Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Plasma and cfDNA Handling
2.3. CNV, SNV, and MeD-Seq Analyses
2.3.1. CNVs
2.3.2. SNVs
2.3.3. MeD-Seq
2.3.4. MeD-Seq Data Processing and Analysis
3. Results
3.1. Patients
3.2. Single Nucleotide Variants (SNVs) in Tissue and Corresponding Plasma cfDNA
3.3. cfDNA CNV and Fragment Size Analysis
3.4. Genome-Wide cfDNA Methylation Profiling
4. Discussion
4.1. SNVs
4.2. CNVs
4.3. Genome-Wide Methylation
4.4. Application of MeD-Seq in Lynch Syndrome Surveillance
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | advanced adenoma |
AN | advanced neoplasia |
CNV | copy number variation |
CRC | colorectal cancer |
ctDNA | circulating tumor DNA |
DMR | differentially methylated region |
FFPE | Formalin-fixed paraffin-embedded |
HBD | healthy blood donor |
HGD | high-grade dysplasia |
IFOBT | fecal immunohistochemical test |
LS | Lynch syndrome |
MeD-seq | genome-wide methylation |
MMR | mismatch repair |
MMRp | mismatch repair proficient |
MSI-H | microsatellite instability-high |
MSS | microsatellite stable |
SNV | single nucleotide variant |
SP | national colorectal cancer screening program |
TVA | tubulovillous adenoma |
VAF | variant allele frequency |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Toes-Zoutendijk, E.; van Leerdam, M.E.; Dekker, E.; van Hees, F.; Penning, C.; Nagtegaal, I.; van der Meulen, M.P.; van Vuuren, A.J.; Kuipers, E.J.; Bonfrer, J.M.G.; et al. Real-Time Monitoring of Results During First Year of Dutch Colorectal Cancer Screening Program and Optimization by Altering Fecal Immunochemical Test Cut-Off Levels. Gastroenterology 2017, 152, 767–775.e2. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Sato, H.; Yamada, T.; Nagasaki, H.; Tsuchiya, A.; Abe, R.; Yuasa, Y. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 1997, 57, 3920–3923. [Google Scholar] [PubMed]
- Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A.; et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994, 368, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Fishel, R.; Lescoe, M.K.; Rao, M.R.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Wei, Y.F.; Carter, K.C.; Ruben, S.M.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994, 371, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J.; et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Moller, P.; Seppala, T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Evans, D.G.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.; et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: First report from the prospective Lynch syndrome database. Gut 2017, 66, 464–472. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppala, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: A report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef]
- Goel, A.; Nagasaka, T.; Arnold, C.N.; Inoue, T.; Hamilton, C.; Niedzwiecki, D.; Compton, C.; Mayer, R.J.; Goldberg, R.; Bertagnolli, M.M.; et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 2007, 132, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Svrcek, M.; Cohen, R.; Basile, D.; Tougeron, D.; Phelip, J.M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 2022, 175, 136–157. [Google Scholar] [CrossRef] [PubMed]
- IKNL. Guideline Hereditary Colorectal Cancer. December 2015. Available online: www.oncoline.nl (accessed on 5 May 2022).
- Jarvinen, H.J.; Renkonen-Sinisalo, L.; Aktan-Collan, K.; Peltomaki, P.; Aaltonen, L.A.; Mecklin, J.P. Ten years after mutation testing for Lynch syndrome: Cancer incidence and outcome in mutation-positive and mutation-negative family members. J. Clin. Oncol. 2009, 27, 4793–4797. [Google Scholar] [CrossRef] [PubMed]
- Malla, M.; Loree, J.M.; Kasi, P.M.; Parikh, A.R. Using Circulating Tumor DNA in Colorectal Cancer: Current and Evolving Practices. J. Clin. Oncol. 2022, 40, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Mazouji, O.; Ouhajjou, A.; Incitti, R.; Mansour, H. Updates on Clinical Use of Liquid Biopsy in Colorectal Cancer Screening, Diagnosis, Follow-Up, and Treatment Guidance. Front. Cell Dev. Biol. 2021, 9, 660924. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Schraa, S.J.; van Rooijen, K.L.; Koopman, M.; Vink, G.R.; Fijneman, R.J.A. Cell-Free Circulating (Tumor) DNA before Surgery as a Prognostic Factor in Non-Metastatic Colorectal Cancer: A Systematic Review. Cancers 2022, 14, 2218. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhao, Q.; Wei, W.; Zheng, L.; Yi, S.; Li, G.; Wang, W.; Sheng, H.; Pu, H.; Mo, H.; et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020, 12, eaax7533. [Google Scholar] [CrossRef]
- Bent, A.; Raghavan, S.; Dasari, A.; Kopetz, S. The Future of ctDNA-Defined Minimal Residual Disease: Personalizing Adjuvant Therapy in Colorectal Cancer. Clin. Color. Cancer 2022, 21, 89–95. [Google Scholar] [CrossRef]
- Zviran, A.; Schulman, R.C.; Shah, M.; Hill, S.T.K.; Deochand, S.; Khamnei, C.C.; Maloney, D.; Patel, K.; Liao, W.; Widman, A.J.; et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 2020, 26, 1114–1124. [Google Scholar] [CrossRef]
- Barault, L.; Amatu, A.; Siravegna, G.; Ponzetti, A.; Moran, S.; Cassingena, A.; Mussolin, B.; Falcomatà, C.; Binder, A.M.; Cristiano, C.; et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2018, 67, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Oellerich, M.; Schütz, E.; Beck, J.; Kanzow, P.; Plowman, P.N.; Weiss, G.J.; Walson, P.D. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit. Rev. Clin. Lab. Sci. 2017, 54, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Mathios, D.; Johansen, J.S.; Cristiano, S.; Medina, J.E.; Phallen, J.; Larsen, K.R.; Bruhm, D.C.; Niknafs, N.; Ferreira, L.; Adleff, V.; et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 2021, 12, 5060. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Toung, J.M.; Jassowicz, A.F.; Vijayaraghavan, R.; Kang, H.; Zhang, R.; Kruglyak, K.M.; Huang, H.J.; Hinoue, T.; Shen, H.; et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann. Oncol. 2018, 29, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra224. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Hu, T.; He, X.; Zou, Y.; Deng, Q.; Ke, J.; Lian, L.; He, X.; Zhao, D.; et al. A novel cell-free DNA methylation-based model improves the early detection of colorectal cancer. Mol. Oncol. 2021, 15, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- Boers, R.; Boers, J.; de Hoon, B.; Kockx, C.; Ozgur, Z.; Molijn, A.; van IJckenvan, W.; Laven, J.; Gribnau, J. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res. 2018, 28, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Deger, T.; Boers, R.G.; de Weerd, V.; Angus, L.; van der Put, M.M.J.; Boers, J.B.; Azmani, Z.; van IJcken, W.F.J.; Grünhagen, D.J.; van Dessel, L.F.; et al. High-throughput and affordable genome-wide methylation profiling of circulating cell-free DNA by methylated DNA sequencing (MeD-seq) of LpnPI digested fragments. Clin. Epigenetics 2021, 13, 196. [Google Scholar] [CrossRef]
- Medina Diaz, I.; Nocon, A.; Mehnert, D.H.; Fredebohm, J.; Diehl, F.; Holtrup, F. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS ONE 2016, 11, e0166354. [Google Scholar] [CrossRef]
- van der Meij, K.R.M.; Sistermans, E.A.; Macville, M.V.E.; Stevens, S.J.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.J.; Boter, M.; Diderich, K.E.M.; et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am. J. Hum. Genet. 2019, 105, 1091–1101. [Google Scholar] [CrossRef]
- Kim, S.K.; Hannum, G.; Geis, J.; Tynan, J.; Hogg, G.; Zhao, C.; Jensen, T.J.; Mazloom, A.R.; Oeth, P.; Ehrich, M.; et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat. Diagn. 2015, 35, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsson, V.A.; Ha, G.; Freeman, S.S.; Choudhury, A.D.; Stover, D.G.; Parsons, H.A.; Gydush, G.; Reed, S.C.; Rotem, D.; Rhoades, J.; et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 2017, 8, 1324. [Google Scholar] [CrossRef] [PubMed]
- Straver, R.; Sistermans, E.A.; Holstege, H.; Visser, A.; Oudejans, C.B.; Reinders, M.J. WISECONDOR: Detection of fetal aberrations from shallow sequencing maternal plasma based on a within-sample comparison scheme. Nucleic Acids Res. 2014, 42, e31. [Google Scholar] [CrossRef] [PubMed]
- Steendam, C.M.J.; Atmodimedjo, P.; de Jonge, E.; Paats, M.S.; van der Leest, C.; Oomen-de Hoop, E.; Jansen, M.; Del Re, M.; von der Thüsen, J.H.; Dinjens, W.N.M.; et al. Plasma Cell-Free DNA Testing of Patients with EGFR Mutant Non-Small-Cell Lung Cancer: Droplet Digital PCR Versus Next-Generation Sequencing Compared with Tissue-Based Results. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hermans, B.C.M.; Derks, J.L.; Hillen, L.M.; van der Baan, I.; van den Broek, E.C.; von der Thüsen, J.H.; van Suylen, R.J.; Atmodimedjo, P.N.; den Toom, T.D.; Coumans-Stallinga, C.; et al. In-depth molecular analysis of combined and co-primary pulmonary large cell neuroendocrine carcinoma and adenocarcinoma. Int. J. Cancer 2022, 150, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.; Wu, H.T.; Tin, A.S.; et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients with Stages I to III Colorectal Cancer. JAMA Oncol. 2019, 5, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Xu, Y.; Li, L.; Gong, Y.; Zhang, K.; Zhang, M.; Guan, Y.; Chang, L.; Xia, X.; et al. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat. Commun. 2021, 12, 11. [Google Scholar] [CrossRef]
- Janku, F.; Zhang, S.; Waters, J.; Liu, L.; Huang, H.J.; Subbiah, V.; Hong, D.S.; Karp, D.D.; Fu, S.; Cai, X.; et al. Development and Validation of an Ultradeep Next-Generation Sequencing Assay for Testing of Plasma Cell-Free DNA from Patients with Advanced Cancer. Clin. Cancer Res. 2017, 23, 5648–5656. [Google Scholar] [CrossRef]
- Belic, J.; Koch, M.; Ulz, P.; Auer, M.; Gerhalter, T.; Mohan, S.; Fischereder, K.; Petru, E.; Bauernhofer, T.; Geigl, J.B.; et al. Rapid Identification of Plasma DNA Samples with Increased ctDNA Levels by a Modified FAST-SeqS Approach. Clin. Chem. 2015, 61, 838–849. [Google Scholar] [CrossRef]
- Ding, S.C.; Lo, Y.M.D. Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics 2022, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Camps, J.; Armengol, G.; del Rey, J.; Lozano, J.J.; Vauhkonen, H.; Prat, E.; Egozcue, J.; Sumoy, L.; Knuutila, S.; Miro, R. Genome-wide differences between microsatellite stable and unstable colorectal tumors. Carcinogenesis 2006, 27, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008, 135, 1079–1099. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, S.; Leal, A.; Phallen, J.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.; Medina, J.E.; Hruban, C.; White, J.R.; et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019, 570, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Katsman, E.; Orlanski, S.; Martignano, F.; Fox-Fisher, I.; Shemer, R.; Dor, Y.; Zick, A.; Eden, A.; Petrini, I.; Conticello, S.G.; et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022, 23, 158. [Google Scholar] [CrossRef]
- Wei, Q.; Jin, C.; Wang, Y.; Guo, S.; Guo, X.; Liu, X.; An, J.; Xing, J.; Li, B. A computational framework to unify orthogonal information in DNA methylation and copy number aberrations in cell-free DNA for early cancer detection. Brief. Bioinform. 2022, 23, bbac200. [Google Scholar] [CrossRef]
ID | Lesion Characteristics ╪,# | Concent-Ration cfDNA [ng/µL] | Tumor Fraction in cfDNA Pool ¥ | cfDNA CNVs | SNVs in Tissue | cfDNA SNV | DMR Summary Score ∆ |
---|---|---|---|---|---|---|---|
CATCA001 | TxN0M0 CRC, MSI-stable | 1.16 | Unknown | − | + | − | ↑ |
CATCA006 | AA, MSI-stable | 2.13 | 0.008897 | − | + | − | N/A |
CATCA008 | pT2N0 CRC, MSI-H | 1.84 | 0.008029 | − | + | Disc | ↑ |
CATCA016 | T3NxM1 CRC, MSI-stable | 3.08 | 0.0488 | + 1 | + | Conc | ↑ |
CATCA036 | AA MSI-stable | 1.85 | 0.00427 | − | + | − | ↑ |
CATCA038 | AA, MSI-H | 1.64 | 0.006391 | − | + | − | ↑ |
CATCA044 | pT3N2bM0, MSI-stable | 2.29 | 0.01411 | − | + | − | N/A |
CATCA075 | AA, MSI-stable | 1.74 | 0.005006 | − | + | − | ↑ |
CATCA099 | AA, MSI-stable | 1.89 | 0.00988 | − | + | − | ↑ |
CATCA133 | pT1 CRC, MSS | 1.55 | 0.01028 | − | + | − | Normal |
ID | Lesion | Tissue, Variants Detected | VAF | In cfDNA Panel? | cfDNA Variants Detected | VAF |
---|---|---|---|---|---|---|
CATCA001 | CRC |
KRAS c.38G>A; p.G13D APC c.4470_4479del; p.H1490Qfs*14 | 68% 26% | Y Y | None | N/A |
CATCA006 | AA | APC c.4187_4188del; p.F1396* KRAS c.35G>A; p.G12D KRAS c.35G>T; p.G12V | 39% 14% 24% | N Y Y | None | N/A |
CATCA008 | CRC | BRAF c.1799T>A; p.V600E POLD1 c.730T>C; p.Y244H PTEN c.517C>T; p.R173C RNF43 c.816_817del; p.A273Hfs*8 RNF43 c.1976del; p.G659Vfs*41 STK11 c.998G>A; p.R333H TP53 c.758C>T; p.T253I | 38% 26% 42% 9% 40% 40% 43% | Y N N N N N Y | APC c.4387dupA:p.K1462fs ∆ | 0.36% |
CATCA016 | CRC | KRAS c.436G>A; p.A146T TP53 c.844C>T; p.R282W APC c.3859del; p.I1287* | 72% 83% 44% | Y Y N | KRAS p.A146T TP53 p.R282W GNAS p.R201H | 0.48% 0.95% 0.24% |
CATCA036 | AA | APC c.4476del; p. T1493Rfs*14 | 35% | Y | None | N/A |
CATCA038 | AA | FBXW7 c.1528G>A; p.D510N KEAP1 c.992C>T; p.A331V RNF43 c.450+2T>C; p.? STK11 c.435G>T; p.E145D | 32% 45% 41% 16% | Y N N N | None | N/A |
CATCA044 | CRC | APC c.4058_4075delinsCG; p.E1353Afs*57 TP53 c.635_636del; p.F212Sfs*3 TP53 c.701del; p.Y234Sfs*13 | 64% 39% 38% | Y Y Y | None | N/A |
CATCA075 | AA | APC c.3927_3931del; p.E1309Dfs*4 KRAS c.35G>A; p.G12D | 26% 13% | Y Y | None | N/A |
CATCA099 | AA | APC c.3948_3949del; p.E1317Rfs*14 TP53 c.388C>T; p.L130F KRAS c.35G>A; p.G12D TP53 c.743G>A; p.R248Q | 79% 44% 9.2% 8.8% | Y N Y Y | None | N/A |
CATCA133 | CRC | APC c.4199C>A; p.S1400* FBXW7 c.1513C>T; p.R505C KRAS c.34G>C; p.G12R KRAS c.35G>A; p.G12D (in trans) MTOR c.4444C>T; p.R1482C TP53 c.659A>G; p.Y220C TP53 c.733G>A; p.G245S TP53 c.743G>A; p.R248Q | 51% 48% 10% 2% 13% 14% 30% 36% | Y Y Y Y N Y Y Y | None | N/A |
Sample ID | Lesion | Percentage of Short Fragmented cfDNA ∆ | Tumor Fraction in cfDNA Pool ¥ | Number of Reads (mln) Used for Wisecondor Analysis | cfDNA CNV Wisecondor Profile |
---|---|---|---|---|---|
CATCA001 | CRC | 2.6% | Unknown | 24.4 | no CNVs detected |
CATCA006 | AA | 7% | 0.008897 | 17.4 | no CNVs detected |
CATCA008 | CRC | 2.4% | 0.008029 | 20 | no CNVs detected |
CATCA016 | CRC | 5.4% | 0.0488 | 20 | Complex abnormal pattern: 1p loss, 5q loss, trisomy 7, trisomy 9, 12p gain, trisomy 13, 17p loss, 18q loss, 20q gain, 21q loss (Figure S1) |
CATCA036 | AA | 4% | 0.00427 | 15.7 | no CNVs detected |
CATCA038 | AA | 2.8% | 0.006391 | 16.2 | no CNVs detected |
CATCA044 | CRC | 2.3% | 0.01411 | 92 | no CNVs detected |
CATCA075 | AA | 6.3% | 0.005006 | 16.1 | no CNVs detected |
CATCA099 | AA | 2.9% | 0.00988 | 13.5 | no CNVs detected |
CATCA133 | CRC | 2.3% | 0.01028 | 16.1 | no CNVs detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eikenboom, E.L.; Wilting, S.M.; Deger, T.; Srebniak, M.I.; Van Veghel-Plandsoen, M.; Boers, R.G.; Boers, J.B.; van IJcken, W.F.J.; Gribnau, J.H.; Atmodimedjo, P.; et al. Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure? Cancers 2023, 15, 4607. https://doi.org/10.3390/cancers15184607
Eikenboom EL, Wilting SM, Deger T, Srebniak MI, Van Veghel-Plandsoen M, Boers RG, Boers JB, van IJcken WFJ, Gribnau JH, Atmodimedjo P, et al. Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure? Cancers. 2023; 15(18):4607. https://doi.org/10.3390/cancers15184607
Chicago/Turabian StyleEikenboom, Ellis L., Saskia M. Wilting, Teoman Deger, Malgorzata I. Srebniak, Monique Van Veghel-Plandsoen, Ruben G. Boers, Joachim B. Boers, Wilfred F. J. van IJcken, Joost H. Gribnau, Peggy Atmodimedjo, and et al. 2023. "Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure?" Cancers 15, no. 18: 4607. https://doi.org/10.3390/cancers15184607
APA StyleEikenboom, E. L., Wilting, S. M., Deger, T., Srebniak, M. I., Van Veghel-Plandsoen, M., Boers, R. G., Boers, J. B., van IJcken, W. F. J., Gribnau, J. H., Atmodimedjo, P., Dubbink, H. J., Martens, J. W. M., Spaander, M. C. W., & Wagner, A. (2023). Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure? Cancers, 15(18), 4607. https://doi.org/10.3390/cancers15184607