Prediction of Primary Tumour and Axillary Lymph Node Response to Neoadjuvant Chemo(Targeted) Therapy with Dedicated Breast [18F]FDG PET/MRI in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Neoadjuvant Chemo(targeted) Therapy Regimens
2.3. [18F]FDG PET/MRI
2.4. Image Evaluation
2.5. Pathologic Response Reference Standard
2.6. Statistical Analysis
3. Results
3.1. Clinicopathologic Characteristics
3.2. Quantitative Imaging Variables in Relation to Response
3.3. Response Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Aguilar Lopez, B.; Barrios, C.H.; Bergh, J.; et al. 4th ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef]
- Asselain, B.; Barlow, W.; Bartlett, J.; Bergh, J.; Bergsten-Nordström, E.; Bliss, J.; Boccardo, F.; Boddington, C.; Bogaerts, J.; Bonadonna, G.; et al. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2017, 19, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mougalian, S.S.; Hernandez, M.; Lei, X.; Lynch, S.; Kuerer, H.M.; Symmans, W.F.; Theriault, R.L.; Fornage, B.D.; Hsu, L.; Buchholz, T.A.; et al. Ten-Year Outcomes of Patients With Breast Cancer With Cytologically Confirmed Axillary Lymph Node Metastases and Pathologic Complete Response After Primary Systemic Chemotherapy. JAMA Oncol. 2016, 2, 508–516. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Samiei, S.; Simons, J.M.; Engelen, S.M.E.; Beets-Tan, R.G.H.; Classe, J.-M.; Smidt, M.L.; EUBREAST Group. Axillary Pathologic Complete Response After Neoadjuvant Systemic Therapy by Breast Cancer Subtype in Patients With Initially Clinically Node-Positive Disease. JAMA Surg. 2021, 156, e210891. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Blohmer, J.U.; Costa, S.D.; Denkert, C.; Eidtmann, H.; Eiermann, W.; Gerber, B.; Hanusch, C.; Hilfrich, J.; Huober, J.; et al. Response-guided neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 2013, 31, 3623–3630. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Trahan, T.J.; Xiao, J.; Taghipour, M.; Mena, E.; Connolly, R.M.; Subramaniam, R.M. FDG-PET/CT and MRI for Evaluation of Pathologic Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer: A Meta-Analysis of Diagnostic Accuracy Studies. Oncologist 2016, 21, 931–939. [Google Scholar] [CrossRef]
- Li, H.; Yao, L.; Jin, P.; Hu, L.; Li, X.; Guo, T.; Yang, K. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Breast 2018, 40, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, U.; Miyake, M.; Nagaoka, T.; Terauchi, T.; Kubota, K.; Kinoshita, T.; Daisaki, H.; Macapinlac, H.A. Neoadjuvant Chemotherapy in Breast Cancer: Prediction of Pathologic Response with PET/CT and Dynamic Contrast-enhanced MR Imaging—Prospective Assessment. Radiology 2012, 263, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Simons, J.M.; Koppert, L.B.; Luiten, E.J.T.; van der Pol, C.C.; Samiei, S.; de Wilt, J.H.W.; Siesling, S.; Smidt, M.L. De-escalation of axillary surgery in breast cancer patients treated in the neoadjuvant setting: A Dutch population-based study. Breast Cancer Res. Treat. 2020, 180, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.M.; Weiss, A.; Mittendorf, E.A.; King, T.A.; Golshan, M. Surgical Management of the Axilla in Clinically Node-Positive Patients Receiving Neoadjuvant Chemotherapy: A National Cancer Database Analysis. Ann. Surg. Oncol. 2019, 26, 3517–3525. [Google Scholar] [CrossRef]
- Samiei, S.; de Mooij, C.M.; Lobbes, M.B.I.; Keymeulen, K.B.M.I.; van Nijnatten, T.J.A.; Smidt, M.L. Diagnostic Performance of Noninvasive Imaging for Assessment of Axillary Response After Neoadjuvant Systemic Therapy in Clinically Node-positive Breast Cancer. Ann. Surg. 2020, 273, 694–700. [Google Scholar] [CrossRef]
- Goorts, B.; Vöö, S.; van Nijnatten, T.J.A.; Kooreman, L.F.S.; de Boer, M.; Keymeulen, K.B.M.I.; Aarnoutse, R.; Wildberger, J.E.; Mottaghy, F.M.; Lobbes, M.B.I.; et al. Hybrid 18F–FDG PET/MRI might improve locoregional staging of breast cancer patients prior to neoadjuvant chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1796–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo Hyun, O.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Futamura, M.; Asano, T.; Kobayashi, K.; Morimitsu, K.; Nawa, M.; Kanematsu, M.; Morikawa, A.; Mori, R.; Yoshida, K. Prediction of macrometastasis in axillary lymph nodes of patients with invasive breast cancer and the utility of the SUV lymph node/tumor ratio using FDG-PET/CT. World J. Surg. Oncol. 2015, 13, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aukema, T.S.; Straver, M.E.; Vrancken Peeters, M.-J.T.F.D.; Russell, N.S.; Gilhuijs, K.G.A.; Vogel, W.V.; Rutgers, E.J.T.; Olmos, R.A.V. Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II–III breast cancer. Eur. J. Cancer 2010, 46, 3205–3210. [Google Scholar] [CrossRef]
- Hylton, N.M.; Blume, J.D.; Bernreuter, W.K.; Pisano, E.D.; Rosen, M.A.; Morris, E.A.; Weatherall, P.T.; Lehman, C.D.; Newstead, G.M.; Polin, S.; et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—Results from ACRIN 6657/I-SPY TRIAL. Radiology 2012, 263, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.C.; Zhang, Z.; Newitt, D.C.; Gibbs, J.E.; Chenevert, T.L.; Rosen, M.A.; Bolan, P.; Marques, H.S.; Romanoff, J.; Cimino, L.; et al. Diffusion-weighted MRI Findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial. Radiology 2018, 289, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltzer, P.A.T.; Dietzel, M.; Burmeister, H.P.; Zoubi, R.; Gajda, M.; Camara, O.; Kaiser, W.A. Application of MR Mammography Beyond Local Staging: Is There a Potential to Accurately Assess Axillary Lymph Nodes? Evaluation of an Extended Protocol in an Initial Prospective Study. Am. J. Roentgenol. 2011, 196, W641–W647. [Google Scholar] [CrossRef]
- Farshchian, N.; Tamari, S.; Farshchian, N.; Madani, H.; Rezaie, M.; Mohammadi-Motlagh, H.-R. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy. Eur. J. Radiol. 2011, 80, 594–597. [Google Scholar] [CrossRef]
- NABON Breast Cancer Audit. National Breast Cancer Guideline. Available online: https://richtlijnendatabase.nl/richtlijn/borstkanker/algemeen.html (accessed on 26 April 2022).
- Li, Z.; Li, J.; Lu, X.; Qu, M.; Tian, J.; Lei, J. The diagnostic performance of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in evaluating the pathological response of breast cancer to neoadjuvant chemotherapy: A meta-analysis. Eur. J. Radiol. 2021, 143, 109931. [Google Scholar] [CrossRef]
- Tian, F.; Shen, G.; Deng, Y.; Diao, W.; Jia, Z. The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: A meta-analysis and systematic review. Eur. Radiol. 2017, 27, 4786–4796. [Google Scholar] [CrossRef]
- Gu, Y.-L.; Pan, S.-M.; Ren, J.; Yang, Z.-X.; Jiang, G.-Q. Role of Magnetic Resonance Imaging in Detection of Pathologic Complete Remission in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy: A Meta-analysis. Clin. Breast Cancer 2017, 17, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekine, C.; Uchiyama, N.; Watase, C.; Murata, T.; Shiino, S.; Jimbo, K.; Iwamoto, E.; Takayama, S.; Kurihara, H.; Satomi, K.; et al. Preliminary experiences of PET/MRI in predicting complete response in patients with breast cancer treated with neoadjuvant chemotherapy. Mol. Clin. Oncol. 2021, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Orsaria, P.; Chiaravalloti, A.; Caredda, E.; Marchese, P.V.; Titka, B.; Anemona, L.; Portarena, I.; Schillaci, O.; Petrella, G.; Palombi, L.; et al. Evaluation of the Usefulness of FDG-PET/CT for Nodal Staging of Breast Cancer. Anticancer Res. 2018, 38, 6639–6652. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wan, C.; Zhang, J. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers. Front. Oncol. 2022, 12, 942943. [Google Scholar] [CrossRef]
- Groheux, D.; Majdoub, M.; Sanna, A.; De Cremoux, P.; Hindié, E.; Giacchetti, S.; Martineau, A.; De Roquancourt, A.; Merlet, P.; Visvikis, D.; et al. Early Metabolic Response to Neoadjuvant Treatment: FDG PET/CT Criteria according to Breast Cancer Subtype. Radiology 2015, 277, 358–371. [Google Scholar] [CrossRef]
- Janssen, L.M.; den Dekker, B.M.; Gilhuijs, K.G.A.; van Diest, P.J.; van der Wall, E.; Elias, S.G. MRI to assess response after neoadjuvant chemotherapy in breast cancer subtypes: A systematic review and meta-analysis. NPJ Breast Cancer 2022, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- de Mooij, C.M.; Mitea, C.; Mottaghy, F.M.; Smidt, M.L.; van Nijnatten, T.J.A. Value of 18F-FDG PET/CT for predicting axillary pathologic complete response following neoadjuvant systemic therapy in breast cancer patients: Emphasis on breast cancer subtype. EJNMMI Res. 2021, 11, 116. [Google Scholar] [CrossRef]
- Loo, C.E.; Straver, M.E.; Rodenhuis, S.; Muller, S.H.; Wesseling, J.; Vrancken Peeters, M.-J.T.F.D.; Gilhuijs, K.G.A. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: Relevance of breast cancer subtype. J. Clin. Oncol. 2011, 29, 660–666. [Google Scholar] [CrossRef] [PubMed]
- van der Hoogt, K.J.J.; Schipper, R.J.; Winter-Warnars, G.A.; ter Beek, L.C.; Loo, C.E.; Mann, R.M.; Beets-Tan, R.G.H. Factors affecting the value of diffusion-weighted imaging for identifying breast cancer patients with pathological complete response on neoadjuvant systemic therapy: A systematic review. Insights Into Imaging 2021, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Im, S.-A.; Cheon, G.J.; Park, I.-A.; Lee, K.-H.; Kim, T.-Y.; Kim, Y.S.; Kwon, B.R.; Lee, J.M.; Suh, H.Y.; et al. Integrated 18F-FDG PET/MRI in breast cancer: Early prediction of response to neoadjuvant chemotherapy. Eur. J. Nucl. Med. 2017, 45, 328–339. [Google Scholar] [CrossRef]
- Wang, J.; Shih, T.T.-F.; Yen, R.-F. Multiparametric Evaluation of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer Using Integrated PET/MR. Clin. Nucl. Med. 2017, 42, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Hieken, T.J.; Boughey, J.C.; Jones, K.N.; Shah, S.S.; Glazebrook, K.N. Imaging response and residual metastatic axillary lymph node disease after neoadjuvant chemotherapy for primary breast cancer. Ann. Surg. Oncol. 2013, 20, 3199–3204. [Google Scholar] [CrossRef]
- You, S.; Kang, D.K.; Jung, Y.S.; An, Y.-S.; Jeon, G.S.; Kim, T.H. Evaluation of lymph node status after neoadjuvant chemotherapy in breast cancer patients: Comparison of diagnostic performance of ultrasound, MRI and 18F-FDG PET/CT. Br. J. Radiol. 2015, 88, 20150143. [Google Scholar] [CrossRef]
- Vicente, A.M.G.; Amo-Salas, M.; Calatayud, F.R.; Del Mar Munoz Sánchez, M.; Pardo, F.J.P.; Londoño, G.A.J.; Cabellos, R.; Aunión, R.E.; Castrejón, S. Prognostic role of early and end-of-neoadjuvant treatment 18F-FDG PET/CT in patients with breast cancer. Clin. Nucl. Med. 2016, 41, e313–e322. [Google Scholar] [CrossRef]
- Rousseau, C.; Devillers, A.; Campone, M.; Campion, L.; Ferrer, L.; Sagan, C.; Ricaud, M.; Bridji, B.; Kraeber-Bodéré, F. FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Eur. J. Pediatr. 2011, 38, 1029–1036. [Google Scholar] [CrossRef]
- Koolen, B.B.; Valdés Olmos, R.A.; Wesseling, J.; Vogel, W.V.; Vincent, A.D.; Gilhuijs, K.G.A.; Rodenhuis, S.; Rutgers, E.J.T.; Vrancken Peeters, M.-J.T.F.D. Early assessment of axillary response with 18F-FDG PET/CT during neoadjuvant chemotherapy in stage II-III breast cancer: Implications for surgical management of the axilla. Ann. Surg. Oncol. 2013, 20, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Samiei, S.; van Nijnatten, T.J.A.; de Munck, L.; Keymeulen, K.B.M.I.; Simons, J.M.; Kooreman, L.F.S.; Siesling, S.; Lobbes, M.B.I.; Smidt, M.L. Correlation Between Pathologic Complete Response in the Breast and Absence of Axillary Lymph Node Metastases After Neoadjuvant Systemic Therapy. Ann. Surg. 2020, 271, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Eun, N.L.; Son, E.J.; Gweon, H.M.; Kim, J.-A.; Youk, J.H. Prediction of axillary response by monitoring with ultrasound and MRI during and after neoadjuvant chemotherapy in breast cancer patients. Eur. Radiol. 2020, 30, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
Primary Tumour Response in All Patients | Axillary Response in cN+ Patients | |||||
---|---|---|---|---|---|---|
Characteristics | Total | pCR | RD | Total | pCR | RD |
(n = 42) | (n = 16) | (n = 26) | (n = 26) | (n = 14) | (n = 12) | |
Age (years) | ||||||
Median, range | 50 (32–69) | 48 (36–59) | 51 (32–69) | 49 (32–69) | 48 (32–69) | 52 (37–69) |
Clinical tumour size (mm) | ||||||
Median, range | 34 (13–78) | 46 (13–78) | 31 (13–77) | 38 (13–78) | 38 (13–78) | 36 (16–70) |
Clinical T status | ||||||
cT1 | 5 (11.9) | 2 (12.5) | 3 (11.5) | 4 (15.4) | 2 (14.3) | 2 (16.7) |
cT2 | 27 (64.3) | 8 (50.0) | 19 (73.1) | 15 (57.7) | 7 (50.0) | 8 (66.7) |
cT3 | 9 (21.4) | 6 (37.5) | 3 (11.5) | 7 (26.9) | 5 (35.7) | 2 (16.7) |
cT4 | 1 (2.4) | 0 (0.0) | 1 (3.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Clinical N status | ||||||
cN0 | 15 (35.7) | 6 (37.5) | 9 (34.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
cN1 | 24 (57.1) | 8 (50.0) | 16 (61.5) | 24 (92.3) | 13 (92.9) | 11 (91.7) |
cN2 | 1 (2.4) | 0 (0.0) | 1 (3.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
cN3 | 2 (4.8) | 2 (12.5) | 0 (0.0) | 2 (7.7) | 1 (7.1) | 1 (8.3) |
Focality | ||||||
Unifocal | 26 (61.9) | 9 (56.3) | 17 (65.4) | 13 (50.0) | 6 (42.9) | 7 (58.3) |
Multifocal | 2 (4.8) | 1 (6.3) | 1 (3.8) | 1 (3.8) | 1 (7.1) | 0 (0.0) |
Multicentric | 4 (9.5) | 4 (25.0) | 0 (0.0) | 3 (11.5) | 2 (14.3) | 1 (8.3) |
Multicentric/multifocal | 10 (23.8) | 2 (12.5) | 8 (30.8) | 9 (34.6) | 5 (35.7) | 4 (33.3) |
ER status | ||||||
Negative | 16 (38.1) | 8 (50.0) | 8 (30.8) | 10 (38.5) | 6 (42.9) | 4 (33.3) |
Positive | 26 (61.9) | 8 (50.0) | 18 (69.2) | 16 (61.5) | 8 (57.1) | 8 (66.7) |
PR status | ||||||
Negative | 26 (61.9) | 12 (75.0) | 14 (53.8) | 17 (65.4) | 9 (64.3) | 8 (66.7) |
Positive | 16 (38.1) | 4 (25.0) | 12 (46.2) | 9 (34.6) | 5 (35.7) | 4 (33.3) |
HER2 status | ||||||
Negative | 29 (69.0) | 6 (37.5) | 23 (88.5) | 20 (76.9) | 8 (57.1) | 12 (100.0) |
Positive | 13 (31.0) | 10 (62.5) | 3 (11.5) | 6 (23.1) | 6 (42.9) | 0 (0.0) |
Subtype | ||||||
ER+/HER2− | 19 (45.2) | 2 (12.5) | 17 (65.4) | 13 (50.0) | 5 (35.7) | 8 (66.7) |
ER+/HER2+ | 7 (16.7) | 6 (37.5) | 1 (3.8) | 3 (11.5) | 3 (21.4) | 0 (0.0) |
ER−/HER2+ | 6 (14.3) | 4 (25.0) | 2 (7.7) | 3 (11.5) | 3 (21.4) | 0 (0.0) |
TNBC | 10 (23.8) | 4 (25.0) | 6 (23.1) | 7 (26.9) | 3 (21.4) | 4 (33.3) |
Tumour grade (mBR) | ||||||
Grade 1 | 4 (9.5) | 1 (6.3) | 3 (11.5) | 4 (15.4) | 1 (7.1) | 3 (25.0) |
Grade 2 | 22 (52.4) | 8 (50.0) | 14 (53.8) | 13 (50.0) | 6 (42.9) | 7 (58.3) |
Grade 3 | 16 (38.1) | 7 (43.8) | 9 (34.6) | 9 (34.6) | 7 (50.0) | 2 (16.7) |
Type of breast surgery | ||||||
BCS | 25 (59.5) | 10 (62.5) | 15 (57.7) | 15 (57.7) | 10 (71.4) | 5 (41.7) |
Ablatio | 17 (40.5) | 6 (37.5) | 11 (42.3) | 11 (42.3) | 4 (28.6) | 7 (58.3) |
Type of axillary surgery | ||||||
SLNB | 17 (40.5) | 7 (43.8) | 10 (38.5) | 1 (3.8) | 1 (7.1) | 0 (0.0) |
RISAS | 3 (7.1) | 0 (0.0) | 3 (11.5) | 22 (84.6) | 11 (78.6) | 11 (91.7) |
ALND | 22 (52.4) | 9 (56.3) | 13 (50.0) | 3 (11.5) | 2 (14.3) | 1 (8.3) |
pCR | RD | p-Value | Optimal Cut-Off | |||
---|---|---|---|---|---|---|
Primary tumour response | ||||||
SUVmax * | ||||||
Δ2-1 (%) | −82.6 | (−94.1 to −9.2) | −40.7 | (−87.7 to 8.9) | 0.017 | −75.0 |
LD | ||||||
PETMRI-3 (mm) | 0 | (0.0 to 37.0) | 15 | (0.0 to 38.0) | 0.018 | 11 |
Δ3-1 (%) | −100.0 | (−100.0 to −19.57) | −40.9 | (−100.0 to 0.0) | 0.012 | −68.4 |
SER | ||||||
Δ2-1 (%) | −30.1 | (−68.0 to 8.0) | −13.0 | (−69.5 to 46.5) | 0.044 | −23.9 |
Δ3-1 (%) | −54.3 | (−75.4 to −14.5) | −38.4 | (−65.3 to 0.6) | 0.013 | −52.6 |
Axillary response | ||||||
SUVmax † | ||||||
PETMRI-2 | 0.5 | (0.4 to 2.7) | 0.9 | (0.6 to 5.5) | 0.03 | 0.58 |
Δ2-1 (%) | −88.0 | (−96.1 to −37.3) | −59.8 | (−93.6 to −7.3) | 0.01 | −75.5 |
NT ratio | ||||||
PETMRI-2 | 0.4 | (0.2 to 1.5) | 0.6 | (0.2 to 3.8) | 0.041 | 0.42 |
Δ2-1 (%) | −59.7 | (−92.6 to 42.3) | −35.7 | (−66.0 to 78.1) | 0.018 | −46.8 |
LD | ||||||
PETMRI-3 (mm) | 0 | (0.0 to 38.0) | 15 | (0.0 to 30.0) | 0.047 | 11 |
Δ3-1 (%) | −100.0 | (−100.0 to −28.3) | −53.8 | (−100.0 to 0.0) | 0.026 | −71.1 |
Sensitivity | Specificity | PPV | NPV | AUC | |
---|---|---|---|---|---|
Qualitative response evaluation | |||||
PET-3 | 71 (15/21) [48–89] | 62 (10/16) [35–85] | 71 (15/21) [48–89] | 62 (10/16) [35–85] | 0.67 [0.49–0.85] |
MRI-3 | 71 (15/21) [48–89] | 62 (10/16) [35–85] | 71 (15/21) [48–89] | 62 (10/16) [35–85] | 0.67 [0.49–0.85] |
PETMRI-3 | 86 (18/21) [64–97] | 56 (9/16) [30–80] | 72 (18/25) [51–88] | 75 (9/12) [43–95] | 0.71 [0.53–0.89] |
Quantitative response evaluation | |||||
SUVmax | |||||
Δ2-1 (%) | 92 (23/25) [74–99] | 62 (8/13) [32–86] | 82 (23/28) [63–94] | 80 (8/10) [44–97] | 0.74 [0.53–0.94] |
LD | |||||
PETMRI-3 (mm) | 62 (13/21) [38–82] | 81 (13/16) [54–96] | 81 (13/16) [54–96] | 62 (13/21) [38–82] | 0.72 [0.55–0.89] |
Δ3-1 (%) | 67 (14/21) [43–85] | 88 (14/16) [62–98] | 88 (14/16) [62–98] | 67 (14/21) [43–85] | 0.74 [0.57–0.90] |
SER | |||||
Δ2-1 (%) | 64 (16/25) [43–82] | 69 (9/13) [39–91] | 80 (16/20) [56–94] | 50 (9/18) [26–74] | 0.70 [0.52–0.88] |
Δ3-1 (%) | 76 (16/21) [53–92] | 62 (10/16) [35–85] | 73 (16/22) [50–89] | 67 (10/15) [38–88] | 0.74 [0.58–0.90] |
Combined variables | |||||
SUVmax or SER (Δ2-1) | 96 (24/25) [80–100] | 38 (5/13) [14–68] | 75 (24/32) [57–89] | 83 (5/6) [36–100] | 0.67 [0.48–0.87] |
SUVmax and SER (Δ2-1) | 64 (16/25) [43–82] | 92 (12/13) [64–100] | 94 (16/17) [71–100] | 57 (12/21) [34–78] | 0.78 [0.63–0.93] |
LD or SER (Δ3-1) | 81 (17/21) [58–95] | 63 (10/16) [35–85] | 74 (17/23) [52–90] | 71 (10/14) [42–92] | 0.72 [0.54–0.89] |
LD and SER (Δ3-1) | 62 (13/21) [38–82] | 88 (14/16) [62–98] | 87 (13/15) [60–98] | 64 (14/22) [41–83] | 0.75 [0.59–0.91] |
Sensitivity | Specificity | PPV | NPV | AUC | |
---|---|---|---|---|---|
Qualitative response evaluation | |||||
PET-3 | 0 (0/7) [0–14] | 100 (14/14) [77–100] | 0 (0/0) [0–0] | 67 (14/21) [43–85] | 0.50 [0.23–0.77] |
MRI-3 | 0 (0/7) [0–41] | 93 (13/14) [66–100] | 0 (0/1) [0–97] | 65 (13/20) [41–85] | 0.54 [0.27–0.80] |
PETMRI-3 | 0 (0/7) [0–41] | 93 (13/14) [66–100] | 0 (0/1) [0–97] | 65 (13/20) [41–85] | 0.54 [0.27–0.80] |
Quantitative response evaluation | |||||
SUVmax | |||||
PETMRI-2 | 100 (12/12) [74–100] | 60 (6/10) [26–88] | 75 (12/16) [48–93] | 100 (6/6) [54–100] | 0.78 [0.57–0.98] |
Δ2-1 (%) | 83 (10/12) [52–98] | 80 (8/10) [44–97] | 83 (10/12) [52–98] | 80 (8/10) [44–97] | 0.83 [0.64–1.00] |
NT ratio | |||||
PETMRI-2 | 92 (11/12) [62–100] | 60 (6/10) [26–88] | 73 (11/15) [45–92] | 86 (6/7) [42–100] | 0.80 [0.60–1.00] |
Δ2-1 (%) | 83 (10/12) [52–98] | 80 (8/10) [44–97] | 83 (10/12) [52–98] | 80 (8/10) [44–97] | 0.76 [0.55–0.97] |
LD (mm) | |||||
PETMRI-3 | 71 (5/7) [29–96] | 86 (12/14) [57–98] | 71 (5/7) [29–96] | 86 (12/14) [57–98] | 0.75 [0.50–0.99] |
Δ3-1 (%) | 71 (5/7) [29–96] | 86 (12/14) [57–98] | 71 (5/7) [29–96] | 86 (12/14) [57–98] | 0.78 [0.54–1.00] |
Combined variables | |||||
SUVmax (2) or SUVmax (Δ2-1) | 100 (12/12) [74–100] | 40 (4/10) [12–74] | 67 (12/18) [41–87] | 100 (4/4) [40–100] | 0.70 [0.47–0.93] |
SUVmax (2) and SUVmax (Δ2-1) | 83 (10/12) [52–98] | 100 (10/10) [69–100] | 100 (10/10) [69–100] | 83 (10/12) [52–98] | 0.92 [0.79–1.00] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mooij, C.M.; van Nijnatten, T.J.A.; Goorts, B.; Kooreman, L.F.S.; Raymakers, I.W.M.; van Meijl, S.P.L.; de Boer, M.; Keymeulen, K.B.M.I.; Wildberger, J.E.; Mottaghy, F.M.; et al. Prediction of Primary Tumour and Axillary Lymph Node Response to Neoadjuvant Chemo(Targeted) Therapy with Dedicated Breast [18F]FDG PET/MRI in Breast Cancer. Cancers 2023, 15, 401. https://doi.org/10.3390/cancers15020401
de Mooij CM, van Nijnatten TJA, Goorts B, Kooreman LFS, Raymakers IWM, van Meijl SPL, de Boer M, Keymeulen KBMI, Wildberger JE, Mottaghy FM, et al. Prediction of Primary Tumour and Axillary Lymph Node Response to Neoadjuvant Chemo(Targeted) Therapy with Dedicated Breast [18F]FDG PET/MRI in Breast Cancer. Cancers. 2023; 15(2):401. https://doi.org/10.3390/cancers15020401
Chicago/Turabian Stylede Mooij, Cornelis M., Thiemo J. A. van Nijnatten, Briete Goorts, Loes F. S. Kooreman, Isabel W. M. Raymakers, Silke P. L. van Meijl, Maaike de Boer, Kristien B. M. I. Keymeulen, Joachim E. Wildberger, Felix M. Mottaghy, and et al. 2023. "Prediction of Primary Tumour and Axillary Lymph Node Response to Neoadjuvant Chemo(Targeted) Therapy with Dedicated Breast [18F]FDG PET/MRI in Breast Cancer" Cancers 15, no. 2: 401. https://doi.org/10.3390/cancers15020401
APA Stylede Mooij, C. M., van Nijnatten, T. J. A., Goorts, B., Kooreman, L. F. S., Raymakers, I. W. M., van Meijl, S. P. L., de Boer, M., Keymeulen, K. B. M. I., Wildberger, J. E., Mottaghy, F. M., Lobbes, M. B. I., & Smidt, M. L. (2023). Prediction of Primary Tumour and Axillary Lymph Node Response to Neoadjuvant Chemo(Targeted) Therapy with Dedicated Breast [18F]FDG PET/MRI in Breast Cancer. Cancers, 15(2), 401. https://doi.org/10.3390/cancers15020401