Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. DNA Methylation Profiles in HNSCC
2.1. DNA Methylation Profiles in HPV-Positive HNSCC
2.2. DNA Methylation Profiles in HPV-Negative HNSCC
3. DNA Methylation as Potential Biomarkers
3.1. Differentially Methylated Genes That May Be Involved in Tumorigenesis of HPV-Positive HNSCC
3.2. DNA Methylation as a Potential Diagnostic Biomarker
3.2.1. EDNRB and DCC
3.2.2. Differentially Methylated DNA Regions (DMRs) in HPV-Positive OPSCC
3.2.3. Prominin 1 (PROM1)
3.3. DNA Methylation as a Potential Prognostic Biomarker
3.3.1. Aberrantly Methylated Genes as Potential Prognostic Biomarkers in OPSCC
p16INK4A and p14ARF (Cell Cycle Regulation Genes)
3.3.2. Aberrantly Methylated Genes as Potential Prognostic Biomarkers in HPV-Negative HNSCC
MGMT
COL1A2
HPV Status | Methylation Status/Gene Name | Biological Pathway/Function | Potential Biomarker (Tumorigenesis, Diagnostic, Prognostic) |
---|---|---|---|
HPV+ | Hypermethylated | ||
CCNA1, RASSF1, CDKN2A | Cell cycle regulation and apoptosis | ||
CDH (1, 8, 11, 13, 15, 18, 19, 23) | Cellular adhesion | ||
CADM1, ITGA4 | Cellular adhesion | ||
TIMP3, ELMO1, CTNNA2 | Cellular migration | ||
RXRG, GATA4 | Differentiation | ||
SULF1 (Sulfatase 1) | Growth factor signaling, tumorigenesis | ||
GPCR (HCRTR2, GALR1, HCRTR1, TACR1, NTSR1) | Involved in cAMP and phosphatidylinositol signaling pathway | ||
20 genes as methylation markers (listed in Section 3.2.2) | Diagnostic: 20 DMRs, higher DNA methylation compared to normal tissues, and HPV-negative HNSCC [31] | ||
Hypomethylated | |||
SYCP2 | Associated with impaired meiosis | Tumorigenesis: Significant increase of gene expression in premalignant and OPSCC compared to normal tissues [15] | |
TAF7L | Regulate the binding of the TFIID/RNA polymerase II (RNAP II) complex | Tumorigenesis: Involved in tumorigenesis of breast cancer [16]; no report on HNSCC yet | |
HPV− | 38-differentially methylated probes (DMPs) | Prognostic: High prognostic value for local regional recurrence, distant metastasis, and OS for locally advanced HNSCC [17] | |
MGMT | Tumor suppressor | Prognostic: Hypermethylation of MGMT had a better 2-year OS [42] | |
COL1A2 | Encodes fibrillary collagen | Prognostic: Hypermethylation of COL1A2 is associated with disease-free survival specifically in hypopharyngeal and laryngeal cancer [46] | |
Unspecified | Hypermethylated | ||
EDNRB | EDNRB: Encodes B-type endothelin receptor | Diagnostic: Hypermethylated EDNRB and DCC in precancerous lesions and oral cavity cancer [28,29] | |
DCC | DCC: Tumor suppressor | ||
Prominin 1 (PROM1) | Diagnostic: Hypermethylated PROM1 compared to normal tissue [32] Prognostic: PROM1 promoter methylation is associated with poor RFS and OS [32] | ||
CDKN2A | Encodes p16INK4A and p14ARF; both function as tumor suppressor | Prognostic: Promoter hypermethylation is associated with shorter OS and RFS [35] | |
CDKN2A (p16INK gene-specific) | Activates RB-dependent cell cycle arrest | Prognostic: Promoter hypermethylation is associated with increased disease recurrence in oral cavity cancer [34] | |
CDKN2A (p14ARF gene-specific) | Activates the tumor suppressor gene p53 by inhibiting MDM2 | Prognostic: Promoter hypermethylation is associated with decreased disease recurrence in oral cavity cancer [34] |
4. Role of DNA Methylation Profiles in Relation to Response in Immunotherapy
5. Role of DNA Methylation in Modulating the Tumor Immune Microenvironment (TIME) in HNSCC
Methylation Status of Specific Gene/Biological Function of Gene or Involved Pathways | Modulation in TIME | Potential Biomarker in Response to Immunotherapy |
---|---|---|
GITR promoter CpG-specific methylation/tumor necrosis factor receptor superfamily member 4 | Positive or negative correlation with T cell infiltration; interferon-γ depends on CpG sites [49] | Specific CpG sites of GITR as predictive biomarker [49] |
OX40 promoter CpG-specific methylation/tumor necrosis factor receptor superfamily member 4 | Positive or negative correlation with T cell infiltration; interferon-γ depends on CpG sites [49] | Specific CpG sites of OX40 as predictive biomarkers [49] |
Differently methylated genes (hyper- and hypomethylated)/axon guidance, hippo signaling, pathways in cancer, and MAP signaling | DNA methylation profiles as a predictive biomarker in response to PD-1 inhibitors [51] | |
APOBEC3H-mediated demethylation of CXCL10/ Chemokine | Increase CD8+ T cell tumor infiltration [54] | Higher APOBEC3H protein level is associated with better OS [54] |
SQLE CpG-specific demethylation | Negative correlation with T cell infiltrates [60] |
6. Ongoing Clinical Investigations in DNA Methylation Profiles and Demethylation Therapy in HNSCC Patients
7. Conclusions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulieres, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Baste, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Dong, S.M.; Sun, D.I.; Benoit, N.E.; Kuzmin, I.; Lerman, M.I.; Sidransky, D. Epigenetic inactivation of RASSF1A in head and neck cancer. Clin. Cancer Res. 2003, 9 Pt 1, 3635–3640. [Google Scholar]
- Rosas, S.L.; Koch, W.; da Costa Carvalho, M.G.; Wu, L.; Califano, J.; Westra, W.; Jen, J.; Sidransky, D. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 2001, 61, 939–942. [Google Scholar]
- Takahashi, T.; Shigematsu, H.; Shivapurkar, N.; Reddy, J.; Zheng, Y.; Feng, Z.; Suzuki, M.; Nomura, M.; Augustus, M.; Yin, J.; et al. Aberrant promoter methylation of multiple genes during multistep pathogenesis of colorectal cancers. Int. J. Cancer 2006, 118, 924–931. [Google Scholar] [CrossRef]
- Topper, M.J.; Vaz, M.; Marrone, K.A.; Brahmer, J.R.; Baylin, S.B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 2020, 17, 75–90. [Google Scholar] [CrossRef]
- Ghoneim, H.E.; Fan, Y.; Moustaki, A.; Abdelsamed, H.A.; Dash, P.; Dogra, P.; Carter, R.; Awad, W.; Neale, G.; Thomas, P.G.; et al. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell 2017, 170, 142–157.e119. [Google Scholar] [CrossRef]
- Pauken, K.E.; Sammons, M.A.; Odorizzi, P.M.; Manne, S.; Godec, J.; Khan, O.; Drake, A.M.; Chen, Z.; Sen, D.R.; Kurachi, M.; et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016, 354, 1160–1165. [Google Scholar] [CrossRef]
- Tomaic, V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers 2016, 8, 95. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kurokawa, T.; Mima, M.; Imamoto, S.; Mizokami, H.; Kondo, S.; Okamoto, Y.; Misawa, K.; Hanazawa, T.; Kaneda, A. DNA Methylation and HPV-Associated Head and Neck Cancer. Microorganisms 2021, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Hinic, S.; Rich, A.; Anayannis, N.V.; Cabarcas-Petroski, S.; Schramm, L.; Meneses, P.I. Gene Expression and DNA Methylation in Human Papillomavirus Positive and Negative Head and Neck Squamous Cell Carcinomas. Int. J. Mol. Sci. 2022, 23, 10967. [Google Scholar] [CrossRef] [PubMed]
- Masterson, L.; Sorgeloos, F.; Winder, D.; Lechner, M.; Marker, A.; Malhotra, S.; Sudhoff, H.; Jani, P.; Goon, P.; Sterling, J. Deregulation of SYCP2 predicts early stage human papillomavirus-positive oropharyngeal carcinoma: A prospective whole transcriptome analysis. Cancer Sci. 2015, 106, 1568–1575. [Google Scholar] [CrossRef]
- Mobasheri, M.B.; Shirkoohi, R.; Modarressi, M.H. Cancer/Testis OIP5 and TAF7L Genes are Up-Regulated in Breast Cancer. Asian Pac. J. Cancer Prev. 2015, 16, 4623–4628. [Google Scholar] [CrossRef]
- Tawk, B.; Wirkner, U.; Schwager, C.; Rein, K.; Zaoui, K.; Federspil, P.A.; Adeberg, S.; Linge, A.; Ganswindt, U.; Hess, J.; et al. Tumor DNA-methylome derived epigenetic fingerprint identifies HPV-negative head and neck patients at risk for locoregional recurrence after postoperative radiochemotherapy. Int. J. Cancer 2022, 150, 603–616. [Google Scholar] [CrossRef]
- Speed, C.J.; Little, P.J.; Hayman, J.A.; Mitchell, C.A. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO J. 1996, 15, 4852–4861. [Google Scholar] [CrossRef]
- Cumsky, H.J.L.; Costello, C.M.; Zhang, N.; Butterfield, R.; Buras, M.R.; Schmidt, J.E.; Drenner, K.; Nelson, S.A.; Ochoa, S.A.; Baum, C.L.; et al. The prognostic value of inositol polyphosphate 5-phosphatase in cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2019, 80, 626–632.e621. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, M.; Ni, S.; Li, Q.; Ye, D.; Li, J.; Shen, Z.; Deng, H. DNA methylation biomarkers for head and neck squamous cell carcinoma. Epigenetics 2018, 13, 398–409. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, C.Y.; Jin, J.; Bae, M.K.; Kim, Y.H.; Ju, W.; Kim, Y.H.; Kim, S.C. Aberrant single-minded homolog 1 methylation as a potential biomarker for cervical cancer. Diagn. Cytopathol. 2018, 46, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, O.; Tibshirani, R.; Plevritis, S.K. Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biol. 2015, 16, 17. [Google Scholar] [CrossRef]
- Hess, J.; Unger, K.; Maihoefer, C.; Schuttrumpf, L.; Wintergerst, L.; Heider, T.; Weber, P.; Marschner, S.; Braselmann, H.; Samaga, D.; et al. A Five-MicroRNA Signature Predicts Survival and Disease Control of Patients with Head and Neck Cancer Negative for HPV Infection. Clin. Cancer Res. 2019, 25, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Offenberg, H.H.; Schalk, J.A.; Meuwissen, R.L.; van Aalderen, M.; Kester, H.A.; Dietrich, A.J.; Heyting, C. SCP2: A major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res. 1998, 26, 2572–2579. [Google Scholar] [CrossRef]
- Wang, P.J.; McCarrey, J.R.; Yang, F.; Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 2001, 27, 422–426. [Google Scholar] [CrossRef]
- Pointud, J.C.; Mengus, G.; Brancorsini, S.; Monaco, L.; Parvinen, M.; Sassone-Corsi, P.; Davidson, I. The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. J. Cell Sci. 2003, 116 Pt 9, 1847–1858. [Google Scholar] [CrossRef]
- Munz, C.; Psichari, E.; Mandilis, D.; Lavigne, A.C.; Spiliotaki, M.; Oehler, T.; Davidson, I.; Tora, L.; Angel, P.; Pintzas, A. TAF7 (TAFII55) plays a role in the transcription activation by c-Jun. J. Biol. Chem. 2003, 278, 21510–21516. [Google Scholar] [CrossRef]
- Schussel, J.; Zhou, X.C.; Zhang, Z.; Pattani, K.; Bermudez, F.; Jean-Charles, G.; McCaffrey, T.; Padhya, T.; Phelan, J.; Spivakovsky, S.; et al. EDNRB and DCC salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions. Clin. Cancer Res. 2013, 19, 3268–3275. [Google Scholar] [CrossRef]
- Hedrick, L.; Cho, K.R.; Fearon, E.R.; Wu, T.C.; Kinzler, K.W.; Vogelstein, B. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes. Dev. 1994, 8, 1174–1183. [Google Scholar] [CrossRef]
- Demokan, S.; Chang, X.; Chuang, A.; Mydlarz, W.K.; Kaur, J.; Huang, P.; Khan, Z.; Khan, T.; Ostrow, K.L.; Brait, M.; et al. KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses. Int. J. Cancer 2010, 127, 2351–2359. [Google Scholar] [CrossRef]
- Ren, S.; Gaykalova, D.; Wang, J.; Guo, T.; Danilova, L.; Favorov, A.; Fertig, E.; Bishop, J.; Khan, Z.; Flam, E.; et al. Discovery and development of differentially methylated regions in human papillomavirus-related oropharyngeal squamous cell carcinoma. Int. J. Cancer 2018, 143, 2425–2436. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Islam, S.M.R.; Kwak, K.S.; Rahman, M.S.; Cho, S.G. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: A multiomics analysis. Cancer Gene Ther. 2020, 27, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liu, H.; Zhang, X.; Hong, B.; Wu, Z.; Li, Q.; Zhou, C. Promoter hypermethylation of CD133/PROM1 is an independent poor prognosis factor for head and neck squamous cell carcinoma. Medicine 2020, 99, e19491. [Google Scholar] [CrossRef] [PubMed]
- Sailasree, R.; Abhilash, A.; Sathyan, K.M.; Nalinakumari, K.R.; Thomas, S.; Kannan, S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol. Biomark. Prev. 2008, 17, 414–420. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhou, C.; Shen, Z.; Ye, D.; Li, Q.; Deng, H.; Liu, H.; Li, J. The Association and Clinical Significance of CDKN2A Promoter Methylation in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Cell Physiol. Biochem. 2018, 50, 868–882. [Google Scholar] [CrossRef] [PubMed]
- Pandith, A.A.; Qasim, I.; Zahoor, W.; Shah, P.; Bhat, A.R.; Sanadhya, D.; Shah, Z.A.; Naikoo, N.A. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide). Sci. Rep. 2018, 8, 6704. [Google Scholar] [CrossRef]
- Esteller, M.; Hamilton, S.R.; Burger, P.C.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999, 59, 793–797. [Google Scholar]
- Kito, H.; Suzuki, H.; Ichikawa, T.; Sekita, N.; Kamiya, N.; Akakura, K.; Igarashi, T.; Nakayama, T.; Watanabe, M.; Harigaya, K.; et al. Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate 2001, 49, 110–115. [Google Scholar] [CrossRef]
- Raveh, T.; Kimchi, A. DAP kinase-a proapoptotic gene that functions as a tumor suppressor. Exp. Cell Res. 2001, 264, 185–192. [Google Scholar] [CrossRef]
- Subramaniam, M.M.; Chan, J.Y.; Yeoh, K.G.; Quek, T.; Ito, K.; Salto-Tellez, M. Molecular pathology of RUNX3 in human carcinogenesis. Biochim. Biophys. Acta 2009, 1796, 315–331. [Google Scholar] [CrossRef]
- D’Souza, W.; Saranath, D. Clinical implications of epigenetic regulation in oral cancer. Oral. Oncol. 2015, 51, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.S.D.; Santos, J.A.D.; Abreu, P.M.; Dettogni, R.S.; Santos, E.; Stur, E.; Agostini, L.P.; Anders, Q.S.; Alves, L.N.R.; Valle, I.B.D.; et al. Hypermethylation status of DAPK, MGMT and RUNX3 in HPV negative oral and oropharyngeal squamous cell carcinoma. Genet. Mol. Biol. 2020, 43, e20190334. [Google Scholar] [CrossRef]
- Loss, L.A.; Sadanandam, A.; Durinck, S.; Nautiyal, S.; Flaucher, D.; Carlton, V.E.; Moorhead, M.; Lu, Y.; Gray, J.W.; Faham, M.; et al. Prediction of epigenetically regulated genes in breast cancer cell lines. BMC Bioinform. 2010, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Bonazzi, V.F.; Nancarrow, D.J.; Stark, M.S.; Moser, R.J.; Boyle, G.M.; Aoude, L.G.; Schmidt, C.; Hayward, N.K. Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma. PLoS ONE 2011, 6, e26121. [Google Scholar] [CrossRef]
- Schwalbe, E.C.; Lindsey, J.C.; Straughton, D.; Hogg, T.L.; Cole, M.; Megahed, H.; Ryan, S.L.; Lusher, M.E.; Taylor, M.D.; Gilbertson, R.J.; et al. Rapid diagnosis of medulloblastoma molecular subgroups. Clin. Cancer Res. 2011, 17, 1883–1894. [Google Scholar] [CrossRef]
- Misawa, K.; Mochizuki, D.; Imai, A.; Mima, M.; Misawa, Y.; Mineta, H. Analysis of Site-Specific Methylation of Tumor-Related Genes in Head and Neck Cancer: Potential Utility as Biomarkers for Prognosis. Cancers 2018, 10, 27. [Google Scholar] [CrossRef]
- Starzer, A.M.; Berghoff, A.S.; Hamacher, R.; Tomasich, E.; Feldmann, K.; Hatziioannou, T.; Traint, S.; Lamm, W.; Noebauer-Huhmann, I.M.; Furtner, J.; et al. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients. J. Immunother. Cancer 2021, 9, e001458. [Google Scholar] [CrossRef]
- Fietz, S.; Zarbl, R.; Niebel, D.; Posch, C.; Brossart, P.; Gielen, G.H.; Strieth, S.; Pietsch, T.; Kristiansen, G.; Bootz, F.; et al. CTLA4 promoter methylation predicts response and progression-free survival in stage IV melanoma treated with anti-CTLA-4 immunotherapy (ipilimumab). Cancer Immunol. Immunother. 2021, 70, 1781–1788. [Google Scholar] [CrossRef]
- Loick, S.M.; Frohlich, A.; Gabrielpillai, J.; Franzen, A.; Vogt, T.J.; Dietrich, J.; Wiek, C.; Scheckenbach, K.; Strieth, S.; Landsberg, J.; et al. DNA Methylation and mRNA Expression of OX40 (TNFRSF4) and GITR (TNFRSF18, AITR) in Head and Neck Squamous Cell Carcinoma Correlates With HPV Status, Mutational Load, an Interferon-gamma Signature, Signatures of Immune Infiltrates, and Survival. J. Immunother. 2022, 45, 194–206. [Google Scholar] [CrossRef]
- Muller, D. Targeting Co-Stimulatory Receptors of the TNF Superfamily for Cancer Immunotherapy. BioDrugs 2023, 37, 21–33. [Google Scholar] [CrossRef]
- Starzer, A.M.; Heller, G.; Tomasich, E.; Melchardt, T.; Feldmann, K.; Hatziioannou, T.; Traint, S.; Minichsdorfer, C.; Schwarz-Nemec, U.; Nackenhorst, M.; et al. DNA methylation profiles differ in responders versus non-responders to anti-PD-1 immune checkpoint inhibitors in patients with advanced and metastatic head and neck squamous cell carcinoma. J. Immunother. Cancer 2022, 10, e003420. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ren, Z.; Yang, K.; Liu, Z.; Cao, S.; Deng, S.; Xu, L.; Liang, Y.; Guo, J.; Bian, Y.; et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8(+) T-cell response and effective tumor control. Nat. Commun. 2019, 10, 3874. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, L.; Huang, L.; Sun, Z.; Zhang, H.; Nong, B.; Xiong, Y. APOBEC Alteration Contributes to Tumor Growth and Immune Escape in Pan-Cancer. Cancers 2022, 14, 2827. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, Y.W.; Cao, R.Y.; Pan, X.; Chen, X.J.; Zhang, S.Y.; Zhang, W.L.; Zhou, J.Y.; Cheng, B.; Ren, X.Y. Association between APOBEC3H-Mediated Demethylation and Immune Landscape in Head and Neck Squamous Carcinoma. Biomed. Res. Int. 2020, 2020, 4612375. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhao, W.; Zhang, X.; Lv, H.; Li, C.; Sun, L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin. Epigenet. 2021, 13, 112. [Google Scholar] [CrossRef]
- Mitra, S.; Lauss, M.; Cabrita, R.; Choi, J.; Zhang, T.; Isaksson, K.; Olsson, H.; Ingvar, C.; Carneiro, A.; Staaf, J.; et al. Analysis of DNA methylation patterns in the tumor immune microenvironment of metastatic melanoma. Mol. Oncol. 2020, 14, 933–950. [Google Scholar] [CrossRef]
- Yang, S.C.; Wang, W.Y.; Zhou, J.J.; Wu, L.; Zhang, M.J.; Yang, Q.C.; Deng, W.W.; Sun, Z.J. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int. Immunopharmacol. 2022, 111, 109113. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Freeman, G.J. The B7-CD28 superfamily. Nat. Rev. Immunol. 2002, 2, 116–126. [Google Scholar] [CrossRef]
- de Vos, L.; Grunwald, I.; Bawden, E.G.; Dietrich, J.; Scheckenbach, K.; Wiek, C.; Zarbl, R.; Bootz, F.; Landsberg, J.; Dietrich, D. The landscape of CD28, CD80, CD86, CTLA4, and ICOS DNA methylation in head and neck squamous cell carcinomas. Epigenetics 2020, 15, 1195–1212. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, L.; Liu, W. High SQLE Expression and Gene Amplification Correlates with Poor Prognosis in Head and Neck Squamous Cell Carcinoma. Cancer Manag. Res. 2021, 13, 4709–4723. [Google Scholar] [CrossRef]
- Raj, K.; Mufti, G.J. Azacytidine (Vidaza(R)) in the treatment of myelodysplastic syndromes. Ther. Clin. Risk Manag. 2006, 2, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Saba, H.I. Decitabine in the treatment of myelodysplastic syndromes. Ther. Clin. Risk Manag. 2007, 3, 807–817. [Google Scholar] [PubMed]
- Biktasova, A.; Hajek, M.; Sewell, A.; Gary, C.; Bellinger, G.; Deshpande, H.A.; Bhatia, A.; Burtness, B.; Judson, B.; Mehra, S.; et al. Demethylation Therapy as a Targeted Treatment for Human Papillomavirus-Associated Head and Neck Cancer. Clin. Cancer Res. 2017, 23, 7276–7287. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, T.R.; Thompson, E.D.; Forde, P.M.; Stein, J.E.; Duffield, A.S.; Anagnostou, V.; Rekhtman, N.; Anders, R.A.; Cuda, J.D.; Illei, P.B.; et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: A proposal for quantitative immune-related pathologic response criteria (irPRC). Ann. Oncol. 2018, 29, 1853–1860. [Google Scholar] [CrossRef]
Reference/NCT# | Status | Phase | DNMT Inhibitor | Chemotherapy/ Immunotherapy | Study Duration | Disease Target | Result |
---|---|---|---|---|---|---|---|
NCT02178072 | Recruiting | Window study | Azacitidine | 2018– completed | HNSCC (HPV+ resectable disease) | Pending | |
NCT05317000 | Recruiting | Window study | Azacitidine | Nivolumab | 2023– ongoing | HNSCC (HPV+/− resectable disease) | Pending |
NCT03019003 | Recruiting | 1b | Decitabine | Durvalumab | 2017– ongoing | HNSCC (R/M, refractory to immune checkpoint inhibitor) | Pending |
NCT03701451 | Recruiting | 1b/2 | Decitabine | Cisplatin | 2018– ongoing | Locally advanced nasopharyngeal carcinoma (NPC) | Pending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkitt, K. Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer. Cancers 2023, 15, 4685. https://doi.org/10.3390/cancers15194685
Burkitt K. Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer. Cancers. 2023; 15(19):4685. https://doi.org/10.3390/cancers15194685
Chicago/Turabian StyleBurkitt, Kyunghee. 2023. "Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer" Cancers 15, no. 19: 4685. https://doi.org/10.3390/cancers15194685
APA StyleBurkitt, K. (2023). Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer. Cancers, 15(19), 4685. https://doi.org/10.3390/cancers15194685