [102,103] | |
CTC-iChip | Incorporates the unique-designed DLD (deterministic lateral displacement) microstructure arrays, inertial focusing, and MACS | >90% | High throughput (8 mL/h), recovery of a heterogeneous population of CTCs, | Low purity of captured CTCs (around 8%) | [103] |
4.2. Immunoaffinity-Based Techniques
4.2.1. Positive Immunoselection-Based Techniques
4.2.2. Negative Immunoselection-Based Techniques
4.3. Challenges and New Perspectives of the Current CTC Counting Techniques for Clinical Applications
5. The Advantage of Combining the CTC Counts with the Other Clinical Parameters for Analysis
5.1. Potential Clinical Parameters for the Combination with CTC Count
5.1.1. CTC-Related Parameters (e.g., Atypical CTC Subtypes or CTC Clusters)
5.1.2. Tumor Blood Markers
Parameter | References | ||
---|---|---|---|
CTC-related | Atypical CTC subtypes: | Epithelial (E-CTCs), mesenchymal (M-CTCs), and partial epithelial/mesenchymal (pEMT-CTCs), stem cell like (SC-CTCs). | [51] |
CTC clusters: | Homotypic CTC clusters, heterotypic CTC clusters (CTC-immune, CTC-stroma cells). | [120] | |
Traditional medical testing (non-CTC-related) | Tumor blood markers | Alpha fetal protein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), cytokeratin fragment 21-1 (CYFRA21-1), squamous cell carcinoma antigen (SCC), prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carbohydrate antigen 125 (CA125), human epididymis secretory protein 4 (HE 4), lactate dehydrogenase (LDH), thyroglobulin, neuron-specific enolase (NSE), nuclear matrix protein 22, prostatic acid phosphatase (PAP)… | [126,127,128,129,130] |
Tumor imaging data | X-ray imaging, computed tomography (CT), positron emission tomography (PET), ultrasound sonography (US), and nuclear magnetic resonance imaging (MRI). | [132] | |
Patient’s physiological parameters | General survey (height, weight, gender, age); vital signs (blood pressure, body temperature); skin (skin moisture, dryness, temperature, color…); neck (palpate the cervical lymph nodes); back (palpate the spine and muscles) and various systematic examinations of the individual system | [133,134] | |
Medical history | Personal medical history, past surgical history, family medical history, and social history. | [135] | |
Cancer screening test | Fecal occult blood test (FOBT), Cologuard, Pap smear | [136,137,138,139] |
5.1.3. Tumor Imaging Data
5.1.4. Patient’s Physiological Parameters
5.1.5. Medical History
5.1.6. Cancer Screening Test
5.2. Clinical Utility of Combination CTCs with Multiple Parameters
5.2.1. Early Detection of Cancer
Application | Cancer | Aim | Combinations | Parameter | Cutoff Value | AUC/Outcome | References |
---|---|---|---|---|---|---|---|
Cancer diagnosis | Breast cancer | Distinguish breast cancer patients from benign and healthy participants | CTC + tumor blood markers | CTC | 2 cells/mL blood | 0.845 | [147] |
CEA | >5 ng/ml | 0.623 | |||||
CA125 | >35 U/ml | 0.477 | |||||
CA15-3 | >25 U/ml | 0.58 | |||||
CTC + CEA | 0.866 | ||||||
CTC + CA125 | 0.848 | ||||||
CTC + CA15-3 | 0.873 | ||||||
CTC + CEA + CA125 | 0.868 | ||||||
CTC + CEA + CA15-3 | 0.874 | ||||||
CTC + CA125 + CA15-3 | 0.873 | ||||||
CTC + CEA + CA125 + CA15-3 | 0.874 | ||||||
Early-stage (I-II) breast cancer diagnosis | CTC + tumor imaging data | CTC | 2 cells/4 mL blood | 0.855 | [23] | ||
US (Ultrasound) | 4 b | 0.861 | |||||
MMG (Mammogram) | 4 b | 0.759 | |||||
CTC + US | 0.922 | ||||||
CTC + MMG | 0.899 | ||||||
Lung cancer | Early-stage (I-II) lung cancer diagnosis | CTC + tumor blood markers | CTC | 2 cells/3.2 mL blood | 0.825 | [148] | |
CEA | >5 ng/ml | 0.541 | |||||
CA125 | >35 U/ml | 0.565 | |||||
CYFRA21-1 | >3.3 ng/ml | 0.587 | |||||
SCC | >1.5 ng/ml | 0.509 | |||||
CEA + CA125 + CYFRA21-1+ SCC | >1.5 ng/ml | 0.647 | |||||
CTC + CEA + CA125 + CYFRA21-1 + SCC | 0.854 | ||||||
Distinguish MPN patients from BPN patients | CTC | 2 cells/3.2 mL blood | 0.813 | ||||
CEA | >5 ng/ml | 0.546 | [22] | ||||
CA125 | >35 U/ml | 0.588 | |||||
CYFRA21-1 | >3.3 ng/ml | 0.596 | |||||
SCC | >1.5 ng/ml | 0.551 | |||||
CEA + CA125 + CYFRA21-1 + SCC | 0.67 | ||||||
CTC + CEA + CA125 + CYFRA21-1 + SCC | 0.853 | ||||||
Distinguish benign from pulmonary nodules <2 cm | CTC + tumor imaging data | CTC | 6.05 cells/4 mL blood | 0.843 | [27] | ||
CT | 0.83 | ||||||
CTC + CT | 0.918 | ||||||
Lung cancer diagnosis in patients with SPNs | CTC + tumor blood markers + tumor imaging data | CTC | 6 units/6 mL blood | 0.78 | [61] | ||
CEA | 2.09 ng/ml | 0.626 | |||||
Size (mm) (CT imaging) | 8 mm | 0.572 | |||||
NT (CT imaging) | −600 HU | 0.626 | |||||
Site (CT imaging) | 0.555 | ||||||
CTC + CEA | 0.734 | ||||||
CTC + CEA + NT | 0.827 | ||||||
CTC + CEA + NT + Size + Site | 0.841 | ||||||
Colore-ctal cancer | Colorectal cancer screening | CTC + tumor blood markers + cancer screening test | CTC | 23 cells/mL blood | 0.8602 | [24] | |
CEA | >5 ng/ml | Detection rate: 30.3% | |||||
iFOBT | The false-positive rate of iFOBT: 56.3% | ||||||
CTC + CEA | Detection rate: 89.9% | ||||||
CTC + iFOBT | Reduced false-positive rate of iFOBT to 18.8% | ||||||
Pancre-atic cancer | Pancreatic ductal adenocarcinoma diagnosis | CTC + tumor blood markers | CTC | ≥2 cells/3.2 mL blood | 0.85 | [63] | |
CA19-9 | ≥37 U/ml | 0.8 | |||||
CTC + CA19-9 | 0.95 | ||||||
Prognosis evaluation of the cancer | Breast cancer | Predict outcomes in metastatic breast cancer patients at baseline | CTC + CTC-related | CTC | ≥5 cells/7.5 mL blood | PFS: HR 1.74 OS: HR 1.84 | [25] |
CTC + CTC clusters | ≥5 cells + ≥1 CTC-cluster/7.5 mL blood | PFS: HR 5.16 OS: HR 7.79 | |||||
Colorectal cancer | Predict recurrence for patients at all colorectal cancer stages | CTC + CTC-related + tumor blood markers | CTC | >3 cells/2 mL blood | Recurrence rate: 32% | [26] | |
CEA | > 5 ng/ml | Recurrence rate: 24% | |||||
CA19-9 | > 37 ng/ml | Recurrence rate: 36.4% | |||||
CTC clusters | >0 | Recurrence rate: 45.2% | |||||
CTCs + CEA | Recurrence rate: 45.5% | ||||||
CTCs + CA19-9 | Recurrence rate: 57.1% | ||||||
CTCs With CTC clusters | Recurrence rate: 64.7% | ||||||
CTCs + CEA + CA19-9 + With CTC clusters | Recurrence rate: 100% | ||||||
Digestive tract cancer | Predict postoperative recurrence of cancer | CTC + tumor blood markers | CTC | 6.87 cells/7.5 mL blood | 0.831 | [152] | |
CEA mRNA | 3816.20 copies/mL | 0.912 | |||||
CTC + CEA mRNA | 0.965 | ||||||
Others | Lung cancer | Tumor invasiveness prediction | CTC + tumor imaging data | FR + CTC Tumor volume (AI-assisted diagnosis system, ScrynPro) FR + CTC + tumor volume | 9.75 FU/3 mL blood | 0.659 | [153] |
118 mm^3 | 0.698 | ||||||
0.841 | |||||||
Colorectal cancer | Metastasis prediction | CTC + CTC-related + tumor blood markers | CTC CEA CTC + CEA | ≥3 cells/7 mL blood | 0.664 | [62] | |
>5 ng/ml | 0.78 | ||||||
0.837 |
5.2.2. Prognosis Evaluation of Cancer
5.2.3. Others
5.3. Challenges and New Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Steeg, P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med. 2006, 12, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Bannister, N.; Broggio, J. Cancer survival by stage at diagnosis for England (experimental statistics): Adults diagnosed 2012, 2013 and 2014 and followed up to 2015. Prod. Collab. Public Health Engl. 2016, 1–30. [Google Scholar]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Kumar, S.; Sandeep, K.; Patel, S.K. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023, 11, 1611. [Google Scholar] [CrossRef]
- Ashworth, T.R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 1869, 14, 146. [Google Scholar]
- Thery, L.; Meddis, A.; Cabel, L.; Proudhon, C.; Latouche, A.; Pierga, J.-Y.; Bidard, F.-C. Circulating Tumor Cells in Early Breast Cancer. JNCI Cancer Spectr. 2019, 3, pkz026. [Google Scholar] [CrossRef]
- Barrière, G.; Riouallon, A.; Renaudie, J.; Tartary, M.; Rigaud, M. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer 2012, 12, 114. [Google Scholar] [CrossRef]
- Hosseini, H.; Obradović, M.M.S.; Hoffmann, M.; Harper, K.L.; Sosa, M.S.; Werner-Klein, M.; Nanduri, L.K.; Werno, C.; Ehrl, C.; Maneck, M.; et al. Early dissemination seeds metastasis in breast cancer. Nature 2016, 540, 552–558. [Google Scholar] [CrossRef]
- Budd, G.T.; Cristofanilli, M.; Ellis, M.J.; Stopeck, A.; Borden, E.; Miller, M.C.; Matera, J.; Repollet, M.; Doyle, G.V.; Terstappen, L.W.M.M. Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 2006, 12, 6403–6409. [Google Scholar] [CrossRef]
- Janni, W.J.; Rack, B.; Terstappen, L.W.M.M.; Pierga, J.-Y.; Taran, F.-A.; Fehm, T.; Hall, C.; De Groot, M.R.; Bidard, F.-C.; Friedl, T.W.P. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 2016, 22, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-P.; Liu, S.-H.; Chen, C.-T.; Lv, L.; Li, D.; Liu, Q.-Y.; Liu, G.-L.; Wu, Y. Circulating tumor cells as a new predictive and prognostic factor in patients with small cell lung cancer. J. Cancer 2020, 11, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Kazunori, O.; Hiroo, I.; Hiroshi, S.; Keigo, K.; Chikashi, I.; Hiroyuki, S. Practical Utility of Circulating Tumour Cells as Biomarkers in Cancer Chemotherapy for Advanced Colorectal Cancer. Anticancer Res. 2013, 33, 625. [Google Scholar]
- Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Tibbe, A.G.J.; Uhr, J.W.; Terstappen, L.W.M.M. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004, 10, 6897–6904. [Google Scholar] [CrossRef]
- Garrel, R.; Mazel, M.; Perriard, F.; Vinches, M.; Cayrefourcq, L.; Guigay, J.; Digue, L.; Aubry, K.; Alfonsi, M.; Delord, J.-P. Circulating tumor cells as a prognostic factor in recurrent or metastatic head and neck squamous cell carcinoma: The CIRCUTEC prospective study. Clin. Chem. 2019, 65, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Goldkorn, A.; Ely, B.; Quinn, D.I.; Tangen, C.M.; Fink, L.M.; Xu, T.; Twardowski, P.; Van Veldhuizen, P.J.; Agarwal, N.; Carducci, M.A. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: A phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2014, 32, 1136. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.M.M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, T.S.A.; Meiners, J.; Riethdorf, S.; König, A.; Melling, N.; Gorges, T.; Karstens, K.-F.; Izbicki, J.R.; Pantel, K.; Reeh, M. Prognostic value of preoperative circulating tumor cells counts in patients with UICC stage I-IV colorectal cancer. PLoS One 2021, 16, e0252897. [Google Scholar] [CrossRef]
- Effenberger, K.E.; Schroeder, C.; Hanssen, A.; Wolter, S.; Eulenburg, C.; Tachezy, M.; Gebauer, F.; Izbicki, J.R.; Pantel, K.; Bockhorn, M. Improved risk stratification by circulating tumor cell counts in pancreatic cancer. Clin. Cancer Res. 2018, 24, 2844–2850. [Google Scholar] [CrossRef]
- Xu, J.; Liao, K.; Yang, X.; Wu, C.; Wu, W. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Mol. Cancer 2021, 20, 104. [Google Scholar] [CrossRef]
- Hanssen, A.; Wagner, J.; Gorges, T.M.; Taenzer, A.; Uzunoglu, F.G.; Driemel, C.; Stoecklein, N.H.; Knoefel, W.T.; Angenendt, S.; Hauch, S.; et al. Characterization of different CTC subpopulations in non-small cell lung cancer. Sci. Rep. 2016, 6, 28010. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Yang, D.; Li, Y.; Li, M.; Li, J.; Fu, J.; Peng, Z. Combined measurement of circulating tumor cell counts and serum tumor marker levels enhances the screening efficiency for malignant versus benign pulmonary nodules. Thorac. Cancer 2022, 13, 3393–3401. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fan, W.-H.; Duan, C.; Zhao, W.; Zhang, J.; Kang, X. Enhancing the screening efficiency of breast cancer by combining conventional medical imaging examinations with circulating tumor cells. Front. Oncol. 2021, 11, 643003. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-S.; Hung, W.-S.; Wang, T.-M.; Liu, H.; Yang, C.-Y.; Wu, S.-M.; Hsu, H.-L.; Hsiao, Y.-C.; Tsai, H.-J.; Tseng, C.-P. Circulating tumor cell enumeration for improved screening and disease detection of patients with colorectal cancer. Biomed. J. 2021, 44, S190–S200. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Muinelo-Romay, L.; Cebey-López, V.; Pereira-Veiga, T.; Martínez-Pena, I.; Abreu, M.; Abalo, A.; Lago-Lestón, R.M.; Abuín, C.; Palacios, P.; et al. Analysis of a Real-World Cohort of Metastatic Breast Cancer Patients Shows Circulating Tumor Cell Clusters (CTC-clusters) as Predictors of Patient Outcomes. Cancers 2020, 12, 1111. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Yang, C.-Y.; Yeh, P.-H.; Hsu, C.-J.; Chang, L.-W.; Chan, W.-J.; Lin, C.-P.; Lyu, Y.-Y.; Wu, W.-C.; Lee, C.-W.; et al. Highly Correlated Recurrence Prognosis in Patients with Metastatic Colorectal Cancer by Synergistic Consideration of Circulating Tumor Cells/Microemboli and Tumor Markers CEA/CA19-9. Cells 2021, 10, 1149. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, X.; Zhang, Z.; Yang, Z.; Zhao, C.; Liang, C.; Liu, Z.; Cheng, S.; Zhang, K. Combination of CT and telomerase-positive circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight 2021. [Google Scholar] [CrossRef]
- Lara, O.; Tong, X.; Zborowski, M.; Chalmers, J.J. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp. Hematol. 2004, 32, 891–904. [Google Scholar] [CrossRef]
- Adams, A.A.; Okagbare, P.I.; Feng, J.; Hupert, M.L.; Patterson, D.; Göttert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper, S.A. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641. [Google Scholar] [CrossRef]
- Mocellin, S.; Hoon, D.; Ambrosi, A.; Nitti, D.; Rossi, C.R. The prognostic value of circulating tumor cells in patients with melanoma: A systematic review and meta-analysis. Clin. Cancer Res. 2006, 12, 4605–4613. [Google Scholar] [CrossRef]
- Smerage, J.; Hayes, D. The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br. J. Cancer 2006, 94, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Marth, C. Circulating tumor cells in metastatic breast cancer—toward individualized treatment? N. Engl. J. Med. 2004, 351, 824–826. [Google Scholar] [CrossRef]
- Ried, K.; Eng, P.; Sali, A. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study. Asian Pac. J. Cancer Prev. 2017, 18, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Gold, B.; Cankovic, M.; Furtado, L.V.; Meier, F.; Gocke, C.D. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility? J. Mol. Diagn. 2015, 17, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, K.; Tartarone, A.; Santarpia, M.; Zhu, Y.; Jiang, G. Circulating tumor cells can predict the prognosis of patients with non-small cell lung cancer after resection: A retrospective study. Transl. Lung Cancer Res. 2021, 10, 995–1006. [Google Scholar] [CrossRef]
- Park, Y.; Jun, H.R.; Choi, H.W.; Hwang, D.W.; Lee, J.H.; Song, K.B.; Lee, W.; Kwon, J.; Ha, S.H.; Jun, E.; et al. Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Sci. Rep. 2021, 11, 1644. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, T.M.; Stefanovic, S.; Feisst, M.; Fischer, C.; Riedel, F.; Fremd, C.; Domschke, C.; Pantel, K.; Hartkopf, A.D.; Sutterlin, M.; et al. Cut-Off Analysis of CTC Change under Systemic Therapy for Defining Early Therapy Response in Metastatic Breast Cancer. Cancers 2020, 12, 1055. [Google Scholar] [CrossRef]
- Kang, B.J.; Ra, S.W.; Lee, K.; Lim, S.; Son, S.H.; Ahn, J.-J.; Kim, B.C. Circulating Tumor Cell Number Is Associated with Primary Tumor Volume in Patients with Lung Adenocarcinoma. Tuberc. Respir. Dis. 2020, 83, 61. [Google Scholar] [CrossRef]
- Goldkorn, A.; Tangen, C.; Plets, M.; Morrison, G.J.; Cunha, A.; Xu, T.; Pinski, J.K.; Ingles, S.A.; Triche, T.; Harzstark, A.L. Baseline circulating tumor cell count as a prognostic marker of PSA response and disease progression in metastatic castrate-sensitive prostate cancer (SWOG S1216). Clin. Cancer. Res. 2021, 27, 1967–1973. [Google Scholar] [CrossRef]
- Lozar, T.; Gersak, K.; Cemazar, M.; Kuhar, C.G.; Jesenko, T. The biology and clinical potential of circulating tumor cells. Radiol. Oncol. 2019, 53, 131–147. [Google Scholar] [CrossRef]
- Bulfoni, M.; Turetta, M.; Del Ben, F.; Di Loreto, C.; Beltrami, A.P.; Cesselli, D. Dissecting the heterogeneity of circulating tumor cells in metastatic breast cancer: Going far beyond the needle in the haystack. Int. J. Mol. Sci. 2016, 17, 1775. [Google Scholar] [CrossRef] [PubMed]
- Gasch, C.; Oldopp, T.; Mauermann, O.; Gorges, T.M.; Andreas, A.; Coith, C.; Müller, V.; Fehm, T.; Janni, W.; Pantel, K.; et al. Frequent detection of PIK3CA mutations in single circulating tumor cells of patients suffering from HER2-negative metastatic breast cancer. Mol. Oncol. 2016, 10, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Luo, W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics 2023, 13, 1607–1631. [Google Scholar] [CrossRef]
- Rostami, P.; Kashaninejad, N.; Moshksayan, K.; Saidi, M.S.; Firoozabadi, B.; Nguyen, N.-T. Novel approaches in cancer management with circulating tumor cell clusters. J. Sci. Adv. Mater. Devices 2019, 4, 1–18. [Google Scholar] [CrossRef]
- Harouaka, R.A.; Nisic, M.; Zheng, S.-Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013, 18, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, C.L.; Morrow, C.J.; Li, Y.; Metcalf, R.L.; Rothwell, D.G.; Trapani, F.; Polanski, R.; Burt, D.J.; Simpson, K.L.; Morris, K. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 2014, 20, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Taftaf, R.; Kawaguchi, M.; Chang, Y.-F.; Chen, W.; Entenberg, D.; Zhang, Y.; Gerratana, L.; Huang, S.; Patel, D.B. Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer ModelsHomophilic CD44 Interactions Mediate Tumor Cell Aggregation. Cancer Discov. 2019, 9, 96–113. [Google Scholar] [CrossRef]
- Beans, C. Targeting metastasis to halt cancer’s spread. Proc. Natl. Acad. Sci. USA 2018, 115, 12539–12543. [Google Scholar] [CrossRef]
- Pore, A.A.; Bithi, S.S.; Zeinali, M.; Navaid, H.B.; Nagrath, S.; Layeequr Rahman, R.; Vanapalli, S.A. Phenotyping of rare circulating cells in the blood of non-metastatic breast cancer patients using microfluidic Labyrinth technology. Biomicrofluidics 2022, 16, 064107. [Google Scholar] [CrossRef]
- Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature 2016, 529, 298–306. [Google Scholar] [CrossRef]
- Semaan, A.; Bernard, V.; Kim, D.U.; Lee, J.J.; Huang, J.; Kamyabi, N.; Stephens, B.M.; Qiao, W.; Varadhachary, G.R.; Katz, M.H.; et al. Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br. J. Cancer 2021, 124, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Kallergi, G.; Papadaki, M.A.; Politaki, E.; Mavroudis, D.; Georgoulias, V.; Agelaki, S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011, 13, R59. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Ma, T.; Qiao, T.; Hu, H.; Li, Z.; Luo, K.; Wang, Y.; Tang, Q.; Wang, G.; Huang, R.; et al. Role of Phenotypes of Circulating Tumor Cells in the Diagnosis and Treatment of Colorectal Cancer. Cancer Manag. Res. 2021, 13, 7077–7085. [Google Scholar] [CrossRef]
- Saxena, K.; Subbalakshmi, A.R.; Jolly, M.K. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 2019, 46, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, M.; de Wit, S.; Hiltermann, T.J.N.; Timens, W.; Schuuring, E.; Terstappen, L.W.M.M.; Groen, H.J.M. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 173. [Google Scholar] [CrossRef]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target Ther. 2021, 6. [Google Scholar] [CrossRef]
- Massard, C.; Borget, I.; Farace, F.; Aspeslagh, S.; Le Deley, M.-C.; Le Tourneau, C.; Bidard, F.-C.; Pierga, J.-Y.; Dieras, V.; Hofman, P. RECIST response and variation of circulating tumour cells in phase 1 trials: A prospective multicentric study. Eur. J. Cancer 2017, 83, 185–193. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, W.; Zhang, J.; Chen, W.; Xie, T.; Wang, L.; Fan, W.; Xie, S.; Shen, J.; Zheng, H. Evaluation of the diagnostic value of circulating tumor cells with CytoSorter® CTC capture system in patients with breast cancer. Cancer Med. 2020, 9, 1638–1647. [Google Scholar] [CrossRef]
- Duan, G.-C.; Zhang, X.-P.; Wang, H.-E.; Wang, Z.-K.; Zhang, H.; Yu, L.; Xue, W.-F.; Xin, Z.-F.; Hu, Z.-H.; Zhao, Q.-T. Circulating tumor cells as a screening and diagnostic marker for early-stage non-small cell lung cancer. Onco Targets Ther. 2020, 1931–1939. [Google Scholar] [CrossRef]
- Zheng, J.; Ye, X.; Liu, Y.; Zhao, Y.; He, M.; Xiao, H. The combination of CTCs and CEA can help guide the management of patients with SPNs suspected of being lung cancer. BMC Cancer 2020, 20. [Google Scholar] [CrossRef]
- Chiu, S.Y.-H.; Hsieh, C.-H.; You, J.-F.; Chu, P.-Y.; Hung, H.-Y.; Chu, P.-H.; Wu, M.-H. Enhancing Prediction Performance by Add-On Combining Circulating Tumor Cell Count, CD45neg EpCAMneg Cell Count on Colorectal Cancer, Advance, and Metastasis. Cancers 2021, 13, 2521. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, H.; Zhou, L.; Liu, Z.; Tan, X. A combination of circulating tumor cells and CA199 improves the diagnosis of pancreatic cancer. J. Clin. Lab. Anal. 2022, 36, e24341. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.K.; Tellez-Gabriel, M.; Cartron, P.-F.; Vallette, F.M.; Heymann, M.-F.; Heymann, D. Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: Myth or reality? Drug Discov. Today 2019, 24, 763–772. [Google Scholar] [CrossRef]
- Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Savenkov, O.; Asmus, E.J.; Ballman, K.V.; Scott, J.H.; Park, J.W.; Dickler, M.; Partridge, A.; Carey, L.A.; Winer, E.P.; et al. Clinical Significance of Circulating Tumor Cells in Hormone Receptor–positive Metastatic Breast Cancer Patients who Received Letrozole with or Without Bevacizumab. Clin. Cancer Res. 2020, 26, 4911–4920. [Google Scholar] [CrossRef] [PubMed]
- Muinelo-Romay, L.; Vieito, M.; Abalo, A.; Nocelo, M.A.; Barón, F.; Anido, U.; Brozos, E.; Vázquez, F.; Aguín, S.; Abal, M.; et al. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment. Cancers 2014, 6, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Salvianti, F.; Gelmini, S.; Mancini, I.; Pazzagli, M.; Pillozzi, S.; Giommoni, E.; Brugia, M.; Di Costanzo, F.; Galardi, F.; De Luca, F.; et al. Circulating tumour cells and cell-free DNA as a prognostic factor in metastatic colorectal cancer: The OMITERC prospective study. Br. J. Cancer 2021, 125, 94–100. [Google Scholar] [CrossRef]
- Vasseur, A.; Kiavue, N.; Bidard, F.C.; Pierga, J.Y.; Cabel, L. Clinical utility of circulating tumor cells: An update. Mol. Oncol. 2021, 15, 1647–1666. [Google Scholar] [CrossRef]
- Wu, C.Y.; Lee, C.L.; Wu, C.F.; Fu, J.Y.; Yang, C.T.; Wen, C.T.; Liu, Y.H.; Liu, H.P.; Hsieh, J.C. Circulating Tumor Cells as a Tool of Minimal Residual Disease Can Predict Lung Cancer Recurrence: A longitudinal, Prospective Trial. Diagnostics 2020, 10. [Google Scholar] [CrossRef]
- Hendricks, A.; Dall, K.; Brandt, B.; Geisen, R.; Röder, C.; Schafmayer, C.; Becker, T.; Hinz, S.; Sebens, S. Longitudinal Analysis of Circulating Tumor Cells in Colorectal Cancer Patients by a Cytological and Molecular Approach: Feasibility and Clinical Application. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, X.; Zhang, Q.; Yang, J.; Chen, Q.; Wang, J.; Li, X.; Chen, J.; Ma, T.; Li, G.; et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer. Cancer Lett. 2019, 452, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Liu, B.; Li, B.Y.; Wang, T.; Chen, D.Q. Effect of CTCs and INHBA level on the effect and prognosis of different treatment methods for patients with early breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12735–12740. [Google Scholar] [PubMed]
- Butturini, A.; Klein, J.; Gale, R.P. Modeling minimal residual disease (MRD)-testing. Leuk. Res. 2003, 27, 293–300. [Google Scholar] [CrossRef]
- Riethdorf, S.; Pantel, K. Advancing personalized cancer therapy by detection and characterization of circulating carcinoma cells. Ann. N. Y. Acad. Sci. 2010, 1210, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, A.; Chen, X. Current detection technologies for circulating tumor cells. Chem. Soc. Rev. 2017, 46, 2038–2056. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.-N.; Xie, M.; Wang, J.; Lv, S.-W.; Yi, J.-S.; Dong, W.-G.; Huang, W.-H. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. ACS Appl. Mater Interfaces 2015, 7, 8817–8826. [Google Scholar] [CrossRef]
- Mostert, B.; Sieuwerts, A.M.; Kraan, J.; Bolt-de Vries, J.; van der Spoel, P.; van Galen, A.; Peeters, D.J.; Dirix, L.Y.; Seynaeve, C.M.; Jager, A. Gene expression profiles in circulating tumor cells to predict prognosis in metastatic breast cancer patients. Ann. Oncol. 2015, 26, 510–516. [Google Scholar] [CrossRef]
- Liao, C.-J.; Hsieh, C.-H.; Wang, H.-M.; Chou, W.-P.; Chiu, T.-K.; Chang, J.-H.; Chao, A.C.; Wu, M.-H. Isolation of label-free and viable circulating tumour cells (CTCs) from blood samples of cancer patients through a two-step process: Negative selection-type immunomagnetic beads and spheroid cell culture-based cell isolation. RSC Adv. 2017, 7, 29339–29349. [Google Scholar] [CrossRef]
- Bobek, V.; Gurlich, R.; Eliasova, P.; Kolostova, K. Circulating tumor cells in pancreatic cancer patients: Enrichment and cultivation. World J. Gastroenterol. 2014, 20, 17163. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Lim, M.; Park, J.; Oh, J.M.; Kim, H.; Jeong, H.; Lee, S.J.; Park, H.C.; Jung, S.; Kim, B.C. FAST: Size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal. Chem. 2017, 89, 1155–1162. [Google Scholar] [CrossRef]
- Low, W.S.; Wan Abas, W.A.B. Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties. Biomed. Res. Int. 2015, 2015, 239362. [Google Scholar] [CrossRef] [PubMed]
- Plantureux, L.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Effects of platelets on cancer progression. Thromb. Res. 2018, 164, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Vona, G.; Sabile, A.; Louha, M.; Sitruk, V.; Romana, S.; Schütze, K.; Capron, F.; Franco, D.; Pazzagli, M.; Vekemans, M.; et al. Isolation by Size of Epithelial Tumor Cells: A New Method for the Immunomorphological and Molecular Characterization of Circulating Tumor Cells. Am. J. Pathol. 2000, 156, 57–63. [Google Scholar] [CrossRef]
- Desitter, I.; Guerrouahen, B.S.; Benali-Furet, N.; Wechsler, J.; Jänne, P.A.; Kuang, Y.; Yanagita, M.; Wang, L.; Berkowitz, J.A.; Distel, R.J.; et al. A New Device for Rapid Isolation by Size and Characterization of Rare Circulating Tumor Cells. Anticancer Res. 2011, 31, 427–441. [Google Scholar]
- Lemaire, C.A.; Liu, S.Z.; Wilkerson, C.L.; Ramani, V.C.; Barzanian, N.A.; Huang, K.-W.; Che, J.; Chiu, M.W.; Vuppalapaty, M.; Dimmick, A.M.; et al. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System. SLAS Technol. 2018, 23, 16–29. [Google Scholar] [CrossRef]
- Rosenberg, R.; Gertler, R.; Friederichs, J.; Fuehrer, K.; Dahm, M.; Phelps, R.; Thorban, S.; Nekarda, H.; Siewert, J.R. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 2002, 49, 150–158. [Google Scholar] [CrossRef]
- Modarres, P.; Tabrizian, M. Frequency hopping dielectrophoresis as a new approach for microscale particle and cell enrichment. Sens. Actuators B Chem. 2019, 286, 493–500. [Google Scholar] [CrossRef]
- Gupta, V.; Jafferji, I.; Garza, M.; Melnikova, V.O.; Hasegawa, D.K.; Pethig, R.; Davis, D.W. ApoStream(™), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 2012, 6, 24133. [Google Scholar] [CrossRef]
- Huang, S.-B.; Wu, M.-H.; Lin, Y.-H.; Hsieh, C.-H.; Yang, C.-L.; Lin, H.-C.; Tseng, C.-P.; Lee, G.-B. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip. 2013, 13, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.-Y.; Hsieh, C.-H.; Lin, C.-R.; Wu, M.-H. The Effect of Optically Induced Dielectrophoresis (ODEP)-Based Cell Manipulation in a Microfluidic System on the Properties of Biological Cells. Biosensors 2020, 10, 65. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Jenkins, B.D.; Cheng, R.; Harris, B.N.; Zhang, W.; Xie, J.; Murrow, J.R.; Hodgson, J.; Egan, M.; et al. Tumor antigen-independent and cell size variation-inclusive enrichment of viable circulating tumor cells. Lab Chip. 2019, 19, 1860–1876. [Google Scholar] [CrossRef] [PubMed]
- Danila, D.C.; Samoila, A.; Patel, C.; Schreiber, N.; Herkal, A.; Anand, A.; Bastos, D.; Heller, G.; Fleisher, M.; Scher, H.I. Clinical validity of detecting circulating tumor cells by AdnaTest assay compared to direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J. 2016, 22, 315. [Google Scholar] [CrossRef]
- CHANG, H.; KIM, S.H.; CHO, B.C.; YOON, S.H.; KIM, H.R.; LEE, C.G.; KIM, J.H. Phase II Study of Cisplatin with Irinotecan as Induction Chemotherapy Followed by Chemoradiotherapy for Unresectable Stage III Non-small Cell Lung Cancer. Anticancer. Res. 2012, 32, 3515–3521. [Google Scholar] [PubMed]
- Talasaz, A.H.; Powell, A.A.; Huber, D.E.; Berbee, J.G.; Roh, K.-H.; Yu, W.; Xiao, W.; Davis, M.M.; Pease, R.F.; Mindrinos, M.N.; et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl. Acad. Sci. USA 2009, 106, 3970–3975. [Google Scholar] [CrossRef]
- Harb, W.; Fan, A.; Tran, T.; Danila, D.C.; Keys, D.; Schwartz, M.; Ionescu-Zanetti, C. Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay. Transl. Oncol. 2013, 6, 528–538. [Google Scholar] [CrossRef]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry 1990, 11, 231–238. [Google Scholar] [CrossRef]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef]
- Stott, S.L.; Hsu, C.-H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Rothenberg, S.M.; Shah, A.M.; Smas, M.E.; Korir, G.K.; et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 2010, 107, 18392–18397. [Google Scholar] [CrossRef]
- He, W.; Kularatne, S.A.; Kalli, K.R.; Prendergast, F.G.; Amato, R.J.; Klee, G.G.; Hartmann, L.C.; Low, P.S. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int. J. Cancer 2008, 123, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Drucker, A.; Teh, E.M.; Kostyleva, R.; Rayson, D.; Douglas, S.; Pinto, D.M. Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One 2020, 15, e0237308. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Dubash, T.D.; Edd, J.F.; Jewett, M.K.; Garre, S.G.; Karabacak, N.M.; Rabe, D.C.; Mutlu, B.R.; Walsh, J.R.; Kapur, R.; et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc. Natl. Acad. Sci. USA 2020, 117, 16839–16847. [Google Scholar] [CrossRef]
- Racila, E.; Euhus, D.; Weiss, A.J.; Rao, C.; McConnell, J.; Terstappen, L.W.M.M.; Uhr, J.W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. USA 1998, 95, 4589–4594. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.M.; Ramani, V.C.; Jeffrey, S.S. Circulating tumor cell technologies. Mol. Oncol. 2016, 10, 374–394. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Shao, W.; Li, Z.; Zhao, R.; Ye, Z. Strategies for enrichment of circulating tumor cells. Transl. Cancer Res. 2020, 9, 2012–2025. [Google Scholar] [CrossRef]
- Wang, L.; Balasubramanian, P.; Chen, A.P.; Kummar, S.; Evrard, Y.A.; Kinders, R.J. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 2016, 43, 464–475. [Google Scholar] [CrossRef]
- Vardas, V.; Politaki, E.; Pantazaka, E.; Georgoulias, V.; Kallergi, G. Epithelial-to-mesenchymal transition of tumor cells: Cancer progression and metastasis. Int. J. Dev. Biol. 2021, 66, 277–283. [Google Scholar] [CrossRef]
- Kallergi, G.; Politaki, E.; Alkahtani, S.; Stournaras, C.; Georgoulias, V. Evaluation of Isolation Methods for Circulating Tumor Cells (CTCs). Cell. Physiol. Biochem. 2016, 40, 411–419. [Google Scholar] [CrossRef]
- Messaritakis, I.; Politaki, E.; Kotsakis, A.; Dermitzaki, E.-K.; Koinis, F.; Lagoudaki, E.; Koutsopoulos, A.; Kallergi, G.; Souglakos, J.; Georgoulias, V. Phenotypic characterization of circulating tumor cells in the peripheral blood of patients with small cell lung cancer. PLoS ONE 2017, 12, e0181211. [Google Scholar] [CrossRef]
- Sharma, S.; Zhuang, R.; Long, M.; Pavlovic, M.; Kang, Y.; Ilyas, A.; Asghar, W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 2018, 36, 1063–1078. [Google Scholar] [CrossRef] [PubMed]
- Fachin, F.; Spuhler, P.; Martel-Foley, J.M.; Edd, J.F.; Barber, T.A.; Walsh, J.; Karabacak, M.; Pai, V.; Yu, M.; Smith, K.; et al. Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells. Sci. Rep. 2017, 7, 10936. [Google Scholar] [CrossRef] [PubMed]
- Cushing, K.; Undvall, E.; Ceder, Y.; Lilja, H.; Laurell, T. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal. Chim. Acta 2018, 1000, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Satelli, A.; Brownlee, Z.; Mitra, A.; Meng, Q.H.; Li, S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin. Chem. 2015, 61, 259–266. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Chong, W.; Luo, R.; Myers, R.E.; Gu, J.; Lin, J.; Wei, Q.; Li, B.; Rebbeck, T.R.; et al. Improved Prognostic Stratification Using Circulating Tumor Cell Clusters in Patients with Metastatic Castration-Resistant Prostate Cancer. Cancers 2021, 13, 268. [Google Scholar] [CrossRef]
- Paoletti, C.; Miao, J.; Dolce, E.M.; Darga, E.P.; Repollet, M.I.; Doyle, G.V.; Gralow, J.R.; Hortobagyi, G.N.; Smerage, J.B.; Barlow, W.E. Circulating tumor cell clusters in patients with metastatic breast cancer: A SWOG S0500 translational medicine study. Clin. Cancer Res. 2019, 25, 6089–6097. [Google Scholar] [CrossRef]
- Cui, Z.; Su, F.; Li, Y.; Yang, D. Circulating tumour cells as prognosis predictive markers of neoadjuvant chemotherapy-treated breast cancer patients. J. Chemother. 2020, 32, 304–309. [Google Scholar] [CrossRef]
- Sturgeon, C. Practice Guidelines for Tumor Marker Use in the Clinic. Clin. Chem. 2002, 48, 1151–1159. [Google Scholar] [CrossRef]
- Frangioni, J.V. New technologies for human cancer imaging. J. Clin. Oncol. 2008, 26, 4012–4021. [Google Scholar] [CrossRef]
- Heeke, S.; Mograbi, B.; Alix-Panabières, C.; Hofman, P. Never Travel Alone: The Crosstalk of Circulating Tumor Cells and the Blood Microenvironment. Cells 2019, 8, 714. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Shi, H.; Han, X.; Liu, W.; Tian, X.; Zeng, X. Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation. Tumor Biol. 2016, 37, 5397–5404. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mu, Z.; Chervoneva, I.; Austin, L.; Ye, Z.; Rossi, G.; Palazzo, J.P.; Sun, C.; Abu-Khalaf, M.; Myers, R.E. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res. Treat. 2017, 161, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Fang, F.; Zhang, Q. Circulating tumor cell clusters: What we know and what we expect (Review). Int. J. Oncol. 2016, 49, 2206–2216. [Google Scholar] [CrossRef]
- Satelli, A.; Batth, I.; Brownlee, Z.; Mitra, A.; Zhou, S.; Noh, H.; Rojas, C.R.; Li, H.; Meng, Q.H.; Li, S. EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget 2017, 8, 49329. [Google Scholar] [CrossRef] [PubMed]
- Holdenrieder, S.; Pagliaro, L.; Morgenstern, D.; Dayyani, F. Clinically Meaningful Use of Blood Tumor Markers in Oncology. Biomed. Res. Int. 2016, 2016, 9795269. [Google Scholar] [CrossRef]
- Stenman, U.-H.; Leinonen, J.; Alfthan, H.; Rannikko, S.; Tuhkanen, K.; Alfthan, O. A complex between prostate-specific antigen and α1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: Assay of the complex improves clinical sensitivity for cancer. Cancer Res. 1991, 51, 222–226. [Google Scholar] [PubMed]
- Steinberg, W. The clinical utility of the CA 19-9 tumor-associated antigen. Am. J. Gastroenterol. 1990, 85. [Google Scholar]
- Hara, M.; Kanemitsu, Y.; Hirai, T.; Komori, K.; Kato, T. Negative serum carcinoembryonic antigen has insufficient accuracy for excluding recurrence from patients with Dukes C colorectal cancer: Analysis with likelihood ratio and posttest probability in a follow-up study. Dis. Colon. Rectum 2008, 51, 1675–1680. [Google Scholar] [CrossRef]
- Chang, X.; Ye, X.; Dong, L.; Cheng, H.; Cheng, Y.; Zhu, L.; Liao, Q.; Zhao, Y.; Tian, L.; Fu, T.; et al. Human epididymis protein 4 (HE4) as a serum tumor biomarker in patients with ovarian carcinoma. Int. J. Gynecol. Cancer 2011, 21, 852–858. [Google Scholar] [CrossRef]
- Lee, C.W.; Tsai, H.I.; Lee, W.C.; Huang, S.W.; Lin, C.Y.; Hsieh, Y.C.; Kuo, T.; Chen, C.W.; Yu, M.C. Normal Alpha-Fetoprotein Hepatocellular Carcinoma: Are They Really Normal? J. Clin. Med. 2019, 8. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Mangu, P.B.; Flynn, P.J.; Korde, L.; Loprinzi, C.L.; Minsky, B.D.; Petrelli, N.J.; Ryan, K.; Schrag, D.H.; Wong, S.L. Follow-up care, surveillance protocol, and secondary prevention measures for survivors of colorectal cancer: American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 2013, 31, 4465–4470. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. Biomed. Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef] [PubMed]
- Verghese, A.; Horwitz, R.I. In praise of the physical examination. BMJ 2009, 339, b5448. [Google Scholar] [CrossRef]
- Rosenzweig, P.F.-B.M.Q.; Gardner, F.M.D.; Griffith, B. The History and Physical in Cancer Care: A Primer for the Oncology Advanced Practitioner. J. Adv. Pract. Oncol. 2014, 5. [Google Scholar] [CrossRef]
- Nichol, J.R.; Sundjaja, J.H.; Nelson, G. Medical History. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lee, J.K.; Liles, E.G.; Bent, S.; Levin, T.R.; Corley, D.A. Accuracy of fecal immunochemical tests for colorectal cancer: Systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 171. [Google Scholar] [CrossRef]
- Carroll, M.R.R.; Seaman, H.E.; Halloran, S.P. Tests and investigations for colorectal cancer screening. Clin. Biochem. 2014, 47, 921–939. [Google Scholar] [CrossRef]
- Clebak, K.T.; Nickolich, S.; Mendez-Miller, M. Multitarget Stool DNA Testing (Cologuard) for Colorectal Cancer Screening. Am. Fam. Physician 2022, 105, 198–200. [Google Scholar]
- Nygård, M. Screening for cervical cancer: When theory meets reality. BMC Cancer 2011, 11, 1–5. [Google Scholar] [CrossRef]
- Hayashi, M.; Matsui, O.; Ueda, K.; Kawamori, Y.; Kadoya, M.; Yoshikawa, J.; Gabata, T.; Takashima, T.; Nonomura, A.; Nakanuma, Y. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: Evaluation by CT during intraarterial injection of contrast medium. Am. J. Roentgenol. 1999, 172, 969–976. [Google Scholar] [CrossRef]
- Lehman, C.D.; Isaacs, C.; Schnall, M.D.; Pisano, E.D.; Ascher, S.M.; Weatherall, P.T.; Bluemke, D.A.; Bowen, D.J.; Marcom, P.K.; Armstrong, D.K. Cancer yield of mammography, MR, and US in high-risk women: Prospective multi-institution breast cancer screening study. Radiology 2007, 244, 381–388. [Google Scholar] [CrossRef]
- Fermé, C.; Vanel, D.; Ribrag, V.; Girinski, T. Role of imaging to choose treatment. Cancer Imaging 2005, 5, S113. [Google Scholar] [CrossRef] [PubMed]
- Walker, H.K.; Hall, W.D.; Hurst, J.W. Clinical methods: The history, physical, and laboratory examinations. JAMA 1990, 264, 2808–2809. [Google Scholar]
- Lu, K.H.; Wood, M.E.; Daniels, M.; Burke, C.; Ford, J.; Kauff, N.D.; Kohlmann, W.; Lindor, N.M.; Mulvey, T.M.; Robinson, L. American Society of Clinical Oncology Expert Statement: Collection and use of a cancer family history for oncology providers. J. Clin. Oncol. 2014, 32, 833. [Google Scholar] [CrossRef]
- Korde, L.A.; Gadalla, S.M. Cancer risk assessment for the primary care physician. Prim. Care. 2009, 36, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Wei, J.; Wang, K.; Cai, D.; Luo, X.; Fan, W.; Wang, H.; Duan, C. Comparison of the diagnostic performances of circulating tumor cells and the serum tumor markers CEA, CA125, and CA15-3 for breast cancer: A retrospective case-control study. J. BioX Res. 2021, 4, 60–66. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Gao, L.; Jiang, X.; Fu, R.; Zhang, T.; Ren, T.; Hu, P.; Wu, Y.; Zhao, P.; et al. Clinical significance of circulating tumor cells and tumor markers in the diagnosis of lung cancer. Cancer Med. 2019, 8, 3782–3792. [Google Scholar] [CrossRef]
- Gobbi, P.G.; Bergonzi, M.; Comelli, M.; Villano, L.; Pozzoli, D.; Vanoli, A.; Dionigi, P. The prognostic role of time to diagnosis and presenting symptoms in patients with pancreatic cancer. Cancer Epidemiol. 2013, 37, 186–190. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Kane, L.E.; Mellotte, G.S.; Conlon, K.C.; Ryan, B.M.; Maher, S.G. Multi-omic biomarkers as potential tools for the characterisation of pancreatic cystic lesions and cancer: Innovative patient data integration. Cancers 2021, 13, 769. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, X.; Liu, C.; Han, F. Circulating tumor cell count and serum CEA mRNA level predict postoperative recurrence of digestive tract cancer. Am. J. Transl. Res. 2021, 13, 9514–9521. [Google Scholar] [PubMed]
- Ma, M.; Xu, S.; Han, B.; He, H.; Ma, X.; Chen, C. A retrospective diagnostic test study on circulating tumor cells and artificial intelligence imaging in patients with lung adenocarcinoma. Ann. Transl. Med. 2022, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, C.; Li, Y.; Muñiz, M.C.; Kidwell, K.M.; Aung, K.; Thomas, D.G.; Brown, M.E.; Abramson, V.G.; Irvin, W.J., Jr.; Lin, N.U. Significance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin. Cancer Res. 2015, 21, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-M.; Krebs, M.G.; Lancashire, L.; Sloane, R.; Backen, A.; Swain, R.K.; Priest, L.J.; Greystoke, A.; Zhou, C.; Morris, K. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 2012, 30, 525–532. [Google Scholar] [CrossRef]
- Chae, H.-D.; Kim, I.-H. Prognostic significance of CEA expression by RT-PCR in peritoneal wash from patients with gastric cancer: Result of a 5-year follow-up after curative resection. Scand. J. Gastroenterol. 2016, 51, 956–960. [Google Scholar] [CrossRef]
- Kinoshita, A.; Onoda, H.; Fushiya, N.; Koike, K.; Nishino, H.; Tajiri, H. Staging systems for hepatocellular carcinoma: Current status and future perspectives. World J. Hepatol. 2015, 7, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Aydın, N.; Çelik, Ö.; Aslan, A.F.; Odabaş, A.; Dündar, E.; Şahin, M.C. Detection of Lung Cancer on Computed Tomography Using Artificial Intelligence Applications Developed by Deep Learning Methods and the Contribution of Deep Learning to the Classification of Lung Carcinoma. Curr. Med. Imaging 2021, 17, 1137–1141. [Google Scholar] [CrossRef]
- Zhou, Q.; Geng, Q.; Wang, L.; Huang, J.; Liao, M.; Li, Y.; Ding, Z.; Yang, S.; Zhao, H.; Shen, Q.; et al. Value of folate receptor-positive circulating tumour cells in the clinical management of indeterminate lung nodules: A non-invasive biomarker for predicting malignancy and tumour invasiveness. EBioMedicine 2019, 41, 236–243. [Google Scholar] [CrossRef]
- Zamay, G.S.; Kolovskaya, O.S.; Zamay, T.N.; Glazyrin, Y.E.; Krat, A.V.; Zubkova, O.; Spivak, E.; Wehbe, M.; Gargaun, A.; Muharemagic, D.; et al. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood. Mol Ther. 2015, 23, 1486–1496. [Google Scholar] [CrossRef]
- Kolovskaya, O.S.; Zyuzyukina, A.V.; Dassie, J.P.; Zamay, G.S.; Zamay, T.N.; Boyakova, N.V.; Khorzhevskii, V.A.; Kirichenko, D.A.; Lapin, I.N.; Shchugoreva, I.A.; et al. Monitoring of breast cancer progression via aptamer-based detection of circulating tumor cells in clinical blood samples. Front. Mol. Biosci. 2023, 10. [Google Scholar] [CrossRef]
- Kichkailo, A.S.; Narodov, A.A.; Komarova, M.A.; Zamay, T.N.; Zamay, G.S.; Kolovskaya, O.S.; Erakhtin, E.E.; Glazyrin, Y.E.; Veprintsev, D.V.; Moryachkov, R.V.; et al. Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells. Mol. Ther. Nucleic. Acids 2023, 32, 267–288. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.A.; Huang, P.-S.; Chu, P.-Y.; Hsieh, C.-H.; Wu, M.-H. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers 2023, 15, 5372. https://doi.org/10.3390/cancers15225372
Nguyen TNA, Huang P-S, Chu P-Y, Hsieh C-H, Wu M-H. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers. 2023; 15(22):5372. https://doi.org/10.3390/cancers15225372
Chicago/Turabian StyleNguyen, Thi Ngoc Anh, Po-Shuan Huang, Po-Yu Chu, Chia-Hsun Hsieh, and Min-Hsien Wu. 2023. "Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters" Cancers 15, no. 22: 5372. https://doi.org/10.3390/cancers15225372
APA StyleNguyen, T. N. A., Huang, P. -S., Chu, P. -Y., Hsieh, C. -H., & Wu, M. -H. (2023). Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers, 15(22), 5372. https://doi.org/10.3390/cancers15225372