The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Computational Exploratory Analysis
Exploratory Cohort and Immune Gene Data Collection
2.2. Validation Cohort Analysis
2.2.1. Sample Collection
2.2.2. Multiplex Fluorescence Staining and Analysis
2.2.3. Cellular Spatial Distribution Analysis
2.3. Statistical Analysis
3. Results
3.1. Computational Exploratory/Discovery Analysis
3.1.1. Genomic Landscape of MPM
3.1.2. Transcriptome Profiles of Immune-Relevant Genes in MPM
3.1.3. Analysis of Putative Biological Function of the Immune-Relevant Genes through Pathway Enrichment
3.1.4. Clinical Associations of the Immune-Relevant Genes
3.1.5. Association between Gene Expression and Survival for MPM
3.2. Validation Cohort Analysis
3.2.1. M1 and M2 Macrophage Phenotypes
3.2.2. Spatial Distances of Macrophages from Malignant Cells
3.2.3. Associations of Densities and Distance Metrics of Macrophage Phenotypes with Clinical Variables
3.2.4. Associations between Densities, Distances, and Patient Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, K.; Landrigan, P.J.; Ramazzini, C. The Global Health Dimensions of Asbestos and Asbestos-Related Diseases. Ann. Glob. Health 2016, 82, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Ramazzini, C. Comments on the Causation of Malignant Mesothelioma: Rebutting the False Concept That Recent Exposures to Asbestos Do Not Contribute to Causation of Mesothelioma. Ann. Glob. Health 2016, 82, 214–216. [Google Scholar] [CrossRef] [PubMed]
- De Gooijer, C.J.; Baas, P.; Burgers, J.A. Current chemotherapy strategies in malignant pleural meso-thelioma. Transl. Lung Cancer Res. 2018, 7, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Blyth, K.G.; Murphy, D.J. Progress and challenges in Mesothelioma: From bench to bedside. Respir. Med. 2018, 134, 31–41. [Google Scholar] [CrossRef]
- Tomek, S.; Manegold, C. Chemotherapy for malignant pleural mesothelioma: Past results and recent developments. Lung Cancer 2004, 45 (Suppl. S1), S103–S119. [Google Scholar] [CrossRef] [PubMed]
- Mairinger, F.; Vollbrecht, C.; Mairinger, T.; Popper, H. The Issue of Studies Evaluating Biomarkers Which Predict Outcome after Pemetrexed-Based Chemotherapy in Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2013, 8, e80–e82. [Google Scholar] [CrossRef]
- Goudar, R.K. Review of pemetrexed in combination with cisplatin for the treatment of malignant pleural mesothelioma. Ther. Clin. Risk Manag. 2008, 4, 205–211. [Google Scholar] [CrossRef]
- Gaudino, G.; Xue, J.; Yang, H. How asbestos and other fibers cause mesothelioma. Transl. Lung Cancer Res. 2020, 9 (Suppl. S1), S39–S46. [Google Scholar] [CrossRef]
- Yang, H.; Bocchetta, M.; Kroczynska, B.; Elmishad, A.G.; Chen, Y.; Liu, Z.; Bubici, C.; Mossman, B.T.; Pass, H.I.; Testa, J.R.; et al. TNF-α inhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 10397–10402. [Google Scholar] [CrossRef]
- Broaddus, V.C.; Yang, L.; Scavo, L.M.; Ernst, J.D.; Boylan, A.M. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J. Clin. Investig. 1996, 98, 2050–2059. [Google Scholar] [CrossRef]
- Carbone, M.; Yang, H. Mesothelioma: Recent highlights. Ann. Transl. Med. 2017, 5, 238. [Google Scholar] [CrossRef] [PubMed]
- Zolondick, A.A.; Gaudino, G.; Xue, J.; Pass, H.I.; Carbone, M.; Yang, H. Asbestos-induced chronic inflammation in malignant pleural mesothelioma and related therapeutic approaches—A narrative review. Precis. Cancer Med. 2021, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Patergnani, S.; Giorgi, C.; Suarez, J.; Goto, K.; Bononi, A.; Tanji, M.; Novelli, F.; Pastorino, S.; Xu, R.; et al. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc. Natl. Acad. Sci. USA 2020, 117, 25543–25552. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.M.; Parra, E.R. Let us not Forget Macrophages: The Role of M1 and M2 Macrophages in the Human Body. Biomed. J. Sci. Tech. Res. 2023, 48, 39103–39106. [Google Scholar]
- Hussell, T.; Bell, T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014, 14, 81–93. [Google Scholar] [CrossRef]
- Arora, S.; Dev, K.; Agarwal, B.; Das, P.; Syed, M.A. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2017, 223, 383–396. [Google Scholar] [CrossRef]
- Van Overmeire, E.; Laoui, D.; Keirsse, J.; Van Ginderachter, J.A.; Sarukhan, A. Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Front. Immunol. 2014, 5, 127. [Google Scholar] [CrossRef]
- Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 2017, 169, 736–749.e18. [Google Scholar] [CrossRef]
- Kiss, M.; Van Gassen, S.; Movahedi, K.; Saeys, Y.; Laoui, D. Myeloid cell heterogeneity in cancer: Not a single cell alike. Cell. Immunol. 2018, 330, 188–201. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Liu, L.; Gong, C.-Y.; Shi, H.-S.; Zeng, Y.-H.; Wang, X.-Z.; Zhao, Y.-W.; Wei, Y.-Q. Prognostic Significance of Tumor-Associated Macrophages in Solid Tumor: A Meta-Analysis of the Literature. PLoS ONE 2012, 7, e50946. [Google Scholar] [CrossRef] [PubMed]
- Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 37–45. [Google Scholar] [CrossRef] [PubMed]
- De Vos van Steenwijk, P.; Ramwadhdoebe, T.; Goedemans, R.; Doorduijn, E.; van Ham, J.; Gorter, A.; van Hall, T.; Kuijjer, M.; van Poelgeest, M.; van der Burg, S.; et al. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma. Int. J. Cancer 2013, 133, 2884–2894. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Fujisawa, Y.; Hidaka, T.; Aiba, S. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer. Front. Oncol. 2018, 8, 3. [Google Scholar] [CrossRef]
- Jayasingam, S.D.; Citartan, M.; Thang, T.H.; Mat Zin, A.A.; Ang, K.C.; Ch’ng, E.S. Evaluating the Polarization of Tumor-Associated Macrophages into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front. Oncol. 2019, 9, 1512. [Google Scholar] [CrossRef]
- Arlauckas, S.P.; Garren, S.B.; Garris, C.S.; Kohler, R.H.; Oh, J.; Pittet, M.J.; Weissleder, R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics 2018, 8, 5842–5854. [Google Scholar] [CrossRef]
- Quatromoni, J.G.; Eruslanov, E. Tumor-associated macrophages: Function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 2012, 4, 376–389. [Google Scholar]
- Helm, O.; Held-Feindt, J.; Schäfer, H.; Sebens, S. M1 and M2: There is no “good” and “bad”—How macrophages promote malignancy-associated features in tumorigenesis. OncoImmunology 2014, 3, e946818. [Google Scholar] [CrossRef] [PubMed]
- Ley, K. M1 Means Kill; M2 Means Heal. J. Immunol. 2017, 199, 2191–2193. [Google Scholar] [CrossRef] [PubMed]
- Rauch, I.; Müller, M.; Decker, T. The regulation of inflammation by interferons and their STATs. JAK-STAT 2013, 2, e23820. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Marin, D.; Jarvis, C.; Nelius, T.; de Riese, W.; Volpert, O.V.; Filleur, S. PEDF increases the tumoricidal activity of macrophages towards prostate cancer cells in vitro. PLoS ONE 2017, 12, e0174968. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed. Sci. 2019, 26, 78. [Google Scholar] [CrossRef]
- Pathria, P.; Louis, T.L.; Varner, J.A. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol. 2019, 40, 310–327. [Google Scholar] [CrossRef]
- Hagemann, T.; Lawrence, T.; McNeish, I.; Charles, K.A.; Kulbe, H.; Thompson, R.G.; Robinson, S.C.; Balkwill, F.R. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 2008, 205, 1261–1268. [Google Scholar] [CrossRef]
- Jablonski, K.A.; Amici, S.A.; Webb, L.M.; Ruiz-Rosado, J.d.D.; Popovich, P.G.; Partida-Sanchez, S.; Guerau-De-Arellano, M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE 2015, 10, e0145342. [Google Scholar] [CrossRef]
- Wu, L.; Kohno, M.; Murakami, J.; Zia, A.; Allen, J.; Yun, H.; Chan, M.; Baciu, C.; Liu, M.; Serre-Beinier, V.; et al. Defining and targeting tumor-associated macrophages in malignant mesothelioma. Proc. Natl. Acad. Sci. USA 2023, 120, e2210836120. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. Correction to ‘The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets’. Nucleic Acids Res. 2021, 49, 10800. [Google Scholar] [CrossRef] [PubMed]
- Snel, B.; Lehmann, G.; Bork, P. Huynen MA. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000, 28, 3442–3444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Parra, E.R.; Jiang, M.; Solis, L.; Mino, B.; Laberiano, C.; Hernandez, S.; Gite, S.; Verma, A.; Tetzlaff, M.; Haymaker, C.; et al. Procedural Requirements and Recommendations for Multiplex Immunofluorescence Tyramide Signal Amplification Assays to Support Translational Oncology Studies. Cancers 2020, 12, 255. [Google Scholar] [CrossRef]
- Parra, E.R. Methods to Determine and Analyze the Cellular Spatial Distribution Extracted from Multiplex Immunofluorescence Data to Understand the Tumor Microenvironment. Front. Mol. Biosci. 2021, 8, 668340. [Google Scholar] [CrossRef]
- Pulford, E.; Huilgol, K.; Moffat, D.; Henderson, D.W.; Klebe, S. Malignant Mesothelioma, BAP1 Immunohistochemistry, and VEGFA: Does BAP1 Have Potential for Early Diagnosis and Assessment of Prognosis? Dis. Markers 2017, 2017, 1310478. [Google Scholar] [CrossRef]
- Osmanbeyoglu, H.U.; Palmer, D.; Sagan, A.; Sementino, E.; Becich, M.J.; Testa, J.R. Isolated BAP1 Genomic Alteration in Malignant Pleural Mesothelioma Predicts Distinct Immunogenicity with Implications for Immunotherapeutic Response. Cancers 2022, 14, 5626. [Google Scholar] [CrossRef]
- Suzuki, K.; Tange, M.; Yamagishi, R.; Hanada, H.; Mukai, S.; Sato, T.; Tanaka, T.; Akashi, T.; Kadomatsu, K.; Maeda, T.; et al. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Discov. 2022, 8, 446. [Google Scholar] [CrossRef] [PubMed]
- Creaney, J.; Patch, A.-M.; Addala, V.; Sneddon, S.A.; Nones, K.; Dick, I.M.; Lee, Y.C.G.; Newell, F.; Rouse, E.J.; Naeini, M.M.; et al. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med. 2022, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Lievense, L.A.; Cornelissen, R.; Bezemer, K.; Kaijen-Lambers, M.E.; Hegmans, J.P.; Aerts, J.G. Pleural Effusion of Patients with Malignant Mesothelioma Induces Macrophage-Mediated T Cell Suppression. J. Thorac. Oncol. 2016, 11, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Chéné, A.-L.; D’almeida, S.; Blondy, T.; Tabiasco, J.; Deshayes, S.; Fonteneau, J.-F.; Cellerin, L.; Delneste, Y.; Grégoire, M.; Blanquart, C. Pleural Effusions from Patients with Mesothelioma Induce Recruitment of Monocytes and Their Differentiation into M2 Macrophages. J. Thorac. Oncol. 2016, 11, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garcia, A.; Lynn, R.C.; Poussin, M.; Eiva, M.A.; Shaw, L.C.; O’Connor, R.S.; Minutolo, N.G.; Casado-Medrano, V.; Lopez, G.; Matsuyama, T.; et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 2021, 12, 87. [Google Scholar] [CrossRef]
- Li, C.; Xu, X.; Wei, S.; Jiang, P.; Xue, L.; Wang, J. Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J. Immunother. Cancer 2021, 9, e001341. [Google Scholar] [CrossRef]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef]
- Ma, R.-Y.; Zhang, H.; Li, X.-F.; Zhang, C.-B.; Selli, C.; Tagliavini, G.; Lam, A.D.; Prost, S.; Sims, A.H.; Hu, H.-Y.; et al. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med. 2020, 217, e20191820. [Google Scholar] [CrossRef]
- Parra, E.R.; Ferrufino-Schmidt, M.C.; Tamegnon, A.; Zhang, J.; Solis, L.; Jiang, M.; Ibarguen, H.; Haymaker, C.; Lee, J.J.; Bernatchez, C.; et al. Immuno-profiling and cellular spatial analysis using five immune oncology multiplex immunofluorescence panels for paraffin tumor tissue. Sci. Rep. 2021, 11, 8511. [Google Scholar] [CrossRef]
- Fujimura, T.; Kambayashi, Y.; Furudate, S.; Asano, M.; Kakizaki, A.; Aiba, S. Receptor Activator of NF-κB Ligand Promotes the Production of CCL17 from RANK+ M2 Macrophages. J. Investig. Dermatol. 2015, 135, 2884–2887. [Google Scholar] [CrossRef]
- Qian, Y.; Qiao, S.; Dai, Y.; Xu, G.; Dai, B.; Lu, L.; Yu, X.; Luo, Q.; Zhang, Z. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS Nano 2017, 11, 9536–9549. [Google Scholar] [CrossRef] [PubMed]
- Kakizaki, A.; Fujimura, T.; Furudate, S.; Kambayashi, Y.; Yamauchi, T.; Yagita, H.; Aiba, S. Immunomodulatory effect of peritumorally administered interferon-beta on melanoma through tumor-associated macrophages. OncoImmunology 2015, 4, e1047584. [Google Scholar] [CrossRef] [PubMed]
- Kambayashi, Y.; Fujimura, T.; Furudate, S.; Asano, M.; Kakizaki, A.; Aiba, S. The Possible Interaction between Receptor Activator of Nuclear Factor Kappa-B Ligand Expressed by Extramammary Paget Cells and its Ligand on Dermal Macrophages. J. Investig. Dermatol. 2015, 135, 2547–2550. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, J.S.; Fuentes-Duculan, J.; Suárez-Fariñas, M.; Pierson, K.C.; Pitts-Kiefer, A.; Fan, L.; Belkin, D.A.; Wang, C.Q.; Bhuvanendran, S.; Johnson-Huang, L.M.; et al. Tumor-Associated Macrophages in the Cutaneous SCC Microenvironment Are Heterogeneously Activated. J. Investig. Dermatol. 2011, 131, 1322–1330. [Google Scholar] [CrossRef]
- Wu, X.; Schulte, B.C.; Zhou, Y.; Haribhai, D.; Mackinnon, A.C.; Plaza, J.A.; Williams, C.B.; Hwang, S.T. Depletion of M2-Like Tumor-Associated Macrophages Delays Cutaneous T-Cell Lymphoma Development In Vivo. J. Investig. Dermatol. 2014, 134, 2814–2822. [Google Scholar] [CrossRef]
- Egeblad, M.; Ewald, A.J.; Askautrud, H.A.; Truitt, M.L.; Welm, B.E.; Bainbridge, E.; Peeters, G.; Krummel, M.F.; Werb, Z. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Model. Mech. 2008, 1, 155–167, discussion 65. [Google Scholar] [CrossRef]
- Kou, Y.; Li, Z.; Sun, Q.; Yang, S.; Wang, Y.; Hu, C.; Gu, H.; Wang, H.; Xu, H.; Li, Y.; et al. Prognostic value and predictive biomarkers of phenotypes of tumour-associated macrophages in colorectal cancer. Scand. J. Immunol. 2021, 95, e13137. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Investig. 2017, 97, 4–13. [Google Scholar] [CrossRef]
- Lurier, E.B.; Dalton, D.; Dampier, W.; Raman, P.; Nassiri, S.; Ferraro, N.M.; Rajagopalan, R.; Sarmady, M.; Spiller, K.L. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology 2017, 222, 847–856. [Google Scholar] [CrossRef]
- Huang, Y.-K.; Wang, M.; Sun, Y.; Di Costanzo, N.; Mitchell, C.; Achuthan, A.; Hamilton, J.A.; Busuttil, R.A.; Boussioutas, A. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat. Commun. 2019, 10, 3928. [Google Scholar] [CrossRef]
- Modak, M.; Mattes, A.-K.; Reiss, D.; Skronska-Wasek, W.; Langlois, R.; Sabarth, N.; Konopitzky, R.; Ramirez, F.; Lehr, K.; Mayr, T.; et al. CD206+ tumor-associated macrophages cross-present tumor antigen and drive antitumor immunity. J. Clin. Investig. 2022, 7, e155022. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. (%) |
---|---|
n = 68 | |
Age, median (range) | 58 years (48–63 years) |
Sex | |
Female | 21 (31) |
Male | 47 (69) |
Asbestos exposure | |
No | 31 (46) |
Yes | 37 (54) |
Histology types | |
Epithelioid | 58 (85) |
Sarcomatoid | 10 (15) |
Final stage * | |
III | 58 (85) |
IV | 10 (15) |
Neo-adjuvant chemotherapy | |
Yes | 52 (78.6) |
No | 16 (21.4) |
Follow-up | 40 months |
Overall survival, median (interquartile range) | 15 months (5.3–24.8 months) |
Vital status | |
Dead | 44 (62) |
Alive | 25 (38) |
Phenotype | Total (Range) | Tumor (Range) * | Stroma (Range) * | p * |
---|---|---|---|---|
Total CK+ | 995.08 (42–610.94) | 1707.04 (121.45–6107.18) | - | - |
Total CD68+ | 62.24 (1.83–451.88) | 74.20 (1.24–396.92) | 54.75 (0.00–645.24) | 0.938 |
(M1) CD68+MRP8-14+CD163negCD206negArg-1neg | 0.00 (0.00–21.53) | 0.00 (0.00–37.22) | 0.00 (0.00–16.94) | 0.254 |
(M1) CD68+CD86+CD163negCD206negArg-1neg | 0.00 (0.00–20.04) | 0.00 (0.00–20.68) | 0.00 (0.00–70.93) | 0.765 |
(M1) CD68+CD86+MRP8-14+CD163negCD206negArg-1neg | 0.00 (0.00–0.94) | 0.00 (0.00–4.14) | 0.00 (0.00–0.00) | 0.605 |
(M2) CD68+CD163+MRP8-14negCD86neg | 28.33 (0.00–215.25) | 29.09 (0.00–153.37) | 18.12 (0.00–354.64) | 0.657 |
(M2) CD68+CD206+MRP8-14negCD86neg | 1.98 (0.00–69.97) | 1.58 (0.00–46.28) | 1.14 (0.00–191.07) | 0.615 |
(M2) CD68+CD163+CD206+MRP8-14negCD86neg | 1.55 (0.00–68.94) | 1.22 (0.00–44.92) | 1.08 (0.00–155.97) | 0.574 |
(M2a) CD68+CD163+Arg-1+MRP8-14negCD86neg | 0.00 (0.00–15.20) | 0.00 (0.00–16.94) | 0.00 (0.00–12.46) | 0.010 |
(M2a) CD68+CD206+Arg-1+MRP8-14negCD86neg | 0.00 (0.00–2.26) | 0.00 (0.00–2.65) | 0.00 (0.00–1.66) | 0.089 |
(M2a) CD68+CD163+CD206+Arg-1+MRP8-14negCD86neg | 0.00 (0.00–67.92) | 0.00 (0.00–44.01) | 0.00 (0.00–155.97) | 0.278 |
(M2b) CD68+CD86+MRP8-14neg | 0.97 (0.00–23.45) | 0.48 (0.00–20.68) | 0.00 (0.00–82.76) | 0.585 |
(M2c) CD68+CD163+Arg-1negMRP8-14negCD86neg | 27.89 (0.00–214.71) | 28.31 (0.00–153.37) | 18.12 (0.00–354.64) | 0.951 |
(M2c) CD68+CD206+Arg-1negMRP8-14negCD86neg | 1.77 (0.00–69.26) | 1.56 (0.00–45.37) | 1.03 (0.00–191.07) | 0.626 |
(M2c) CD68+CD163+CD206+Arg-1negMRP8-14negCD86neg | 0.00 (0.00–43.69) | 0.00 (0.00–6.28) | 0.00 (0.00–151.81) | 0.904 |
CK+PD-L1+ | 0.00 (0.00–1.55) | 0.00 (0.00–10.05) | - | - |
CD68+PD-L1+ | 0.00 (0.00–2.48) | 0.00 (0.00–0.00) | 0.00 (0.00–0.48) | 0.608 |
Median Distances from CK+ (µm) | |||||||
---|---|---|---|---|---|---|---|
Phenotype | Overall | * Epithelioid | * Non-Epithelioid | * p | # Asbestos | # Non-Asbestos | # p |
Total CD68+ | 73.52 | 85.49 | 63.20 | 0.084 | 104.34 | 57.81 | 0.006 |
(M1) CD68+MRP8-14+CD163negCD206negArg-1neg | 396.76 | 396.76 | -- | -- | 429.37 | 396.76 | 0.972 |
(M1) CD68+CD86+CD163negCD206negArg-1neg | 363.75 | 380.13 | 290.52 | 0.150 | 353.23 | 369.01 | 0.683 |
(M1) CD68+CD86+MRP8-14+CD163negCD206negArg-1neg | 594.17 | 594.17 | -- | -- | -- | 594.17 | -- |
(M2) CD68+CD163+MRP8-14negCD86neg | 123.72 | 127.33 | 91.79 | 0.304 | 170.19 | 92.69 | 0.070 |
(M2) CD68+CD206+MRP8-14negCD86neg | 279.00 | 282.21 | 243.50 | 0.565 | 282.21 | 275.80 | 0.805 |
(M2) CD68+CD163+CD206+MRP8-14negCD86neg | 305.90 | 309.01 | 243.50 | 0.311 | 297.79 | 309.01 | 0.879 |
(M2a) CD68+CD163+Arg-1+MRP8-14negCD86neg | 123.72 | 127.37 | 91.79 | 0.304 | 170.19 | 92.69 | 0.061 |
(M2a) CD68+CD206+Arg-1+MRP8-14negCD86neg | 509.77 | 509.77 | -- | -- | 427.64 | 587.42 | 0.279 |
(M2a) CD68+CD163+CD206+Arg-1+MRP8-14negCD86neg | 309.01 | 314.52 | 243.50 | 0.345 | 317.93 | 306.11 | 0.808 |
(M2b) CD68+CD86+MRP8-14neg | 336.39 | 378.78 | 255.33 | 0.028 | 332.19 | 373.46 | 0.851 |
(M2c) CD68+CD163+Arg-1negMRP8-14negCD86neg | 123.72 | 127.37 | 91.79 | 0.304 | 170.19 | 92.69 | 0.061 |
(M2c) CD68+CD206+Arg-1negMRP8-14negCD86neg | 275.80 | 284.55 | 243.50 | 0.593 | 293.30 | 240.00 | 0.481 |
(M2c) CD68+CD163+CD206+Arg-1negMRP8-14negCD86neg | 345.72 | 345.72 | 367.92 | 1.000 | 317.93 | 533.08 | 0.008 |
CD68+PD-L1+ | 582.32 | 582.32 | -- | -- | -- | 582.32 | -- |
Variable | B | SE | Wald | HR | 95% CI for Exp(B) | p |
---|---|---|---|---|---|---|
Histologic type (epithelioid vs. non-epithelioid) | −0.754 | 0.579 | 1.695 | 0.471 | 0.151–1.464 | 0.193 |
Asbestos exposure (yes vs. no) | 0.164 | 0.533 | 0.095 | 1.179 | 0.415–3.351 | 0.758 |
Total CD68+ (close vs. long distance from malignant cells) | −0.737 | 0.557 | 1.747 | 0.479 | 0.160–1.427 | 0.186 |
Low vs. high densities | ||||||
Total CD68+ | −0.205 | 1.022 | 0.040 | 0.815 | 0.110–6.037 | 0.841 |
(M1) CD68+MRP8-14+CD163negCD206negArg-1neg | −0.579 | 0.441 | 1.721 | 0.561 | 0.236–1.331 | 0.190 |
(M1) CD68+CD86+CD163negCD206negArg-1neg | −0.330 | 0.699 | 0.223 | 0.719 | 0.183–2.830 | 0.637 |
(M1) CD68+CD86+MRP8-14+CD163negCD206negArg-1neg | −2.813 | 1.675 | 2.821 | 0.060 | 0.002–1.600 | 0.093 |
(M2) CD68+CD163+MRP8-14negCD86neg | 1.336 | 1.262 | 1.120 | 3.802 | 0.321–45.103 | 0.290 |
(M2) CD68+CD206+MRP8-14negCD86neg | −1.999 | 0.923 | 4.688 | 0.135 | 0.022–0.827 | 0.030 |
(M2) CD68+CD163+CD206+MRP8-14negCD86neg | 1.957 | 0.812 | 5.814 | 7.079 | 1.442–34.743 | 0.016 |
(M2a) CD68+CD163+Arg-1+MRP8-14negCD86neg | 0.371 | 0.531 | 0.488 | 1.449 | 0.512–4.105 | 0.485 |
(M2a) CD68+CD206+Arg-1+MRP8-14negCD86neg | −0.996 | 0.769 | 1.679 | 0.369 | 0.082–1.666 | 0.195 |
(M2a) CD68+CD163+CD206+Arg-1+MRP8-14negCD86neg | 0.330 | 0.620 | 0.284 | 1.391 | 0.413–4.692 | 0.594 |
(M2b) CD68+CD86+MRP8-14neg | −0.358 | 0.660 | 0.294 | 0.699 | 0.192–2.550 | 0.588 |
(M2c) CD68+CD163+Arg-1negMRP8-14negCD86neg | −0.805 | 1.249 | 0.416 | 0.447 | 0.039–5.166 | 0.519 |
(M2c) CD68+CD206+Arg-1negMRP8-14negCD86neg | −0.273 | 0.684 | 0.159 | 0.761 | 0.199–2.907 | 0.690 |
(M2c) CD68+CD163+CD206+Arg-1negMRP8-14negCD86neg | 1.364 | 0.847 | 2.591 | 3.910 | 0.743–20.573 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laberiano-Fernandez, C.; Baldavira, C.M.; Machado-Rugolo, J.; Tamegnon, A.; Pandurengan, R.K.; Ab’Saber, A.M.; Balancin, M.L.; Takagaki, T.Y.; Nagai, M.A.; Capelozzi, V.L.; et al. The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma. Cancers 2023, 15, 5116. https://doi.org/10.3390/cancers15215116
Laberiano-Fernandez C, Baldavira CM, Machado-Rugolo J, Tamegnon A, Pandurengan RK, Ab’Saber AM, Balancin ML, Takagaki TY, Nagai MA, Capelozzi VL, et al. The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma. Cancers. 2023; 15(21):5116. https://doi.org/10.3390/cancers15215116
Chicago/Turabian StyleLaberiano-Fernandez, Caddie, Camila Machado Baldavira, Juliana Machado-Rugolo, Auriole Tamegnon, Renganayaki Krishna Pandurengan, Alexandre Muxfeldt Ab’Saber, Marcelo Luiz Balancin, Teresa Yae Takagaki, Maria Aparecida Nagai, Vera Luiza Capelozzi, and et al. 2023. "The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma" Cancers 15, no. 21: 5116. https://doi.org/10.3390/cancers15215116
APA StyleLaberiano-Fernandez, C., Baldavira, C. M., Machado-Rugolo, J., Tamegnon, A., Pandurengan, R. K., Ab’Saber, A. M., Balancin, M. L., Takagaki, T. Y., Nagai, M. A., Capelozzi, V. L., & Parra, E. R. (2023). The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma. Cancers, 15(21), 5116. https://doi.org/10.3390/cancers15215116