Risk Biomarkers for Biochemical Recurrence after Radical Prostatectomy for Prostate Cancer Using Clinical and MRI-Derived Semantic Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Semantic MRI interpretative features set (black striation in periprostatic fat, obliteration of the rectoprostatic angle, measurable ECE on MRI (mECE+), smooth capsular bulging, capsular disruption, indistinct margin, and irregular contour) used for predicting pECE+ on MRI.
- -
- The index lesion length (ILL) corresponds to the major length of the index lesion and the tumor capsular contact length (TCCL), which is the contact length of the index lesion with the prostate capsule. Both were measured in millimeters on axial T2 images, and we used a curvilinear ruler to draw the TCCL.
- -
- PI-RADS V2 for the characterization of the index lesion [14].
- -
- -
- The clinical and laboratory data evaluated included the age of the patients, PSA levels at surgery, PSA density (PSA/prostate volume), and MRI and surgery dates. Patients’ data were anonymized, collected in an Excel database, and organized according to the surgery dates. Categorization of the PSA: PSA < 6 ng/mL, 6 ng/mL ≤ PSA < 10 ng/mL, and PSA ≥ 10 ng/mL.
- -
- In this predictive analysis, we added PCa pathological staging and surgical margins results of the prostate specimen [13]. Tumors were classified as pECE negative (pECE−) if no tumoral cells were detected on extracapsular tissue, and pECE positive (pECE+) if the presence of a tumoral extension beyond the periphery of the prostate gland was detected (Figure 1). Positive surgical margins (PSM) refer to the presence of tumor cells beyond the inked surgical margins of the resected tumor.
Statistical Analysis
3. Results
3.1. Exploratory Analysis
3.2. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer: Part II: 2020 update: Treatment of relapsing and metastatic prostate cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar]
- Mottet, N.; van den Bergh, R.C.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer: 2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Punnen, S.; Cooperberg, M.R.; D’amico, A.V.; Karakiewicz, P.I.; Moul, J.W.; Scher, H.I.; Schlomm, T.; Freedland, S.J. Management of biochemical recurrence after primary treatment of prostate cancer: A systematic review of the literature. Eur. Urol. 2013, 64, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; Van den Bergh, R.C.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Tilki, D.; Preisser, F.; Graefen, M.; Huland, H.; Pompe, R.S. External validation of the european association of urology biochemical recurrence risk groups to predict metastasis and mortality after radical prostatectomy in a European cohort. Eur. Urol. 2019, 75, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.J.; George, A.K.; Maruf, M.; Frye, T.P.; Muthigi, A.; Kongnyuy, M.; Valayil, S.G.; APinto, P. Risk stratification of prostate cancer: Integrating multiparametric MRI, nomograms and biomarkers. Future Oncol. 2016, 12, 2417–2430. [Google Scholar] [CrossRef]
- Leyh-Bannurah, S.R.; Kachanov, M.; Karakiewicz, P.I.; Beyersdorff, D.; Pompe, R.S.; Oh-Hohenhorst, S.J.; Fisch, M.; Maurer, T.; Graefen, M.; Budäus, L. Combined systematic versus stand-alone multiparametric MRI-guided targeted fusion biopsy: Nomogram prediction of non-organ-confined prostate cancer. World J. Urol. 2021, 39, 81–88. [Google Scholar] [CrossRef]
- Feng, T.S.; Sharif-Afshar, A.R.; Wu, J.; Li, Q.; Luthringer, D.; Saouaf, R.; Kim, H.L. Multiparametric MRI improves accuracy of clinical nomograms for predicting extracapsular extension of prostate cancer. Urology 2015, 86, 332–337. [Google Scholar] [CrossRef]
- Hiremath, A.; Shiradkar, R.; Fu, P.; Mahran, A.; Rastinehad, A.R.; Tewari, A.; Tirumani, S.H.; Purysko, A.; Ponsky, L.; Madabhushi, A. An integrated nomogram combining deep learning, Prostate Imaging–Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: A retrospective multicentre study. Lancet Digit. Health 2021, 3, e445–e454. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shiradkar, R.; Leo, P.; Algohary, A.; Fu, P.; Tirumani, S.H.; Mahran, A.; Buzzy, C.; Obmann, V.C.; Mansoori, B.; et al. A novel imaging based nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI. EBioMedicine 2021, 63, 103163. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Alves, F.C.; Maes, K.; Joniau, S.; Cassis, J.; Maio, R.; Cravo, M.; Mouriño, H. Early biomarkers of extracapsular extension of prostate cancer using MRI-derived semantic features. Cancer Imaging 2022, 22, 74. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging: Reporting and Data System 2015: Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- van Leenders, G.J.L.H.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef]
- Harrell, F.E.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues In Developing Models, Evaluating Assumptions and Adequacy, And Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Barone, B.; Napolitano, L.; Calace, F.P.; Del Biondo, D.; Napodano, G.; Grillo, M.; Reccia, P.; De Luca, L.; Prezioso, D.; Muto, M.; et al. Reliability of Multiparametric Magnetic Resonance Imaging in Patients with a Previous Negative Biopsy: Comparison with Biopsy-Naïve Patients in the Detection of Clinically Significant Prostate Cancer. Diagnostics 2023, 13, 1939. [Google Scholar] [CrossRef] [PubMed]
- Wibmer, A.G.; Nikolovski, I.; Chaim, J.; Lakhman, Y.; Lefkowitz, R.A.; Sala, E.; Carlsson, S.V.; Fine, S.W.; Kattan, M.W.; Hricak, H.; et al. Local extent of prostate cancer at MRI versus prostatectomy histopathology: Associations with long-term oncologic outcomes. Radiology 2022, 302, 595–602. [Google Scholar] [CrossRef]
- Suardi, N.; Porter, C.R.; Reuther, A.M.; Walz, J.; Kodama, K.; Gibbons, R.P.; Correa, R.; Montorsi, F.; Graefen, M.; Huland, H.; et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. Cancer 2008, 112, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.J.; Scardino, P.T.; Eastham, J.A.; Bianco, F.J.; Dotan, Z.A.; DiBlasio, C.J.; Reuther, A.; Klein, E.A.; Kattan, M.W. Postoperative nomogram predicting the 10-Year probability of prostate cancer recurrence after radical prostatectomy. J. Clin. Oncol. 2005, 23, 7005–7012. [Google Scholar] [CrossRef]
- Lee, W.; Lim, B.; Kyung, Y.S.; Kim, C.S. Impact of positive surgical margin on biochemical recurrence in localized prostate cancer. Prostate Int. 2021, 9, 151–156. [Google Scholar] [CrossRef]
- Yang, C.W.; Wang, H.H.; Hassouna, M.F.; Chand, M.; Huang, W.J.S.; Chung, H.J. Prediction of a positive surgical margin and biochemical recurrence after robot-assisted radical prostatectomy. Sci. Rep. 2021, 11, 14329. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Humphreys, E.B.; Mangold, L.A.; Eisenberger, M.; Dorey, F.J.; Walsh, P.C.; Partin, A.W. Risk of prostate cancer–specific mortality following biochemical recurrence after radical prostatectomy. JAMA 2005, 294, 433. [Google Scholar] [CrossRef] [PubMed]
- Tourinho-Barbosa, R.; Srougi, V.; Nunes-Silva, I.; Baghdadi, M.; Rembeyo, G.; Eiffel, S.S.; Barret, E.; Rozet, F.; Galiano, M.; Cathelineau, X.; et al. Biochemical recurrence after radical prostatectomy: What does it mean? Int. Braz. J. Urol. 2018, 44, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandus, J.; Fendler, W.P.; Farolfi, A.; Washington, S.; Mohamad, O.; Pampaloni, M.H.; Scott, P.J.H.; Rodnick, M.; Viglianti, B.L.; Eiber, M.; et al. PSMA PET Validates Higher Rates of Metastatic Disease for European Association of Urology Biochemical Recurrence Risk Groups: An International Multicenter Study. J. Nucl. Med. 2022, 63, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Civita, E.L.; Ventura, B.D.; Ferro, M.; Cennamo, M.; Bruzzese, D.; Crocetto, F.; Velotta, R.; Terracciano, D. A Combinatorial Neural Network Analysis Reveals a Synergistic Behaviour of Multiparametric Magnetic Resonance and Prostate Health Index in the Identification of Clinically Significant Prostate Cancer. Genitourin. Cancer 2022, 20, E406–E410. [Google Scholar] [CrossRef]
Variables | BCR+ (Nº of Patients = 40) | BCR− (Nº of Patients = 137) | p-Value |
---|---|---|---|
Continuous variables | |||
Age at MRI (years) | 61.5 ± 5.6 (51.7; 73.0) | 61.3 ± 6.8 (41.2; 75.2) | 0.845 |
Prostate volume (g) | 36.6 ± 12.1 (20; 86) | 44.9 ± 21.9 (19; 150) | 0.002 |
PSA (ng/mL) | 8.0 ± 4.0 (2.6; 20.0) | 6.6 ± 3.4 (2.2; 21.2) | 0.038 |
PSAD * (ng/mL/g) | 0.23 ± 0.10 (0.06; 0.50) | 0.17 ± 0.12 (0.04; 0.96) | 0.003 |
Index lesion size (mm) | 17.4 ± 6.6 (7.0; 39.0) | 13.3 ± 5.2 (5.0; 30.0) | 0.000 |
Tumor capsular contact length (mm) | 17.3 ± 10.6 (0.0; 57.0) | 10.6 ± 7.6 (0.0; 35.0) | 0.000 |
Categorical variables | |||
Index lesion PI-RADS V2 | |||
3 | 1 (2.50) | 10 (7.30) | 0.000 |
4 | 9 (22.50) | 83 (60.58) | |
5 | 30 (75.00) | 44 (32.12) | |
Smooth capsular bulging | |||
No | 8 (20.00) | 72 (52.55) | 0.001 |
Yes | 32 (80.00) | 65 (47.45) | |
Capsular disruption | |||
No | 12 (30.00) | 83 (60.58) | 0.001 |
Yes | 28 (70.00) | 54 (39.42) | |
Indistinct margin | |||
No | 11 (27.50) | 79 (57.66) | 0.001 |
Yes | 29 (72.50) | 58 (42.34) | |
Irregular contour | |||
No | 13 (32.50) | 91 (66.42) | 0.000 |
Yes | 27 (67.50) | 46 (33.58) | |
Black striation in periprostatic fat | |||
No | 26 (65.00) | 113 (82.48) | 0.027 |
Yes | 14 (35.00) | 24 (17.52) | |
Measurable ECE | |||
No | 29 (72.50) | 123 (89.78) | 0.010 |
Yes | 11 (27.50) | 14 (10.22) | |
ECE in prostatectomy specimen ** | |||
No | 21 (52.50) | 105 (76.64) | 0.005 |
Yes | 19 (47.50) | 32 (23.36) | |
Retoprostatic angle obliteration | |||
No | 34 (85.00) | 132 (96.35) | 0.018 |
Yes | 6 (15.00) | 5 (3.65) | |
Surgical margins | |||
Negative | 22 (55.00) | 98 (71.53) | 0.076 |
Positive | 18 (45.00) | 39 (28.47) | |
Grade Group (GG) | |||
GG < 4 | 33 (82.50) | 127 (92.70) | 0.068 |
GG ≥ 4 | 7 (17.50) | 10 (7.30) |
Variables | BCR+ (Nº of Patients = 15) | BCR− (Nº of Patients = 97) | p-Value |
---|---|---|---|
Continuous variables | |||
Prostate volume (g) | 38.2 ± 14.2 (24; 86) | 45.8 ± 22.0 (19; 122) | 0.120 |
PSA (ng/dL) | 6.7 ± 3.4 (2.6; 14.0) | 6.4 ± 3.2 (2.2; 20.7) | 0.704 |
Index lesion size (mm) | 14.8 ± 4.4 (7.0; 22.0) | 12.1 ± 4.5 (5.0; 30.0) | 0.019 |
Tumor capsular contact length (mm) | 12.5 ± 6.7 (0.0; 23.0) | 8.4 ± 6.1 (0.0; 24.0) | 0.021 |
Categorical variables | |||
Index lesion PI-RADS V2 | |||
3 | 1 (6.70) | 8 (8.25) | 0.016 |
4 | 5 (33.33) | 65 (67.01) | |
5 | 9 (60.00) | 24 (24.74) | |
Smooth capsular bulging | |||
No | 4 (26.67) | 59 (60.82) | 0.023 |
Yes | 11 (73.33) | 38 (39.18) | |
Capsular disruption | |||
No | 7 (46.67) | 72 (74.23) | 0.037 |
Yes | 8 (53.33) | 25 (25.77) | |
Indistinct margin | |||
No | 7 (46.67) | 67 (69.07) | 0.140 |
Yes | 8 (53.33) | 30 (30.93) | |
Irregular contour | |||
No | 8 (53.33) | 77 (79.38) | 0.047 |
Yes | 7 (46.67) | 20 (20.62) | |
Black striation in periprostatic fat | |||
No | 13 (86.67) | 88 (90.72) | 0.640 |
Yes | 2 (13.33) | 9 (9.28) | |
Measurable ECE | |||
No | 15 (100.00) | 95 (97.94) | NA |
Yes | 0 (0.00) | 2 (2.06) | |
Retoprostatic angle obliteration | |||
No | 15 (100.00) | 97 (100.00) | NA |
Yes | 0 (0.00) | 0 (0.00) |
Feature | Biochemical Recurrence-Free Survival | Log-Rank Test p-Value | |||
---|---|---|---|---|---|
1-Year (95% CI) * | 2-Year (95% CI) * | 4-Year (95% CI) * | |||
pECE− | 98 (95, 100) | 92 (87, 98) | 87 (79, 94) | 0.00083 | |
pECE+ | 90 (82, 99) | 75 (63, 89) | 60 (45, 80) | ||
mECE− | 97 (94, 100) | 91 (87, 96) | 86 (79, 93) | 0.00012 | |
mECE+ | 88 (75, 100) | 62 (45, 87) | 39 (20, 75) | ||
Grade Group (GG) | |||||
GG < 4 | 97 (94, 100) | 89 (84, 95) | 81 (74, 89) | 0.04400 | |
GG ≥ 4 | 82 (65, 100) | 68 (49, 96) | 57 (35, 93) | ||
Capsular disruption | Not Present | 98 (95, 100) | 94 (88, 99) | 91 (84, 99) | 0.00015 |
Present | 93 (87, 99) | 80 (71, 90) | 66 (55, 80) | ||
Negative Surgical Margin | 97 (95, 100) | 90 (84, 96) | 84 (77, 93) | 0.04000 | |
Positive Surgical Margin | 91 (83, 99) | 82 (72, 94) | 68 (55, 84) | ||
TCCL < 10 mm | 99 (96, 100) | 97 (92, 100) | 89 (80, 99) | 0.00023 | |
10 mm ≤ TCCL < 20 mm | 95 (89, 100) | 86 (77, 95) | 79 (69, 91) | ||
TCCL ≥ 20 mm | 89 (78, 100) | 67 (51, 89) | 53 (34, 82) | ||
PSA < 6 ng/mL | 100 (100, 100) | 97 (93, 100) | 88 (80, 98) | ||
6 ng/mL ≤ PSA < 10 ng/mL | 92 (85, 99) | 77 (67, 90) | 68 (55, 84) | 0.01700 | |
PSA ≥ 10 ng/mL | 90 (79, 100) | 81 (68, 98) | 74 (57, 96) | ||
No Strata (all patients) | 95 (92, 99) | 87 (82, 93) | 79 (72, 87) | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, A.; Alves, F.C.; Maes, K.; Maio, R.; Villeirs, G.; Mouriño, H. Risk Biomarkers for Biochemical Recurrence after Radical Prostatectomy for Prostate Cancer Using Clinical and MRI-Derived Semantic Features. Cancers 2023, 15, 5296. https://doi.org/10.3390/cancers15215296
Guerra A, Alves FC, Maes K, Maio R, Villeirs G, Mouriño H. Risk Biomarkers for Biochemical Recurrence after Radical Prostatectomy for Prostate Cancer Using Clinical and MRI-Derived Semantic Features. Cancers. 2023; 15(21):5296. https://doi.org/10.3390/cancers15215296
Chicago/Turabian StyleGuerra, Adalgisa, Filipe Caseiro Alves, Kris Maes, Rui Maio, Geert Villeirs, and Helena Mouriño. 2023. "Risk Biomarkers for Biochemical Recurrence after Radical Prostatectomy for Prostate Cancer Using Clinical and MRI-Derived Semantic Features" Cancers 15, no. 21: 5296. https://doi.org/10.3390/cancers15215296
APA StyleGuerra, A., Alves, F. C., Maes, K., Maio, R., Villeirs, G., & Mouriño, H. (2023). Risk Biomarkers for Biochemical Recurrence after Radical Prostatectomy for Prostate Cancer Using Clinical and MRI-Derived Semantic Features. Cancers, 15(21), 5296. https://doi.org/10.3390/cancers15215296