Towards Realistic 3D Models of Tumor Vascular Networks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Preprocessing
2.3. Registration
2.4. Segmentation
- (i)
- The first step of the segmentation process was the delineation of vessel interiors (see Figure 4B, black area). These are prominent due to their bright and plain white appearance. To isolate these areas, a threshold with a cut-off value of 82.35% color intensity is used. This threshold was determined using Otsu’s method [32]. Because of the preprocessing, one cut-off value was sufficient for all images. Figure 4(1B) shows that the lumen was only partially delineated due to presence of other structures, such as cells or debris, within the vessel. However, these missed parts of the lumen will be gained by reconstruction (see below step (iii)).
- (ii)
- The second step was the delineation of the contours of the vessels in the preprocessed image (see Figure 4C). This includes the contour of vessel interiors (delineated in step one) and of collapsed vessels that do not have an interior. Because of the staining, the latter are darker compared to the surrounding tissue. Hence, the intensity of the vessel contours varies throughout the image. As the segmentation is based on thresholding, the image was rasterized and a local cut-off value was calculated for every rasterized part as follows:
- (iii)
- In the third step, unwanted structures (such as cell nuclei, megakaryocytes, or damaged tissue) were removed from the images that resulted after processing according the two previous steps. This was performed as follows:
- Pixels that were not related to vessels (bright or dark spots in the image) were removed by application of a sliding window algorithm. This algorithm removes every structure that completely fits into a region of the image with a size of pixels, where is an experimental value. If is too big, vessel structures are deleted. If is too small, the unrelated pixels might not be removed effectively. The size of depends on the and the magnification used.
- Structures in the image of damaged tissue (induced by the manual preparation of the slides) are removed by using the Moore–Neighbor tracing algorithm [33] with Jacob’s stopping criterion [34]. Usually, after segmentation, vessel interiors (delineated in step (i), Figure 4B) show continuous contours of intensely stained tissue (delineated in step (ii), Figure 4C). These contours are dilated by five pixels. Only vessel interiors that have at least 45% of a corresponding contour length are kept.
- Further removal of damaged tissue was performed by comparing vessel interiors of three consecutive images using the Moore–Neighbor tracing algorithm. Repeating structures in the images were kept, the other ones were discarded (Figure 5, red circles). Further, interiors not found in step (i) were added when they appeared in two of three images (Figure 5, green circles). To increase accuracy, these removal and addition procedures can be extended to a higher number of consecutive images that are analyzed. For both removed and added structures, a small offset up to 10 pixels of the position of the structure between two consecutive images is allowed to compensate for errors in the registration.
- (iv)
- The fourth step of the segmentation process was the fusion of images with the information on vessel contours with those of the vessel interiors (see Figure 4D). The interiors are a bit smaller than the contours, due to different cut-off values (cf. steps (i) and (ii)) in the respective segmentations.
- (v)
- The fifth step was the closing of open ends of contours to form closed contours and filling of the gaps between these closed contours and vessel interiors (see Figure 4E). The algorithm uses binary dilation [35] with a disk of radius 5 px on every pixel. If any other pixel is within the radius, the gap is closed. Filled structures were discarded if the filled area was larger than the area of the biggest vessel in the respective image. This procedure was repeated, and the maximum gap-size was doubled for each iteration. If a filling was discarded for the first time, the disc size of the last iteration was increased by 5 px for every following iteration when the filling was discarded for the second time.
2.5. 3D Reconstruction
3. Results and Discussion
Focused Methods | Reconstruction-Related Application | Limitations |
---|---|---|
Fiducial markers for point matching | ||
Rigid registration [36] | Protocol for inducing fiducial markers | Markers locally destroy tissue and vessels |
Affine registration [58] | 3D reconstruction specifically for muscle fibers | |
Feature extraction and matching methods | ||
Finding scale-invariant feature transformation SIFT/SURF: local feature descriptors [38,39,40,41,44] | Detection and matching of distinctive features invariant to the transformation | Unsuitable for highly repetitive patterns of histologic samples |
Object tracing using SIFT [47] | Registration for images with high deformation, artifacts, and missing tissue, incorporating quality assurance | |
Point matching improving RANSAC [56] | Faster and more robust point matching of features | |
Non-rigid feature matching [55] | Matching and handling large deformations | |
Rigid registration methods | ||
Sparse-feature-based registration [42] | Handling registration of objects with different orders of magnitudes in structure size | Rigid registration is not sufficient for samples deformed by shearing |
Rigid registration [51] | Co-registering re-stained histological images | |
Trajectory tracing [49] | Registration and reconstruction of 2D histological images with different staining | Mainly captures vessels along z-axis |
Non-rigid registration methods | ||
Rigid and elastic registration [57] | Automatic sectioning, segmentation, registration, 3D reconstruction | Registration of already segmented images |
Intensity-based registration, curvature flow [54] | Smoothed 3D reconstruction of distinct object boundaries | |
Feature- and area-based registration [25] | Different image types including highly repetitive histological images | Computationally expensive transformations |
B-spline [59] | 3D reconstruction preserving tissue microstructures | Not capable of handling large distortions |
Affine registration, mutual information (MI), matrix exponential neural network (MINE) [53] | Unsupervised registration for mono- and multi-modal images | |
Registering multi-resolution scales for ROIs [45] | Registration of histological images dealing with major artifacts | No whole-section registration |
Intensity-based stochastic gradient descent method (SGDM), region-based convolutional neural networks [60] | Registration, segmentation, and reconstruction of multi-modal histological images, focused on nerval specimen | Unsuitable for highly repetitive patterns of histologic samples |
Non-automatic methods | ||
Rigid registration [50] | Manual rigid registration | Unfeasible for big data |
Manual segmentation, rigid registration, mesh generation [52] | Direct 3D mesh generation from images |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Ali, M.; Shi, S.; Cheang, U.K. Biosensing-by-Learning Direct Targeting Strategy for Enhanced Tumor Sensitization. IEEE Trans. Nanobioscience 2019, 18, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Haun, J.B.; Yoon, T.-J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Koyilot, M.C.; Natarajan, P.; Hunt, C.R.; Sivarajkumar, S.; Roy, R.; Joglekar, S.; Pandita, S.; Tong, C.W.; Marakkar, S.; Subramanian, L.; et al. Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells 2022, 11, 1828. [Google Scholar] [CrossRef] [PubMed]
- Bongio, M.; Lopa, S.; Gilardi, M.; Bersini, S.; Moretti, M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine 2016, 11, 1073–1091. [Google Scholar] [CrossRef]
- Unger, C.; Kramer, N.; Walzl, A.; Scherzer, M.; Hengstschläger, M.; Dolznig, H. Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Adv. Drug Deliv. Rev. 2014, 79–80, 50–67. [Google Scholar] [CrossRef]
- Abd Elrahman, A.A.; Mansour, F.R. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application: Preparation, functionalization and biomedical application. J. Drug Deliv. Sci. Technol. 2019, 52, 702–712. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Ferrone, C.R. Neoadjuvant Therapy for Resectable Pancreatic Cancer: An Evolving Paradigm Shift. Front. Oncol. 2019, 9, 1085. [Google Scholar] [CrossRef]
- Roeth, A.A.; Slabu, I.; Baumann, M.; Alizai, P.H.; Schmeding, M.; Guentherodt, G.; Schmitz-Rode, T.; Neumann, U.P. Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment. Int. J. Nanomed. 2017, 12, 5933–5940. [Google Scholar] [CrossRef]
- Lindemann, M.C.; Luttke, T.; Nottrodt, N.; Schmitz-Rode, T.; Slabu, I. FEM based simulation of magnetic drug targeting in a multibranched vessel model. Comput. Methods Programs Biomed. 2021, 210, 106354. [Google Scholar] [CrossRef]
- Singh, M.; Ma, R.; Zhu, L. Quantitative evaluation of effects of coupled temperature elevation, thermal damage, and enlarged porosity on nanoparticle migration in tumors during magnetic nanoparticle hyperthermia. Int. Commun. Heat Mass Transf. 2021, 126, 105393. [Google Scholar] [CrossRef]
- Singh, M.; Singh, T.; Soni, S. Pre-operative Assessment of Ablation Margins for Variable Blood Perfusion Metrics in a Magnetic Resonance Imaging Based Complex Breast Tumour Anatomy: Simulation Paradigms in Thermal Therapies. Comput. Methods Programs Biomed. 2021, 198, 105781. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, A.D.; van den Berg, A. Organs-on-chips: Breaking the in vitro impasse. Integr. Biol. 2012, 4, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen Publishing: London, UK, 1959. [Google Scholar]
- Roeth, A.A.; Garretson, I.; Beltz, M.; Herbold, T.; Schulze-Hagen, M.; Quaisser, S.; Georgens, A.; Reith, D.; Slabu, I.; Klink, C.D.; et al. 3D-Printed Replica and Porcine Explants for Pre-Clinical Optimization of Endoscopic Tumor Treatment by Magnetic Targeting. Cancers 2021, 13, 5496. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, Y.; Shi, X.; Shen, H.; Ning, H.; Liu, H. 3D printing of tissue engineering scaffolds: A focus on vascular regeneration. Bio-Des. Manuf. 2021, 4, 344–378. [Google Scholar] [CrossRef] [PubMed]
- Szafron, J.M.; Ramachandra, A.B.; Breuer, C.K.; Marsden, A.L.; Humphrey, J.D. Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling. Tissue Eng. Part C Methods 2019, 25, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Hu, F.; Cai, W.; Xiao, L.; Zhang, L.; Zheng, H.; Jiang, Q.; Chen, L. Visualizing polymeric bioresorbable scaffolds with three-dimensional image reconstruction using contrast-enhanced micro-computed tomography. Int. J. Cardiovasc. Imaging 2017, 33, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ghaghada, K.B.; Sato, A.F.; Starosolski, Z.A.; Berg, J.; Vail, D.M. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer. PLoS ONE 2016, 11, e0152718. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.U.; Zhou, Z.; Ren, L.; Li, Y.; Zheng, B.; Yang, K.; Liu, H. Investigation of spatial resolution characteristics of an in vivo micro computed tomography system. Nucl. Instrum. Methods Phys. Res. A 2016, 807, 129–136. [Google Scholar] [CrossRef]
- McDonald, D.M.; Choyke, P.L. Imaging of angiogenesis: From microscope to clinic. Nat. Med. 2003, 9, 713–725. [Google Scholar] [CrossRef]
- Pena, A.-M.; Chen, X.; Pence, I.J.; Bornschlögl, T.; Jeong, S.; Grégoire, S.; Luengo, G.S.; Hallegot, P.; Obeidy, P.; Feizpour, A.; et al. Imaging and quantifying drug delivery in skin—Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv. Drug Deliv. Rev. 2020, 153, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Wang, C.-W.; Chen, H.-C. Improved image alignment method in application to X-ray images and biological images. Bioinformatics 2013, 29, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-W.; Ka, S.-M.; Chen, A. Robust image registration of biological microscopic images. Sci. Rep. 2014, 4, 6050. [Google Scholar] [CrossRef] [PubMed]
- Arganda-Carreras, I.; Sorzano, C.O.S.; Marabini, R.; Carazo, J.M.; Ortiz-De-Solorzano, C.; Kybic, J. Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization. In Computer Vision Approaches to Medical Image Analysis; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 85–95. ISBN 978-3-540-46257-6. [Google Scholar]
- Sorzano, C.O.S.; Thévenaz, P.; Unser, M. Elastic registration of biological images using vector-spline regularization. IEEE Trans. Biomed. Eng. 2005, 52, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Borovec, J.; Munoz-Barrutia, A.; Kybic, J. Benchmarking of Image Registration Methods for Differently Stained Histological Slides. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3368–3372, ISBN 978-1-4799-7061-2. [Google Scholar]
- Borovec, J.; Kybic, J.; Arganda-Carreras, I.; Sorokin, D.V.; Bueno, G.; Khvostikov, A.V.; Bakas, S.; Chang, E.I.-C.; Heldmann, S.; Kartasalo, K.; et al. ANHIR: Automatic Non-Rigid Histological Image Registration Challenge. IEEE Trans. Med. Imaging 2020, 39, 3042–3052. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equilization. In Graphics Gems IV; Heckbert, P.S., Ed.; Academic Press: San Diego, CA, USA, 1994; pp. 474–485. ISBN 0123361559. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst., Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; ISBN 0-13-008519-7. [Google Scholar]
- Reddy, P.R.; Amarnadh, V.; Bhaskar, M. Evaluation of Stopping Criterion in Contour Tracing Algorithms. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 3888–3894. [Google Scholar]
- Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision, 2; Addison-Wesley: Reading, MA, USA, 1993; ISBN 0201569434. [Google Scholar]
- Hughes, C.; Rouvière, O.; Mege-Lechevallier, F.; Souchon, R.; Prost, R. Robust alignment of prostate histology slices with quantified accuracy. IEEE Trans. Biomed. Eng. 2013, 60, 281–291. [Google Scholar] [CrossRef]
- Schwier, M.; Böhler, T.; Hahn, H.K.; Dahmen, U.; Dirsch, O. Registration of histological whole slide images guided by vessel structures. J. Pathol. Inform. 2013, 4, S10. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Kupfer, B.; Netanyahu, N.S.; Shimshoni, I. An Efficient SIFT-Based Mode-Seeking Algorithm for Sub-Pixel Registration of Remotely Sensed Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 379–383. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, G.; Deng, J.; Xue, Q.; Hou, W.; He, Y. Image Registration Algorithm for Sequence Pathology Slices of Pulmonary Nodule. In Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October 2019; pp. 1–3, ISBN 978-1-7281-2062-1. [Google Scholar]
- Lobachev, O.; Ulrich, C.; Steiniger, B.S.; Wilhelmi, V.; Stachniss, V.; Guthe, M. Feature-based multi-resolution registration of immunostained serial sections. Med. Image Anal. 2017, 35, 288–302. [Google Scholar] [CrossRef]
- Saalfeld, S.; Fetter, R.; Cardona, A.; Tomancak, P. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 2012, 9, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Hermann, J.; Brehmer, K.; Jankowski, V.; Lellig, M.; Hohl, M.; Mahfoud, F.; Speer, T.; Schunk, S.J.; Tschernig, T.; Thiele, H.; et al. Registration of Image Modalities for Analyses of Tissue Samples Using 3D Image Modelling. Proteom. Clin. Appl. 2020, 15, e1900143. [Google Scholar] [CrossRef] [PubMed]
- Paknezhad, M.; Loh, S.Y.M.; Choudhury, Y.; Koh, V.K.C.; Yong, T.T.K.; Tan, H.S.; Kanesvaran, R.; Tan, P.H.; Peng, J.Y.S.; Yu, W.; et al. Regional registration of whole slide image stacks containing major histological artifacts. BMC Bioinform. 2020, 21, 558. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Yu, Q. Point-Based Registration for Multi-stained Histology Images. In Proceedings of the 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, 10–12 July 2020; pp. 92–96, ISBN 978-1-7281-6661-2. [Google Scholar]
- Deng, R.; Yang, H.; Jha, A.; Lu, Y.; Chu, P.; Fogo, A.B.; Huo, Y. Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images. IEEE Trans. Med. Imaging 2021, 40, 1924–1933. [Google Scholar] [CrossRef] [PubMed]
- Kugler, M.; Goto, Y.; Kawamura, N.; Kobayashi, H.; Yokota, T.; Iwamoto, C.; Ohuchida, K.; Hashizume, M.; Hontani, H. Accurate 3D Reconstruction of a Whole Pancreatic Cancer Tumor from Pathology Images with Different Stains. In Computational Pathology and Ophthalmic Medical Image Analysis: First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, held in Conjunction with MICCAI 2018, Granada, Spain, 16–20 September 2018: Proceedings; Stoyanov, D., Taylor, Z., Ciompi, F., Xu, Y., Martel, A., Maier-Hein, L., Rajpoot, N., van der Laak, J., Veta, M., McKenna, S., et al., Eds.; Springer: Cham, Switzerland, 2018; pp. 35–43. ISBN 9783030009496. [Google Scholar]
- Kugler, M.; Goto, Y.; Tamura, Y.; Kawamura, N.; Kobayashi, H.; Yokota, T.; Iwamoto, C.; Ohuchida, K.; Hashizume, M.; Shimizu, A.; et al. Robust 3D image reconstruction of pancreatic cancer tumors from histopathological images with different stains and its quantitative performance evaluation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2047–2055. [Google Scholar] [CrossRef]
- Paish, E.C.; Green, A.R.; Rakha, E.A.; Macmillan, R.D.; Maddison, J.R.; Ellis, I.O. Three-dimensional reconstruction of sentinel lymph nodes with metastatic breast cancer indicates three distinct patterns of tumour growth. J. Clin. Pathol. 2009, 62, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Larson, N.B.; Prodduturi, N.; Flotte, T.J.; Hart, S.N. Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration. PLoS ONE 2019, 14, e0220074. [Google Scholar] [CrossRef] [PubMed]
- Niemann, A.; Weigand, S.; Hoffmann, T.; Skalej, M.; Tulamo, R.; Preim, B.; Saalfeld, S. Interactive exploration of a 3D intracranial aneurysm wall model extracted from histologic slices. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Nan, A.; Tennant, M.; Rubin, U.; Ray, N. DRMIME: Differentiable Mutual Information and Matrix Exponential for Multi-Resolution Image Registration. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada, 6–8 July 2020. [Google Scholar]
- Cifor, A.; Bai, L.; Pitiot, A. Smoothness-guided 3-D reconstruction of 2-D histological images. Neuroimage 2011, 56, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Chen, H.; Li, Y.; Peng, Y.; Li, J.; Li, X. Reducing non-realistic deformations in registration using precise and reliable landmark correspondences. Comput. Biol. Med. 2019, 115, 103515. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, W.; Gong, M.; Su, L.; Jiao, L. A Novel Point-Matching Algorithm Based on Fast Sample Consensus for Image Registration. IEEE Geosci. Remote Sens. Lett. 2015, 12, 43–47. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Fernández-González, R.; Muñoz-Barrutia, A.; Ortiz-De-Solorzano, C. 3D reconstruction of histological sections: Application to mammary gland tissue. Microsc. Res. Tech. 2010, 73, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Kuravi, R.; Leichsenring, K.; Böl, M.; Ehret, A.E. 3D finite element models from serial section histology of skeletal muscle tissue —The role of micro-architecture on mechanical behaviour. J. Mech. Behav. Biomed. Mater. 2020, 113, 104109. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Xu, C.; Ma, M.; Zhao, J.; Li, M.; Yu, Q.; Hao, X.; Wang, G.; Wei, B.; et al. A Novel Method for Observing Tumor Margin in Hepatoblastoma Based on Microstructure 3D Reconstruction. Fetal Pediatr. Pathol. 2020, 41, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Tovbis, D.; Agur, A.; Mogk, J.P.M.; Zariffa, J. Automatic three-dimensional reconstruction of fascicles in peripheral nerves from histological images. PLoS ONE 2020, 15, e0233028. [Google Scholar] [CrossRef]
- Borovec, J.; Kybic, J.; Barrutia, A.M. Leaderboard—Grand Challenge. Available online: https://anhir.grand-challenge.org/evaluation/challenge/leaderboard/ (accessed on 16 May 2022).
- Reyes-Aldasoro, C.C.; Williams, L.J.; Akerman, S.; Kanthou, C.; Tozer, G.M. An automatic algorithm for the segmentation and morphological analysis of microvessels in immunostained histological tumour sections. J. Microsc. 2011, 242, 262–278. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Li, X.; Xu, N.; Hu, Z.; Xue, D.; Qi, S.; Ma, H.; Zhang, L.; Sun, H. A review for cervical histopathology image analysis using machine vision approaches. Artif. Intell. Rev. 2020, 53, 4821–4862. [Google Scholar] [CrossRef]
- Azevedo Tosta, T.A.; Neves, L.A.; do Nascimento, M.Z. Segmentation methods of H&E-stained histological images of lymphoma: A review. Inform. Med. Unlocked 2017, 9, 35–43. [Google Scholar] [CrossRef]
- Tabesh, A.; Teverovskiy, M.; Pang, H.-Y.; Kumar, V.P.; Verbel, D.; Kotsianti, A.; Saidi, O. Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 2007, 26, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.C.; Sutton, C.D.; Furness, P.N.; Kockelbergh, R.C.; O’Byrne, K.J. A computer image analysis system for microvessel density measurement in solid tumours. Angiogenesis 2002, 5, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Steiniger, B.; Bette, M.; Schwarzbach, H. The open microcirculation in human spleens: A three-dimensional approach. J. Histochem. Cytochem. 2011, 59, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Meas-Yedid, V.; Tilie, S.; Olivo-Marin, J.-C. Color image segmentation based on Markov random field clustering for histological image analysis. In Proceedings of the 16th International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; pp. 796–799. [Google Scholar]
- Wu, G.; Zhao, X.; Luo, S.; Shi, H. Histological image segmentation using fast mean shift clustering method. Biomed. Eng. Online 2015, 14, 24. [Google Scholar] [CrossRef]
- Yang, L.; Meer, P.; Foran, D.J. Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 475–486. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Long, L.R.; Antani, S.; Thoma, G. Distribution fitting-based pixel labeling for histology image segmentation. Med. Imaging 2011 Comput.-Aided Diagn. 2011, 7963, 79633D. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.-Y.; Chang, E.I.-C.; Lai, M.; Tu, Z. Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 2014, 18, 591–604. [Google Scholar] [CrossRef]
- Rodríguez, R. Blood Vessel Segmentation via Neural Network in Histological Images. J. Intell. Robot. Syst. 2003, 36, 451–465. [Google Scholar] [CrossRef]
- Kothari, S.; Phan, J.H.; Moffitt, R.A.; Stokes, T.H.; Hassberger, S.E.; Chaudry, Q.; Young, A.N.; Wang, M.D. Automatic batch-invariant color segmentation of histological cancer images. Proc. IEEE Int. Symp. Biomed. Imaging 2011, 2011, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Huang, X.; Chang, E.I.-C.; Xu, Y. Constrained Deep Weak Supervision for Histopathology Image Segmentation. IEEE Trans. Med. Imaging 2017, 36, 2376–2388. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Song, Z.; Sun, Z.; Ku, C.; Yang, Z.; Liu, C.; Wang, S.; Ma, J.; Xu, W. CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar] [CrossRef]
- Sun, C.; Li, C.; Zhang, J.; Rahaman, M.M.; Ai, S.; Chen, H.; Kulwa, F.; Li, Y.; Li, X.; Jiang, T. Gastric histopathology image segmentation using a hierarchical conditional random field. Biocybern. Biomed. Eng. 2020, 40, 1535–1555. [Google Scholar] [CrossRef]
- Janssens, T.; Antanas, L.; Derde, S.; Vanhorebeek, I.; van den Berghe, G.; Güiza Grandas, F. Charisma: An integrated approach to automatic H&E-stained skeletal muscle cell segmentation using supervised learning and novel robust clump splitting. Med. Image Anal. 2013, 17, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Schwier, M.; Hahn, H.K.; Dahmen, U.; Dirsch, O. Reconstruction of vessel structures from serial whole slide sections of murine liver samples. In Proceedings of the SPIE Medical Imaging, Lake Buena Vista, FL, USA, 9–14 February 2013; Gurcan, M.N., Madabhushi, A., Eds.; SPIE: Washington, DC, USA, 2013; p. 86760D. [Google Scholar] [CrossRef]
- Ritter, F.; Boskamp, T.; Homeyer, A.; Laue, H.; Schwier, M.; Link, F.; Peitgen, H.-O. Medical image analysis. IEEE Pulse 2011, 2, 60–70. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Drechsler, K.; Oyarzun Laura, C. Comparison of vesselness functions for multiscale analysis of the liver vasculature. In Proceedings of the 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB 2010), Corfu, Greece, 3–5 November 2010; pp. 1–5, ISBN 978-1-4244-6559-0. [Google Scholar]
- Tetteh, G.; Efremov, V.; Forkert, N.D.; Schneider, M.; Kirschke, J.; Weber, B.; Zimmer, C.; Piraud, M.; Menze, B.H. DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes. Front. Neurosci. 2020, 14, 592352. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, T.; Strzelecki, M.; Majos, A.; Stefańczyk, L. 3D vascular tree segmentation using a multiscale vesselness function and a level set approach. Biocybern. Biomed. Eng. 2017, 37, 66–77. [Google Scholar] [CrossRef]
- Survarachakan, S.; Pelanis, E.; Khan, Z.A.; Kumar, R.P.; Edwin, B.; Lindseth, F. Effects of Enhancement on Deep Learning Based Hepatic Vessel Segmentation. Electronics 2021, 10, 1165. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In Medical Image Computing and Computer-Assisted Interventation—MICCAI’98; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 1998; pp. 130–137. ISBN 978-3-540-65136-9. [Google Scholar]
- Lamy, J.; Merveille, O.; Kerautret, B.; Passat, N.; Vacavant, A. Vesselness Filters: A Survey with Benchmarks Applied to Liver Imaging. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 3528–3535, ISBN 978-1-7281-8808-9. [Google Scholar]
- Feuerstein, M.; Heibel, H.; Gardiazabal, J.; Navab, N.; Groher, M. Reconstruction of 3-D histology images by simultaneous deformable registration. Med. Image Comput. Comput. Assist. Interv. 2011, 14, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Fónyad, L.; Shinoda, K.; Farkash, E.A.; Groher, M.; Sebastian, D.P.; Szász, A.M.; Colvin, R.B.; Yagi, Y. 3-dimensional digital reconstruction of the murine coronary system for the evaluation of chronic allograft vasculopathy. Diagn. Pathol. 2015, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Onozato, M.L.; Klepeis, V.E.; Yagi, Y.; Mino-Kenudson, M. A role of three-dimensional (3D) reconstruction in the classification of lung adenocarcinoma. Stud. Health Technol. Inform. 2012, 179, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.L.; Varga, V.S.; Kamaras, V.; Ficsor, L.; Tagscherer, A.; Tulassay, Z.; Molnar, B. Three-dimensional virtual microscopy of colorectal biopsies. Arch. Pathol. Lab. Med. 2005, 129, 507–510. [Google Scholar] [CrossRef] [PubMed]
Task | Time for Completion (in Minutes) |
---|---|
registration (step 1): calculation of transformation of each slice to its unregistered predecessor | 11.93 |
registration (step 2): application of all predeceasing transformations to each slice | 58.78 |
complete registration (step 1 + step 2) | 70.71 |
segmentation | 72.28 |
reconstruction | 54.38 |
total computation time | 197.37 |
Complete Set of Images | Subset of Similar Images | Range of Top 10 Algorithms in ANHIR Leaderboard [61] | |
---|---|---|---|
average median rTRE | 0.0044 | 0.002163 | 0.00067–0.00250 |
average robustness Ri | 0.85 | 0.986152 | 0.99276–0.88992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindemann, M.C.; Glänzer, L.; Roeth, A.A.; Schmitz-Rode, T.; Slabu, I. Towards Realistic 3D Models of Tumor Vascular Networks. Cancers 2023, 15, 5352. https://doi.org/10.3390/cancers15225352
Lindemann MC, Glänzer L, Roeth AA, Schmitz-Rode T, Slabu I. Towards Realistic 3D Models of Tumor Vascular Networks. Cancers. 2023; 15(22):5352. https://doi.org/10.3390/cancers15225352
Chicago/Turabian StyleLindemann, Max C., Lukas Glänzer, Anjali A. Roeth, Thomas Schmitz-Rode, and Ioana Slabu. 2023. "Towards Realistic 3D Models of Tumor Vascular Networks" Cancers 15, no. 22: 5352. https://doi.org/10.3390/cancers15225352
APA StyleLindemann, M. C., Glänzer, L., Roeth, A. A., Schmitz-Rode, T., & Slabu, I. (2023). Towards Realistic 3D Models of Tumor Vascular Networks. Cancers, 15(22), 5352. https://doi.org/10.3390/cancers15225352