Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Meningiomas
2.1. Risk Factors
2.2. Diagnosis
3. Treatment
3.1. Surgery
3.2. Radiation Therapy
3.3. Chemotherapy
4. Genetic and Biomarkers for Meningiomas
Targeted Therapy
5. Other Medical Treatments
5.1. Estrogen and Progesterone Receptor Antagonists
5.2. Interferon-Alpha
5.3. Somatostatin Receptors
5.4. Immunotherapy
5.5. MicroRNAs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009–2013. Neuro-Oncology 2016, 18, v1–v75. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Birzu, C.; Peyre, M.; Sahm, F. Molecular Alterations in Meningioma: Prognostic and Therapeutic Perspectives. Curr. Opin. Oncol. 2020, 32, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, M.S. Handbook of Neurosurgery, 9th ed.; Thieme: Stuttgart, Germany, 2019; ISBN 978-1-68420-137-2. [Google Scholar]
- Kim, L. A Narrative Review of Targeted Therapies in Meningioma. Chin. Clin. Oncol. 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Truitt, G.; Gittleman, H.; Brat, D.J.; Kruchko, C.; Wilson, R.; Barnholtz-Sloan, J.S. Relative Survival after Diagnosis with a Primary Brain or Other Central Nervous System Tumor in the National Program of Cancer Registries, 2004 to 2014. Neuro-Oncol. Pract. 2020, 7, 306–312. [Google Scholar] [CrossRef]
- Tauziede-Espariat, A.; Parfait, B.; Besnard, A.; Lacombe, J.; Pallud, J.; Tazi, S.; Puget, S.; Lot, G.; Terris, B.; Cohen, J.; et al. Loss of SMARCE1 Expression Is a Specific Diagnostic Marker of Clear Cell Meningioma: A Comprehensive Immunophenotypical and Molecular Analysis. Brain Pathol. Zurich Switz. 2018, 28, 466–474. [Google Scholar] [CrossRef]
- Shankar, G.M.; Abedalthagafi, M.; Vaubel, R.A.; Merrill, P.H.; Nayyar, N.; Gill, C.M.; Brewester, R.; Bi, W.L.; Agarwalla, P.K.; Thorner, A.R.; et al. Germline and Somatic BAP1 Mutations in High-Grade Rhabdoid Meningiomas. Neuro-Oncology 2017, 19, 535–545. [Google Scholar] [CrossRef]
- Williams, E.A.; Wakimoto, H.; Shankar, G.M.; Barker, F.G.; Brastianos, P.K.; Santagata, S.; Sokol, E.S.; Pavlick, D.C.; Shah, N.; Reddy, A.; et al. Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathol. 2020, 140, 89–93. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, Y.S. Molecular Characteristics of Meningiomas. J. Pathol. Transl. Med. 2020, 54, 45–63. [Google Scholar] [CrossRef]
- Nassiri, F.; Wang, J.Z.; Singh, O.; Karimi, S.; Dalcourt, T.; Ijad, N.; Pirouzmand, N.; Ng, H.K.; Saladino, A.; Pollo, B.; et al. Loss of H3K27me3 in Meningiomas. Neuro Oncol. 2021, 23, 1282–1291. [Google Scholar] [CrossRef]
- Flint-Richter, P.; Sadetzki, S. Genetic Predisposition for the Development of Radiation-Associated Meningioma: An Epidemiological Study. Lancet Oncol. 2007, 8, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Giannini, C.; Raghavan, R.; Scheithauer, B.W.; Banerjee, R.; Margraf, L.; Bowers, D.C.; Lytle, R.A.; Newsham, I.F.; Gutmann, D.H. Aggressive Phenotypic and Genotypic Features in Pediatric and NF2-Associated Meningiomas: A Clinicopathologic Study of 53 Cases. J. Neuropathol. Exp. Neurol. 2001, 60, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, B.; Chen, Y.-J.; Patronas, N.J.; Peghini, P.L.; Reynolds, J.C.; Vortmeyer, A.; Zhuang, Z.; Venzon, D.J.; Gibril, F.; Jensen, R.T. Meningiomas May Be a Component Tumor of Multiple Endocrine Neoplasia Type 1. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 869–880. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Fleming, C.A.; Saint-Louis, L.A.; Lee, B.C.; Manning, J.J.; Deck, M.D. Magnetic Resonance Imaging of Meningiomas. AJNR Am. J. Neuroradiol. 1985, 6, 149–157. [Google Scholar]
- Caffo, M.; Curcio, A.; Laera, R.; Barresi, V.; Caruso, G. Intracranial Dural Metastases and Diagnostic Misunderstandings. J. Analyt. Oncol. 2022, 11, 54–62. [Google Scholar] [CrossRef]
- Islim, A.I.; Kolamunnage-Dona, R.; Mohan, M.; Moon, R.D.C.; Crofton, A.; Haylock, B.J.; Rathi, N.; Brodbelt, A.R.; Mills, S.J.; Jenkinson, M.D. A Prognostic Model to Personalize Monitoring Regimes for Patients with Incidental Asymptomatic Meningiomas. Neuro-Oncology 2020, 22, 278–289. [Google Scholar] [CrossRef]
- Englot, D.J.; Magill, S.T.; Han, S.J.; Chang, E.F.; Berger, M.S.; McDermott, M.W. Seizures in Supratentorial Meningioma: A Systematic Review and Meta-Analysis. J. Neurosurg. 2016, 124, 1552–1561. [Google Scholar] [CrossRef]
- Chen, W.C.; Magill, S.T.; Englot, D.J.; Baal, J.D.; Wagle, S.; Rick, J.W.; McDermott, M.W. Factors Associated with Pre- and Postoperative Seizures in 1033 Patients Undergoing Supratentorial Meningioma Resection. Neurosurgery 2017, 81, 297–306. [Google Scholar] [CrossRef]
- Bailo, M.; Gagliardi, F.; Boari, N.; Castellano, A.; Spina, A.; Mortini, P. The Role of Surgery in Meningiomas. Curr. Treat. Options Neurol. 2019, 21, 51. [Google Scholar] [CrossRef]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge Base, Treatment Outcomes, and Uncertainties. A RANO Review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef]
- Zada, G.; Başkaya, M.K.; Shah, M.V. Introduction: Surgical Management of Skull Base Meningiomas. Neurosurg. Focus 2017, 43. [Google Scholar] [CrossRef]
- Goldbrunner, R.; Minniti, G.; Preusser, M.; Jenkinson, M.D.; Sallabanda, K.; Houdart, E.; von Diemling, A.; Stavrinou, P.; Lefranc, F.; Lund-Johansen, M.; et al. EANO Guidelines for the Diagnosis and Treatment of Meningiomas. Lancet Oncol. 2016, 17, e383–e391. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, R.B.; Alexander, B.M.; Mahadevan, A.; Niemierko, A.; Rajakesari, S.; Arvold, N.D.; Floyd, S.R.; Oh, K.S.; Loeffler, J.S.; Shih, H.A. The impact of Different Stereotactic Radiation Therapy Regimens for Brain Metastases on Local Control and Toxicity. Adv. Rad. Oncol. 2017, 2, 391–397. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Lee, C.C.; Sheehan, J.P. The Contemporary Role of Stereotactic Radiosurgery in the Treatment of Meningiomas. Neurosurg. Clin. N. Am. 2016, 27, 215–228. [Google Scholar]
- Buerki, R.A.; Horbinski, C.M.; Kruser, T.; Horowitz, P.M.; James, C.D.; Lukas, R.M. An Overview of Meningiomas. Future Oncol. 2018, 14, 2161–2177. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.K.; Niranjan, A.; McInerney, J.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Stereotactic Radiosurgery Providing Long-Term Tumor Control of Cavernous Sinus Meningiomas. J. Neurosurg. 2002, 97, 65–72. [Google Scholar] [CrossRef]
- Patibandla, M.R.; Lee, C.-C.; Sheehan, J. Stereotactic Radiosurgery of Central Skull Base Meningiomas-Volumetric Evaluation and Long-Term Outcomes. World Neurosurg. 2017, 108, 176–184. [Google Scholar] [CrossRef]
- Valery, C.A.; Faillot, M.; Lamproglou, I.; Golmard, J.-L.; Jenny, C.; Peyre, M.; Mokhtari, K.; Mazeron, J.; Cornu, P.; Kalamarides, M. Grade II Meningiomas and Gamma Knife Radiosurgery: Analysis of Success and Failure to Improve Treatment Paradigm. J. Neurosurg. 2016, 125, 89–96. [Google Scholar] [CrossRef]
- Cho, M.; Joo, J.-D.; Kim, I.A.; Han, J.H.; Oh, C.W.; Kim, C.-Y. The Role of Adjuvant Treatment in Patients with High-Grade Meningioma. J. Korean Neurosurg. Soc. 2017, 60, 527–533. [Google Scholar] [CrossRef]
- Minniti, G.; Clarke, E.; Cavallo, L.; Osti, M.F.; Esposito, V.; Cantore, G.; Cappabianca, P.; Enrici, R.M. Fractionated Stereotactic Conformal Radiotherapy for Large Benign Skull Base Meningiomas. Radiat. Oncol. Lond. Engl. 2011, 6, 36. [Google Scholar] [CrossRef]
- Santacroce, A.; Walier, M.; Régis, J.; Liščák, R.; Motti, E.; Lindquist, C.; Kemeny, A.; Kitz, K.; Lippitz, B.; Martinez Alvarez, R.; et al. Long-Term Tumor Control of Benign Intracranial Meningiomas after Radiosurgery in a Series of 4565 Patients. Neurosurgery 2012, 70, 32–39; discussion 39. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Zhang, P.; Vogelbaum, M.A.; Perry, A.; Ashby, L.S.; Modi, J.M.; Alleman, A.M.; Brachman, D.; Jenrette, J.M.; De Groot, J.; et al. Intermediate-Risk Meningioma: Initial Outcomes from NRG Oncology RTOG 0539. J. Neurosurg. 2017, 129, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.; Li, J.; de Groot, J.; Yeboa, D.N. Current Role of Radiation Therapy in the Management of Malignant Central Nervous System Tumors. Hematol. Oncol. Clin. North Am. 2020, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Sioka, C.; Kyritsis, A.P. Chemotherapy, Hormonal Therapy, and Immunotherapy for Recurrent Meningiomas. J. Neurooncol. 2009, 92, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Raizer, J.J.; Abrey, L.E.; Lamborn, K.R.; Lassman, A.B.; Chang, S.M.; Yung, W.K.A.; Gilbert, M.R.; Fine, H.A.; Mehta, M.; et al. Phase II Trials of Erlotinib or Gefitinib in Patients with Recurrent Meningioma. J. Neurooncol. 2010, 96, 211–217. [Google Scholar] [CrossRef]
- Wilson, T.A.; Huang, L.; Ramanathan, D.; Lopez-Gonzalez, M.; Pillai, P.; De Los Reyes, K.; Kumal, M.; Boling, W. Review of Atypical and Anaplastic Meningiomas: Classification, Molecular Biology, and Management. Front. Oncol. 2020, 10, 565582. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Tsao-Wei, D.D.; Groshen, S. Salvage Chemotherapy with CPT-11 for Recurrent Meningioma. J. Neurooncol. 2006, 78, 271–276. [Google Scholar] [CrossRef]
- Mazza, E.; Brandes, A.; Zanon, S.; Eoli, M.; Lombardi, G.; Faedi, M.; Franceschi, E.; Reni, M. Hydroxyurea with or without Imatinib in the Treatment of Recurrent or Progressive Meningiomas: A Randomized Phase II Trial by Gruppo Italiano Cooperativo Di Neuro-Oncologia (GICNO). Cancer Chemother. Pharmacol. 2016, 77, 115–120. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.H.; Kim, Y.Z. The Clinical Outcome of Hydroxyurea Chemotherapy after Incomplete Resection of Atypical Meningiomas. Brain Tumor Res. Treat. 2017, 5, 77–86. [Google Scholar] [CrossRef]
- Abdel Karim, K.; El Shehaby, A.; Emad, R.; Reda, W.; El Mahdy, M.; Ghali, R.; Nabeel, A. Role of Hydroxyurea as an Adjuvant Treatment after Gamma Knife Radiosurgery for Atypical (WHO Grade II) Meningiomas. J. Egypt. Natl. Cancer Inst. 2018, 30, 69–72. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Adjuvant Combined Modality Therapy for Malignant Meningiomas. J. Neurosurg. 1996, 84, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Dumanski, J.P.; Rouleau, G.A.; Nordenskjold, M.; Collins, V.P. Molecular Genetic Analysis of Chromosome 22 in 81 Cases of Meningioma. Cancer Res. 1990, 50, 5863–5867. [Google Scholar]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Ozduman, K.; Avsar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic Analysis of non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef]
- Reuss, D.E.; Piro, R.M.; Jones, D.T.; Simon, M.; Ketter, R.; Kool, M.; Becker, A.; Sahm, F.; Pusch, S.; Meyer, J.; et al. Secretory Meningiomas are Defined by Combined KLF4 K409Q and TRAF7 Mutations. Acta Neuropathol. 2013, 125, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Pachow, D.; Wick, W.; Gutmann, D.H.; Mawrin, C. The mTOR Signaling Pathway as a Treatment Target for Intracranial Neoplasms. Neuro-Oncology 2015, 17, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.E.; Harmanci, A.S.; Bai, H.; Youngblood, M.W.; Lee, T.I.; Baranoski, J.F.; Erkan-Sencicek, A.G.; Abraham, B.J.; Weintraub, A.S.; Hnisz, D.; et al. Recurrent Somatic Mutations in POLR2A Define a Distinct Subset of Meningiomas. Nat Genet. 2016, 48, 1253–1259. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic Sequencing of Meningiomas Identifies Oncogenic SMO and AKT1 Mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef]
- Moussalem, C.; Massaad, E.; Minassian, G.B.; Ftouni, L.; Bsat, S.; El Houshiemy, M.N.; Alomari, S.; Sarieddine, R.; Kobeissy, F.; Omeis, I. Meningioma Genomics: A Therapeutic Challenge for Clinicians. J. Integr. Neurosci. 2021, 20, 463–469. [Google Scholar] [CrossRef]
- Bi, W.L.; Zhang, M.; Wu, W.W.; Mei, Y.; Dunn, I.F. Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications. Front. Surg. 2016, 3, 40. [Google Scholar] [CrossRef]
- Wang, A.S.; Jamshidi, A.O.; Oh, N.; Sahyouni, R.; Nowroozizadeh, B.; Kim, R.; Hsu, F.P.K.; Bota, D. Somatic SMARCB1 Mutation in Sporadic Multiple Meningiomas: Case Report. Front. Neurol. 2018, 9, 919. [Google Scholar] [CrossRef]
- Smith, M.J.; O’Sullivan, J.; Bhaskar, S.S.; Hadfield, K.D.; Poke, G.; Caird, J.; Sharif, S.; Eccles, D.; Fitzpatrick, D.; Rawluk, D.; et al. Loss-of-Function Mutations in SMARCE1 Cause an Inherited Disorder of Multiple Spinal Meningiomas. Nat. Genet. 2013, 45, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Aavikko, M.; Li, S.; Saarinen, S.; Alhopuro, P.; Kaasinen, E.; Morgunova, E.; Li, Y.; Vesanen, K.; Smith, M.J.; Gareth, D.; et al. Loss of SUFU Function in Familial Multiple Meningioma. Am. J. Hum. Genet. 2012, 91, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Goutagny, S.; Nault, J.C.; Mallet, M.; Henin, D.; Rossi, J.Z.; Kalamarides, M. High Incidence of Activating TERT Promoter Mutations in Meningiomas Undergoing Malignant Progression. Brain Pathol. 2014, 24, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Barresi, V.; Simbolo, M.; Fioravanzo, A.; Piredda, M.L.; Caffo, M.; Ghimenton, C.; Pinna, G.; Longhi, M.; Nicolato, A.; Scarpa, A. Molecular Profiling of 22 Primary Atypical Meningiomas Shows the Prognostic Significance of 18q Heterozygous Loss and CDKN2A/B Homozygous Deletion on Recurrence-Free Survival. Cancers 2021, 13, 903. [Google Scholar] [CrossRef]
- Wang, J.Z.; Patil, V.; Liu, J.; Dogan, H.; Tabatabai, G.; Yefet, L.S.; Behling, F.; Hoffman, E.; Bunda, S.; Yakubov, R.; et al. Increased mRNA Expression of CDKN2A is a Transcriptomic Marker of Clinically Aggressive Meningiomas. Acta Neuropathol. 2023, 46, 145–162. [Google Scholar] [CrossRef]
- Boetto, J.; Bielle, F.; Sanson, M.; Peyre, M.; Kalamarides, M. SMO Mutation Status Defines a Distinct and Frequent Molecular Subgroup in Olfactory Groove Meningiomas. Neuro. Oncol. 2017, 19, 345–351. [Google Scholar]
- Okano, A.; Miyawaki, S.; Hongo, H.; Dofuku, S.; Teranishi, Y.; Mitsui, J.; Tanaka, M.; Shin, M.; Nakatomi, H.; Saito, N. Associations of Pathological Diagnosis and Genetic Abnormalities in Meningiomas with the Embryological Origins of the Meninges. Sci. Rep. 2021, 11, 6987. [Google Scholar] [CrossRef]
- Jungwirth, G.; Warta, R.; Beynon, C.; Sahm, F.; von Deimling, A.; Unterberg, A.; Herold-Mende, C.; Jungk, C. Intraventricular Meningiomas Frequently Harbor NF2 Mutations but Lack Common Genetic Alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT. Acta Neuropathol. Commun. 2019, 7, 140. [Google Scholar] [CrossRef]
- Youngblood, M.W.; Duran, D.; Montejo, J.D.; Li, C.; Omay, S.B.; Ozduman, K.; Sheth, A.H.; Zhao, A.Y.; Tyrtova, E.; Miyagishima, D.F.; et al. Correlations Between Genomic Subgroup and Clinical Features in a Cohort of More Than 3000 Meningiomas. J. Neurosurg. 2019, 133, 1345–1354. [Google Scholar] [CrossRef]
- Sievers, P.; Sill, M.; Blume, C.; Tauziede-Espariat, A.; Schrimpf, D.; Stichel, D.; Reuss, D.E.; Dogan, H.; Hartmann, C.; Mawrin, C.; et al. Clear Cell Meningiomas are Defined by a Highly Distinct DNA Methylation Profile and Mutations in SMARCE1. Acta Neuropathol. 2021, 141, 281–290. [Google Scholar] [CrossRef]
- Nassiri, F.; Liu, J.; Patil, V.; Mamatjan, Y.; Wang, J.Z.; Hugh-White, R.; Macklin, A.M.; Khan, S.; Singh, O.; Karimi, S.; et al. A Clinically Applicable Integrative Molecular Classification of Meningiomas. Nature 2021, 597, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hua, L.; Bian, L.; Chen, H.; Chen, L.; Cheng, H.; Dou, C.; Geng, D.; Hong, T.; Ji, H.; et al. Molecular Diagnosis and Treatment of Meningiomas: An Expert Consensus (2022). Chin. Med. J. 2022, 135, 1894–1912. [Google Scholar] [CrossRef] [PubMed]
- Caffo, M.; Pino, M.A.; Caruso, G.; Tomasello, F. Antisense Molecular Therapy in Cerebral Gliomas. J. Analyt. Oncol. 2012, 1, 135–144. [Google Scholar]
- Yamasaki, F.; Yoshioka, H.; Hama, S.; Sugiyama, K.; Arita, K.; Kurisu, K. Recurrence of Meningiomas. Cancer 2000, 89, 1102–1110. [Google Scholar] [CrossRef]
- Sakuma, T.; Nakagawa, T.; Ido, K.; Takeuchi, H.; Sato, K.; Kubota, T. Expression of Vascular Endothelial Growth Factor-A and mRNA Stability Factor HuR in Human Meningiomas. J. Neurooncol. 2008, 88, 143–155. [Google Scholar] [CrossRef]
- Barresi, V.; Tuccari, G. Increased Ratio of Vascular Endothelial Growth Factor to Semaphorin3A is a Negative Prognostic Factor in Human Meningiomas. Neuropathology 2010, 30, 537–546. [Google Scholar] [CrossRef]
- Baxter, D.S.; Orrego, A.; Rosenfeld, J.V.; Mathiesen, T. An Audit of Immunohistochemical Marker Patterns in Meningioma. J. Clin. Neurosci. 2014, 21, 421–426. [Google Scholar] [CrossRef]
- Pistolesi, S.; Fontanini, G.; Camacci, T.; de Ieso, K.; Boldrini, L.; Lupi, G.; Caniglia, M.; Mariani, G.; Boni, G.; Suriano, S.; et al. Meningioma-Associated Brain Oedema: The Role of Angiogenic Factors and Pial Blood Supply. J. Neurooncol. 2002, 60, 159–164. [Google Scholar] [CrossRef]
- Denizot, Y.; de Armas, R.; Caire, F.; Moreau, J.J.; Pommepuy, I.; Truffinet, V.; Labrousse, F. The Quantitative Analysis of bFGF and VEGF by ELISA in Human Meningiomas. Mediators Inflamm. 2006, 2006, 36376. [Google Scholar] [CrossRef]
- Winter, R.C.; Antunes, A.C.M.; de Oliveira, F.H. The Relationship Between Vascular Endothelial Growth Factor and Histological Grade in Intracranial Meningioma. Surg. Neurol. Int. 2020, 11, 328. [Google Scholar] [CrossRef]
- Hou, J.; Kshettry, V.R.; Selman, W.R.; Bambakidis, N.C. Peritumoral Brain Edema in Intracranial Meningiomas: The Emergence of Vascular Endothelial Growth Factor-Directed Therapy. Neurosurg. Focus 2013, 35, E2. [Google Scholar] [CrossRef] [PubMed]
- Salokorpi, N.; Yrjänä, S.; Tuominen, H.; Karttunen, A.; Heljasvaara, R.; Pihlajaniemi, T.; Heikkinen, E.; Koivukangas, J. Expression of VEGF and Collagen XVIII in Meningiomas: Correlations with Histopathological and MRI Characteristics. Acta Neurochir. 2013, 155, 989–996; discussion 996. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.C.; Chowdhary, S.; Rosenblatt, P.; Weir, A.B.; Shepard, G.C.; Williams, J.T.; Shastry, M.; Burris, H.A.; Hainsworth, J.D. A Phase II Trial of Bevacizumab and Everolimus as Treatment for Patients with Refractory, Progressive Intracranial Meningioma. J. Neurooncol. 2016, 129, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Furtner, J.; Schöpf, V.; Seystahl, K.; Le Rhun, E.; Rudà, R.; Roelcke, U.; Koeppen, S.; Berghoff, A.S.; Marosi, C.; Clement, P.; et al. Kinetics of Tumor Size and Peritumoral Brain Edema before, during, and after Systemic Therapy in Recurrent WHO Grade II or III Meningioma. Neuro-Oncology 2016, 18, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.J.; Wen, P.; Schiff, D.; Ligon, K.; Haidar, S.; Karimi, S.; Lassman, A.B.; Nolan, C.P.; DeAngelis, L.M.; Gavrilovic, I.; et al. Phase II Trial of Sunitinib for Recurrent and Progressive Atypical and Anaplastic Meningioma. Neuro-Oncology 2015, 17, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Raizer, J.J.; Grimm, S.A.; Rademaker, A.; Chandler, J.P.; Muro, K.; Helenowski, I.; Rice, L.; McCarthy, K.; Johnston, S.K.; Mrugala, M.M.; et al. A Phase II Trial of PTK787/ZK 222584 in Recurrent or Progressive Radiation and Surgery Refractory Meningiomas. J. Neurooncol. 2014, 117, 93–101. [Google Scholar] [CrossRef]
- Lou, E.; Sumrall, A.L.; Turner, S.; Peters, K.B.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Herndon, J.E.; McSherry, F.; Norfleet, J.; et al. Bevacizumab Therapy for Adults with Recurrent/Progressive Meningioma: A Retrospective Series. J. Neurooncol. 2012, 109, 63–70. [Google Scholar] [CrossRef]
- Nayak, L.; Iwamoto, F.M.; Rudnick, J.D.; Norden, A.D.; Lee, E.Q.; Drappatz, J.; Omuro, A.; Kaley, T.J. Atypical and Anaplastic Meningiomas Treated with Bevacizumab. J. Neurooncol. 2012, 109, 187–193. [Google Scholar] [CrossRef]
- Franke, A.J.; Skelton, W.P.; Woody, L.E.; Bregy, A.; Shah, A.H.; Vakharia, K.; Komotar, R.J. Role of Bevacizumab for Treatment-Refractory Meningiomas: A Systematic Analysis and Literature Review. Surg. Neurol. Int. 2018, 9, 133. [Google Scholar] [CrossRef]
- Pinker, B.; Barciszewska, A.M. mTOR Signaling and Potential Therapeutic Targeting in Meningioma. Int. J. Mol. Sci. 2022, 23, 1978. [Google Scholar] [CrossRef]
- Pachow, D.; Andrae, N.; Kliese, N.; Angenstein, F.; Stork, O.; Wilisch-Neumann, A.; Kirches, E.; Mawrin, C. mTORC1 Inhibitors Suppress Meningioma Growth in Mouse Models. Clin. Cancer Res. 2013, 19, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Graillon, T.; Sanson, M.; Campello, C.; Idbaih, A.; Peyre, M.; Peyrière, H.; Basset, N.; Autran, D.; Roche, D.; Kalamarides, M.; et al. Everolimus and Octreotide for Patients with Recurrent Meningioma: Results from the Phase II CEVOREM Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Caltabiano, R.; Barbagallo, G.M.V.; Castaing, M.; Cassenti, A.; Senetta, R.; Cassoni, P.; Albanese, V.; Lanzafame, S. Prognostic Value of EGFR Expression in de Novo and Progressed Atypical and Anaplastic Meningiomas: An Immunohistochemical and Fluorescence in Situ Hybridization Pilot Study. J. Neurosurg. Sci. 2013, 57, 139–151. [Google Scholar] [PubMed]
- Osorio, D.S.; Hu, J.; Mitchell, C.; Allen, J.C.; Stanek, J.; Hagiwara, M.; Karajannis, M.A. Effect of Lapatinib on Meningioma Growth in Adults with Neurofibromatosis Type 2. J. Neurooncol. 2018, 139, 749–755. [Google Scholar] [CrossRef]
- Wen, P.Y.; Yung, W.K.A.; Lamborn, K.R.; Norden, A.D.; Cloughesy, T.F.; Abrey, L.E.; Fine, H.A.; Chang, S.M.; Robins, H.I.; Fink, K.; et al. Phase II Study of Imatinib Mesylate for Recurrent Meningiomas (North American Brain Tumor Consortium Study 01-08). Neuro-Oncology 2009, 11, 853–860. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Twohy, E.L.; Gerstner, E.R.; Kaufmann, T.J.; Iafrate, A.J.; Lennerz, J.; Jeyapalan, S.; Piccioni, D.E.; Monga, V.; Fadul, C.E.; et al. Alliance A071401: Phase II Trial of Focal Adhesion Kinase Inhibition in Meningiomas With Somatic NF2 Mutations. J. Clin. Oncol. 2023, 41, 618–628. [Google Scholar] [CrossRef]
- Shapiro, I.M.; Kolev, V.N.; Vidal, C.M.; Kadariya, Y.; Ring, J.E.; Wright, Q.; Weaver, D.T.; Menges, C.; Padval, M.; NcClatchey, A.I.; et al. Merlin Deficiency Predicts FAK Inhibitor Sensitivity: A Synthetic Lethal Relationship. Sci. Transl. Med. 2014, 6, 237ra268. [Google Scholar] [CrossRef]
- Lamszus, K. Meningioma Pathology, Genetics, and Biology. J. Neuropathol. Exp. Neurol. 2004, 63, 275–286. [Google Scholar] [CrossRef]
- Klaeboe, L.; Lonn, S.; Scheie, D.; Auvinen, A.; Christensen, H.C.; Feychting, M.; Johansen, C.; Salminen, T.; Tynes, T. Incidence of Intracranial Meningiomas in Denmark, Finland, Norway and Sweden, 1968-1997. Int. J. Cancer 2005, 117, 996–1001. [Google Scholar] [CrossRef]
- Wigertz, A.; Lönn, S.; Hall, P.; Auvinen, A.; Christensen, H.C.; Johansen, C.; Klaeboe, L.; Salminen, T.; Schoemaker, M.J.; Swerdlow, A.J.; et al. Reproductive Factors and Risk of Meningioma and Glioma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2008, 17, 2663–2670. [Google Scholar] [CrossRef]
- Sanson, M.; Cornu, P. Biology of Meningiomas. Acta Neurochir. 2000, 142, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Wolfsberger, S.; Doostkam, S.; Boecher-Schwarz, H.-G.; Roessler, K.; van Trotsenburg, M.; Hainfellner, J.A.; Knosp, E. Progesterone-Receptor Index in Meningiomas: Correlation with Clinico-Pathological Parameters and Review of the Literature. Neurosurg. Rev. 2004, 27, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Markwalder, T.M.; Seiler, R.W.; Zava, D.T. Antiestrogenic Therapy of Meningiomas--a Pilot Study. Surg. Neurol. 1985, 24, 245–249. [Google Scholar] [CrossRef]
- Goodwin, J.W.; Crowley, J.; Eyre, H.J.; Stafford, B.; Jaeckle, K.A.; Townsend, J.J. A Phase II Evaluation of Tamoxifen in Unresectable or Refractory Meningiomas: A Southwest Oncology Group Study. J. Neurooncol. 1993, 15, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Grunberg, S.M.; Weiss, M.H.; Spitz, I.M.; Ahmadi, J.; Sadun, A.; Russell, C.A.; Lucci, L.; Stevenson, L.L. Treatment of Unresectable Meningiomas with the Antiprogesterone Agent Mifepristone. J. Neurosurg. 1991, 74, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Touat, M.; Lombardi, G.; Farina, P.; Kalamarides, M.; Sanson, M. Successful Treatment of Multiple Intracranial Meningiomas with the Antiprogesterone Receptor Agent Mifepristone (RU486). Acta Neurochir. 2014, 156, 1831–1835. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Rankin, C.; Grunberg, S.; Sherrod, A.E.; Ahmadi, J.; Townsend, J.J.; Feun, L.G.; Fredericks, R.K.; Russel, C.A.; Kabbinavar, F.F.; et al. Double-Blind Phase III Randomized Trial of the Antiprogestin Agent Mifepristone in the Treatment of Unresectable Meningioma: SWOG S9005. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 4093–4098. [Google Scholar] [CrossRef]
- Chamberlain, M.C. IFN-α for Recurrent Surgery- and Radiation-Refractory High-Grade Meningioma: A Retrospective Case Series. CNS Oncol. 2013, 2, 227–235. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Glantz, M.J. Interferon-Alpha for Recurrent World Health Organization Grade 1 Intracranial Meningiomas. Cancer 2008, 113, 2146–2151. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Glantz, M.J.; Fadul, C.E. Recurrent Meningioma: Salvage Therapy with Long-Acting Somatostatin Analogue. Neurology 2007, 69, 969–973. [Google Scholar] [CrossRef]
- Norden, A.D.; Ligon, K.L.; Hammond, S.N.; Muzikansky, A.; Reardon, D.A.; Kaley, T.J.; Batchelor, T.T.; Plotkin, S.R.; Raizer, J.J.; Wong, E.T.; et al. Phase II Study of Monthly Pasireotide LAR (SOM230C) for Recurrent or Progressive Meningioma. Neurology 2015, 84, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Marincek, N.; Radojewski, P.; Dumont, R.A.; Brunner, P.; Müller-Brand, J.; Maecke, H.R.; Briel, M.; Walter, M.A. Somatostatin Receptor-Targeted Radiopeptide Therapy with 90Y-DOTATOC and 177Lu-DOTATOC in Progressive Meningioma: Long-Term Results of a Phase II Clinical Trial. J. Nucl. Med. 2015, 56, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Kim, A.E.; Giobbie-Hurder, A.; Lee, E.Q.; Wang, N.; Eichler, A.F.; Chukwueke, U.; Forst, D.A.; Arillaga-Romany, I.C.; Dietrich, J.; et al. Phase 2 Study of Pembrolizumab in Patients with Recurrent and Residual High-Grade Meningiomas. Nat. Commun. 2022, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Dunn, I.F.; Du, Z.; Touat, M.; Sisti, M.B.; Wen, P.Y.; Umeton, R.; Dubuc, A.M.; Ducar, M.; Canoll, P.D.; Severson, E.; et al. Mismatch Repair Deficiency in High-Grade Meningioma: A Rare but Recurrent Event Associated With Dramatic Immune Activation and Clinical Response to PD-1 Blockade. JCO Precis. Oncol. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Giles, A.J.; Hao, S.; Padget, M.; Song, H.; Zhang, W.; Lynes, J.; Sanchez, V.; Liu, Y.; Jung, J.; Cao, X.; et al. Efficient ADCC Killing of Meningioma by Avelumab and a High-Affinity Natural Killer Cell Line, HaNK. JCI Insight 2019, 4, e130688. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Liu, Y.; Zhang, H.; Ren, N.; Ma, R.; He, Z. The Biological and Diagnostic Roles of MicroRNAs in Meningiomas. Rev. Neurosci. 2020, 31, 771–778. [Google Scholar] [CrossRef]
- Caruso, G.; Elbabaa, S.K.; Gonzalez-Lopez, P.; Barresi, V.; Passalacqua, M.; Caffo, M. Innovative Therapeutic Strategies in the Treatment of Meningioma. Anticancer Res. 2015, 35, 6391–6400. [Google Scholar]
- Zhi, F.; Zhou, G.; Wang, S.; Shi, Y.; Peng, Y.; Shao, N.; Guan, W.; Qu, H.; Zhang, Y.; Wang, Q.; et al. A MicroRNA Expression Signature Predicts Meningioma Recurrence. Int. J. Cancer 2013, 132, 128–136. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, D.; Sun, G.; Wan, Y.; Zhang, S.; Zeng, Y.; Pan, T.; Wang, Z. MiR-335 Promotes Cell Proliferation by Directly Targeting Rb1 in Meningiomas. J. Neurooncol. 2012, 110, 155–162. [Google Scholar] [CrossRef]
- Katar, S.; Baran, O.; Evran, S.; Cevik, S.; Akkaya, E.; Baran, G.; Antar, V.; Hanimoglu, H.; Kaynar, M.Y. Expression of MiRNA-21, MiRNA-107, MiRNA-137 and MiRNA-29b in Meningioma. Clin. Neurol. Neurosurg. 2017, 156, 66–70. [Google Scholar] [CrossRef]
- Ludwig, N.; Kim, Y.-J.; Mueller, S.C.; Backes, C.; Werner, T.V.; Galata, V.; Sartorius, E.; Bohle, R.M.; Keller, A.; Meese, E. Posttranscriptional Deregulation of Signaling Pathways in Meningioma Subtypes by Differential Expression of MiRNAs. Neuro-Oncology 2015, 17, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wei, W.; Yuan, J.; Cheng, J. Resveratrol Inhibits Proliferation in HBL-52 Meningioma Cells. OncoTargets Ther. 2019, 12, 11579–11586. [Google Scholar] [CrossRef] [PubMed]
Simpson Grade | Description |
---|---|
Grade 1 | Macroscopically complete tumor resection including removal of affected dura and underlying bone |
Grade 2 | Macroscopically complete tumor resection with coagulation of affected dura |
Grade 3 | Macroscopically complete tumor resection without removal of affected dura and underlying bone |
Grade 4 | Incomplete excision, subtotal tumor resection |
Grade 5 | Decompression with or without biopsy |
Mutation | Co-Occurring Mutations |
---|---|
NF2 | SMARCB1 |
TRAF 7 | AKT1 or KLF4 or PIK3CA |
AKT1 | / |
POLR2A | / |
SMARCB1 | / |
KLF4 | / |
SMO | / |
PIK3CA | / |
Unknown (20% of cases) | / |
Tumor Location | WHO Grade | Associated Mutations | Target Therapies |
---|---|---|---|
Convexity | I–III | 22q, NF2, H3K27me3, SSTR2, BAP1, TERTp, CDKN2A/B, VEGFR | Sunitinib (22q), Everolimus-octreotide (SSTR2), Bevacizumab (VEGFR) |
Anterior Skull Base | I–III | AKT1, PIK3CA, SMO, TRAF7 | Everolimus-octreotide (SSTR2, AKT1, PI3K), Bevacizumab (VEGFR) |
Central Skull Base | I | AKT1, PIK3CA, SMO, SUFU, TRAF7, H3K27me3, SSTR2, BAP1, TERTp, CDKN2A/B | Everolimus-octreotide (SSTR2, AKT1, PI3K), Bevacizumab (VEGFR) |
Other Localizations | I–III | KLF-4, H3K27me3, SSTR2, TERTp, CDKN2A/B, BAP1, POLR2A | Everolimus-octreotide (SSTR2), Bevacizumab (VEGFR) |
Spinal Meningiomas | I–III | 22q, NF2, SMARCE1, H3K27me3, SSTR2, BAP1, TERTp, CDKN2A/B, VEGFR | Sunitinib (22q), Everolimus-octreotide (SSTR2), Bevacizumab (VEGFR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Ferrarotto, R.; Curcio, A.; Metro, L.; Pasqualetti, F.; Gaviani, P.; Barresi, V.; Angileri, F.F.; Caffo, M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers 2023, 15, 4521. https://doi.org/10.3390/cancers15184521
Caruso G, Ferrarotto R, Curcio A, Metro L, Pasqualetti F, Gaviani P, Barresi V, Angileri FF, Caffo M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers. 2023; 15(18):4521. https://doi.org/10.3390/cancers15184521
Chicago/Turabian StyleCaruso, Gerardo, Rosamaria Ferrarotto, Antonello Curcio, Luisa Metro, Francesco Pasqualetti, Paola Gaviani, Valeria Barresi, Filippo Flavio Angileri, and Maria Caffo. 2023. "Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications" Cancers 15, no. 18: 4521. https://doi.org/10.3390/cancers15184521
APA StyleCaruso, G., Ferrarotto, R., Curcio, A., Metro, L., Pasqualetti, F., Gaviani, P., Barresi, V., Angileri, F. F., & Caffo, M. (2023). Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers, 15(18), 4521. https://doi.org/10.3390/cancers15184521