Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand?
Abstract
:Simple Summary
Abstract
1. Introduction
2. VATS/RATS Lobectomy
3. Segmentectomy for Early-Stage Lung Cancer
4. Nodule Detection
5. Costs and Ergonomics of Robotic Surgery
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Addeo, A.; Bianchi, D.; Minervini, F. What is the role of surgery in stage III NSCLC in the era of Immunotherapy? Hematol. Med. Oncol. 2018, 3, 1–5. [Google Scholar]
- Bai, R.; Li, L.; Chen, X.; Chen, N.; Song, W.; Cui, J. Neoadjuvant and adjuvant immunotherapy: Opening new horizons for patients with early-stage non-small cell lung cancer. Front. Oncol. 2020, 10, 575472. [Google Scholar] [CrossRef]
- Lococo, F.; Sassorossi, C.; Mazzarella, C.; Vita, E.; Leoncini, F.; Martino, A.; Nachira, D.; Chiappetta, M.; Cesario, A.; Trisolini, R.; et al. Surgery after induction chemo or immunotherapy for locally advanced NSCLC. Curr. Chall. Thorac. Surg. 2020, 2, 42. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, Z.; Zhang, C.; Zhong, W. Achievements and futures of immune checkpoint inhibitors in non-small cell lung cancer. Exp. Hematol. Oncol. 2019, 8, 19. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Yeh, J.; Marrone, K.; Forde, P. Neoadjuvant and consolidation immuno-oncology therapy in stage III non-small cell lung cancer. J. Thorac. Dis. 2018, 10, 451–459. [Google Scholar] [CrossRef]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Lao, X.Q.; Ho, K.F.; Goggins, W.B.; Tse, S.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci. Rep. 2017, 7, 14300. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J. Thorac. Oncol. 2019, 14, 1732–1742. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Marescaux, J. Robotic surgery. Br. J. Surg. 2015, 102, e15–e28. [Google Scholar] [CrossRef]
- Power, A.D.; D’Souza, D.M.; Moffatt-Bruce, S.D.; Merritt, R.E.; Kneuertz, P.J. Defining the learning curve of robotic thoracic surgery: What does it take? Surg. Endosc. 2019, 33, 3880–3888. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D. Robotic-Assisted Surgery: Balancing Evidence and Implementation. JAMA 2017, 318, 1545–1547. [Google Scholar] [CrossRef]
- Ikeda, N. Updates on Minimally Invasive Surgery in Non-Small Cell Lung Cancer. Curr. Treat. Options Oncol. 2019, 20, 16. [Google Scholar] [CrossRef]
- Cosgun, T.; Kaba, E.; Ayalp, K.; Alomari, M.R.; Toker, A. Robot-Assisted Thoracoscopic Surgery: Pros and Cons. Curr. Surg. Rep. 2017, 5, 27. [Google Scholar] [CrossRef]
- Abbas, A.E. Surgical Management of Lung Cancer: History, Evolution, and Modern Advances. Curr. Oncol. Rep. 2018, 20, 98. [Google Scholar] [CrossRef]
- Rajaram, R.; Mohanty, S.; Bentrem, D.J.; Pavey, E.S.; Odell, D.D.; Bharat, A.; Bilimoria, K.Y.; DeCamp, M.M. Nationwide Assessment of Robotic Lobectomy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2017, 103, 1092–1100. [Google Scholar] [CrossRef]
- Velez-Cubian, F.O.; Ng, E.P.; Fontaine, J.P.; Toloza, E.M. Robotic-Assisted Videothoracoscopic Surgery of the Lung. Cancer Control 2015, 22, 314–325. [Google Scholar] [CrossRef]
- Singer, E.; Kneuertz, P.J.; D’Souza, D.M.; Moffatt-Bruce, S.D.; Merritt, R.E. Understanding the financial cost of robotic lobectomy: Calculating the value of innovation? Ann. Cardiothorac. Surg. 2019, 8, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, R.J.; Rubinstein, L.V. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann. Thorac. Surg. 1995, 60, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Lang-Lazdunski, L. Surgery for nonsmall cell lung cancer. Eur. Respir. Rev. 2013, 22, 382–404. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Saji, H.; Nakajima, R.; Okada, M.; Asamura, H.; Shibata, T.; Nakamura, S.; Tada, H.; Tsuboi, M. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn. J. Clin. Oncol. 2010, 40, 271–274. [Google Scholar] [CrossRef]
- Kohman, L.J.; Gu, L.; Altorki, N.; Scalzetti, E.; Veit, L.J.; Wallen, J.M.; Wang, X. Biopsy first: Lessons learned from Cancer and Leukemia Group B (CALGB) 140503. J. Thorac. Cardiovasc. Surg. 2017, 153, 1592–1597. [Google Scholar] [CrossRef]
- Chan, J.W.Y.; Yu, P.S.Y.; Lau, R.W.H.; Ng, C.S.H. Hybrid operating room-one stop for diagnosis, staging and treatment of early stage NSCLC. J. Thorac. Dis. 2020, 12, 123–131. [Google Scholar] [CrossRef]
- Fra-Fernández, S.; Gorospe-Sarasúa, L.; Ajuria-Illarramendi, O.; Serrano-Carvajal, P.E.; Muñoz-Molina, G.M.; Cabañero-Sánchez, A.; Rioja-Martin, M.E.; Moreno-Mata, N. Preoperative radio-guided localization of lung nodules with I-125 seeds: Experience with 32 patients at a single institution. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 91–98. [Google Scholar] [CrossRef]
- Huang, Y.H.; Chen, K.C.; Chen, J.S. Ultrasound for intraoperative localization of lung nodules during thoracoscopic surgery. Ann. Transl. Med. 2019, 7, 37. [Google Scholar] [CrossRef]
- Rodrigues, J.C.L.; Pierre, A.F.; Hanneman, K.; Cabanero, M.; Kavanagh, J.; Waddell, T.K.; Chung, T.-B.; Pakkal, M.; Keshavjee, S.; Cypel, M.; et al. CT-guided Microcoil Pulmonary Nodule Localization prior to Video-assisted Thoracoscopic Surgery: Diagnostic Utility and Recurrence-Free Survival. Radiology 2019, 291, 214–222. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, H.S.; Park, S.Y.; Zo, J.I. Comparison of the early robot-assisted lobectomy experience to video-assisted thoracic surgery lobectomy for lung cancer: A single-institution case series matching study. Innovations 2011, 6, 305–310. [Google Scholar] [CrossRef]
- Louie, B.E.; Farivar, A.S.; Aye, R.W.; Vallieres, E. Early experience with robotic lung resection results in similar operative outcomes and morbidity when compared with matched video-assisted thoracoscopic surgery cases. Ann. Thorac. Surg. 2012, 93, 1598–1605. [Google Scholar] [CrossRef]
- Mungo, B.; Hooker, C.M.; Ho, J.S.; Yang, S.C.; Battafarano, R.J.; Brock, M.V.; Molena, D. Robotic versus Thoracoscopic Resection for Lung Cancer: Early Results of a New Robotic Program. J. Laparoendosc. Adv. Surg. Tech. A 2016, 26, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Novellis, P.; Bottoni, E.; Voulaz, E.; Cariboni, U.; Testori, A.; Bertolaccini, L.; Giordano, L.; Dieci, E.; Granato, L.; Vanni, E.; et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: Comparison of costs and outcomes at a single institute. J. Thorac. Dis. 2018, 10, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Batchelor, T.J.P.; Dunning, J.; Shackcloth, M.; Anikin, V.; Naidu, B.; Belcher, E.; Loubani, M.; Zamvar, V.; Harris, R.A.; et al. Video-Assisted Thoracoscopic or Open Lobectomy in Early-Stage Lung Cancer. NEJM Evid. 2022, 1, EVIDoa2100016. [Google Scholar] [CrossRef]
- Paul, S.; Jalbert, J.; Isaacs, A.J.; Altorki, N.K.; Isom, O.W.; Sedrakyan, A. Comparative effectiveness of robotic-assisted vs thoracoscopic lobectomy. Chest 2014, 146, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Ma, D.; Li, S. Compare the prognosis of Da Vinci robot-assisted thoracic surgery (RATS) with video-assisted thoracic surgery (VATS) for non-small cell lung cancer: A Meta-analysis. Medicine 2019, 98, e17089. [Google Scholar] [CrossRef]
- Liang, H.; Liang, W.; Zhao, L.; Chen, D.; Zhang, J.; Zhang, Y.; Tang, S.; He, J. Robotic Versus Video-assisted Lobectomy/Segmentectomy for Lung Cancer: A Meta-analysis. Ann. Surg. 2018, 268, 254–259. [Google Scholar] [CrossRef]
- Emmert, A.; Straube, C.; Buentzel, J.; Roever, C. Robotic versus thoracoscopic lung resection: A systematic review and meta-analysis. Medicine 2017, 96, e7633. [Google Scholar] [CrossRef]
- Oh, D.S.; Reddy, R.M.; Gorrepati, M.L.; Mehendale, S.; Reed, M.F. Robotic-Assisted, Video-Assisted Thoracoscopic and Open Lobectomy: Propensity-Matched Analysis of Recent Premier Data. Ann. Thorac. Surg. 2017, 104, 1733–1740. [Google Scholar] [CrossRef]
- Louie, B.E.; Wilson, J.L.; Kim, S.; Cerfolio, R.J.; Park, B.J.; Farivar, A.S.; Vallières, E.; Aye, R.W.; Burfeind, W.R., Jr.; Block, M.I. Comparison of Video-Assisted Thoracoscopic Surgery and Robotic Approaches for Clinical Stage I and Stage II Non-Small Cell Lung Cancer Using the Society of Thoracic Surgeons Database. Ann. Thorac. Surg. 2016, 102, 917–924. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Q.; Huang, Y.; Ouyang, L.; Luo, F. Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 853530. [Google Scholar] [CrossRef]
- Wilson, J.L.; Louie, B.E.; Cerfolio, R.J.; Park, B.J.; Vallieres, E.; Aye, R.W.; Abdel-Razek, A.; Bryant, A.; Farivar, A.S. The prevalence of nodal upstaging during robotic lung resection in early stage non-small cell lung cancer. Ann. Thorac. Surg. 2014, 97, 1901–1907. [Google Scholar] [CrossRef]
- Yang, S.; Guo, W.; Chen, X.; Wu, H.; Li, H. Early outcomes of robotic versus uniportal video-assisted thoracic surgery for lung cancer: A propensity score-matched study. Eur. J. Cardio-Thorac. Surg. 2018, 53, 348–352. [Google Scholar] [CrossRef]
- Hennon, M.W.; DeGraaff, L.H.; Groman, A.; Demmy, T.L.; Yendamuri, S. The association of nodal upstaging with surgical approach and its impact on long-term survival after resection of non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 2019, 57, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, G.; Abbas, A.E.; Muriana, P.; Lembo, R.; Bottoni, E.; Perroni, G.; Testori, A.; Dieci, E.; Bakhos, C.T.; Car, S.; et al. Perioperative Outcome of Robotic Approach Versus Manual Videothoracoscopic Major Resection in Patients Affected by Early Lung Cancer: Results of a Randomized Multicentric Study (ROMAN Study). Front. Oncol. 2021, 11, 726408. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zheng, Y.; Yuan, Y.; Han, D.; Cao, Y.; Zhang, Y.; Li, C.; Xiang, J.; Zhang, Z.; Niu, Z.; et al. Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy: Short-term Results of a Randomized Clinical Trial (RVlob Trial). Ann. Surg. 2022, 275, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.S.; Hanna, W.C.; Fahim, C.; Shargall, Y.; Waddell, T.K.; Yasufuku, K.; Machuca, T.N.; Pipkin, M.; Baste, J.M.; Xie, F.; et al. RAVAL trial: Protocol of an international, multi-centered, blinded, randomized controlled trial comparing robotic-assisted versus video-assisted lobectomy for early-stage lung cancer. PLoS ONE 2022, 17, e0261767. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Dai, J.; Zhu, X.; Gonzalez-Rivas, D.; Jiang, G.; Li, H.; Zhang, P. Perioperative outcomes of robot-assisted vs video-assisted and traditional open thoracic surgery for lung cancer: A systematic review and network meta-analysis. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Wu, H.; Jin, R.; Yang, S.; Park, B.J.; Li, H. Long-term and short-term outcomes of robot- versus video-assisted anatomic lung resection in lung cancer: A systematic review and meta-analysis. Eur. J. Cardio-Thorac. Surg. 2020, 59, 732–740. [Google Scholar] [CrossRef]
- Mao, J.; Tang, Z.; Mi, Y.; Xu, H.; Li, K.; Liang, Y.; Wang, N.; Wang, L. Robotic and video-assisted lobectomy/segmentectomy for non-small cell lung cancer have similar perioperative outcomes: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 3883–3893. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhao, S.; Wang, J.; Zhang, W.; Sun, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: A meta-analysis. BMC Cancer 2021, 21, 498. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli Maqueda, L.; García-Pérez, A.; Minasyan, A.; Gonzalez-Rivas, D. Uniportal VATS for non-small cell lung cancer. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Hirai, K.; Takeuchi, S.; Usuda, J. Single-incision thoracoscopic surgery and conventional video-assisted thoracoscopic surgery: A retrospective comparative study of perioperative clinical outcomes. Eur. J. Cardiothorac. Surg. 2016, 49 (Suppl. 1), i37–i41. [Google Scholar] [CrossRef]
- Bourdages-Pageau, E.; Vieira, A.; Lacasse, Y.; Figueroa, P.U. Outcomes of Uniportal vs Multiportal Video-Assisted Thoracoscopic Lobectomy. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Bertolaccini, L.; Batirel, H.; Brunelli, A.; Gonzalez-Rivas, D.; Ismail, M.; Ucar, A.M.; Ng, C.S.H.; Scarci, M.; Sihoe, A.D.L.; Ugalde, P.A.; et al. Uniportal video-assisted thoracic surgery lobectomy: A consensus report from the Uniportal VATS Interest Group (UVIG) of the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardio-Thorac. Surg. 2019, 56, 224–229. [Google Scholar] [CrossRef]
- Patané, A.K. Minimal invasive surgery in locally advanced N2 non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 519–528. [Google Scholar] [CrossRef]
- Amirkhosravi, F.; Kim, M.P. Complex Robotic Lung Resection. Thorac. Surg. Clin. 2023, 33, 51–60. [Google Scholar] [CrossRef]
- Veronesi, G.; Park, B.; Cerfolio, R.; Dylewski, M.; Toker, A.; Fontaine, J.P.; Hanna, W.C.; Morenghi, E.; Novellis, P.; Velez-Cubian, F.O.; et al. Robotic resection of Stage III lung cancer: An international retrospective study. Eur. J. Cardiothorac. Surg. 2018, 54, 912–919. [Google Scholar] [CrossRef]
- Herb, J.N.; Kindell, D.G.; Strassle, P.D.; Stitzenberg, K.B.; Haithcock, B.E.; Mody, G.N.; Long, J.M. Trends and Outcomes in Minimally Invasive Surgery for Locally Advanced Non–Small-Cell Lung Cancer With N2 Disease. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 547–555. [Google Scholar] [CrossRef]
- Baig, M.Z.; Razi, S.S.; Agyabeng-Dadzie, K.; Stroever, S.; Muslim, Z.; Weber, J.; Herrera, L.J.; Bhora, F.Y. Robotic-assisted thoracoscopic surgery demonstrates a lower rate of conversion to thoracotomy than video-assisted thoracoscopic surgery for complex lobectomies. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac281. [Google Scholar] [CrossRef]
- Mazzei, M.; Abbas, A.E. Why comprehensive adoption of robotic assisted thoracic surgery is ideal for both simple and complex lung resections. J. Thorac. Dis. 2020, 12, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhao, Y.; Qiu, T.; Xuan, Y.; Qin, Y.; Sun, X.; Xu, R.; Du, W.; Wu, Z.; Veronesi, G.; et al. The long-term oncologic outcomes of robot-assisted bronchial single sleeve lobectomy for 104 consecutive patients with centrally located non-small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, D.; Bosinceanu, M.; Manolache, V.; Gallego-Poveda, J.; Paradela, M.; Li, S.; Garcia, A.; Bale, M.; Motas, N. Uniportal fully robotic-assisted sleeve resections: Surgical technique and initial experience of 30 cases. Ann. Cardiothorac. Surg. 2023, 12, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, D.; Bosinceanu, M.; Motas, N.; Manolache, V. Uniportal robotic-assisted thoracic surgery for lung resections. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac410. [Google Scholar] [CrossRef]
- Chow, T.K.F. PROSPECT guidelines no longer recommend thoracic epidural analgesia for video-assisted thoracoscopic surgery. Anaesthesia 2022, 77, 937. [Google Scholar] [CrossRef]
- Spaans, L.N.; Bousema, J.E.; van den Broek, F.J.C. Variation in postoperative pain management after lung surgery in the Netherlands: A survey of Dutch thoracic surgeons. Br. J. Anaesth. 2022, 128, e222–e225. [Google Scholar] [CrossRef]
- Turhan, Ö.; Sivrikoz, N.; Sungur, Z.; Duman, S.; Özkan, B.; Şentürk, M. Thoracic Paravertebral Block Achieves Better Pain Control Than Erector Spinae Plane Block and Intercostal Nerve Block in Thoracoscopic Surgery: A Randomized Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2920–2927. [Google Scholar] [CrossRef]
- Spaans, L.N.; Dijkgraaf, M.G.W.; Meijer, P.; Mourisse, J.; Bouwman, R.A.; Verhagen, A.F.T.M.; van den Broek, F.J.C.; Susa, D.; van Duyn, E.; Potters, J.-W.; et al. Optimal postoperative pain management after VATS lung resection by thoracic epidural analgesia, continuous paravertebral block or single-shot intercostal nerve block (OPtriAL): Study protocol of a three-arm multicentre randomised controlled trial. BMC Surg. 2022, 22, 330. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Xiao, D.; Zhou, Y.; Chen, Y.; Yang, H.; Wang, L.; Zeng, J.; He, B.; He, R.; et al. Robotic-assisted thoracic surgery following neoadjuvant chemoimmunotherapy in patients with stage III non-small cell lung cancer: A real-world prospective cohort study. Front. Oncol. 2022, 12, 969545. [Google Scholar] [CrossRef]
- Kalata, S.; Mollberg, N.M.; He, C.; Clark, M.; Theurer, P.; Chang, A.C.; Welsh, R.J.; Lagisetty, K.H. The Role of Lung Cancer Surgical Technique on Lymph Node Sampling and Pathologic Nodal Upstaging. Ann. Thorac. Surg. 2023, 115, 1238–1245. [Google Scholar] [CrossRef]
- Kanzaki, M. Current status of robot-assisted thoracoscopic surgery for lung cancer. Surg. Today 2019, 49, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.H.; Hansen, H.J. Learning curve associated with VATS lobectomy. Ann. Cardiothorac. Surg. 2012, 1, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Potaris, K.; Kapetanakis, E.; Papamichail, K.; Midvighi, E.; Verveniotis, A.; Parissis, F.; Apostolou, D.; Tziortziotis, V.; Maimani, S.; Pouliara, E.; et al. Major Lung Resections Using Manual Suturing Versus Staplers During Fiscal Crisis. Int. Surg. 2017, 102, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Fourdrain, A.; De Dominicis, F.; Iquille, J.; Lafitte, S.; Merlusca, G.; Witte-Pfister, A.; Meynier, J.; Bagan, P.; Berna, P. Intraoperative conversion during video-assisted thoracoscopy does not constitute a treatment failure. Eur. J. Cardiothorac. Surg. 2019, 55, 660–665. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.-N.; Liao, R.-Q.; Nie, Q.; Dong, S.; Zhai, H.-R.; Wu, Y.-L.; Zhong, W.-Z. Intraoperative frozen sections of the regional lymph nodes contribute to surgical decision-making in non-small cell lung cancer patients. J. Thorac. Dis. 2016, 8, 1974–1980. [Google Scholar] [CrossRef]
- Veronesi, G. Robotic lobectomy and segmentectomy for lung cancer: Results and operating technique. J. Thorac. Dis. 2015, 7, S122–S130. [Google Scholar] [CrossRef]
- Detterbeck, F.C. Lobectomy versus limited resection in T1N0 lung cancer. Ann. Thorac. Surg. 2013, 96, 742–744. [Google Scholar] [CrossRef]
- Rusch, V.W. Initiating the Era of “Precision” Lung Cancer Surgery. N. Engl. J. Med. 2023, 388, 557–558. [Google Scholar] [CrossRef]
- Saji, H.; Okada, M.; Tsuboi, M.; Nakajima, R.; Suzuki, K.; Aokage, K.; Aoki, T.; Okami, J.; Yoshino, I.; Ito, H.; et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 2022, 399, 1607–1617. [Google Scholar] [CrossRef]
- Altorki, N.; Wang, X.; Kozono, D.; Watt, C.; Landrenau, R.; Wigle, D.; Port, J.; Jones, D.R.; Conti, M.; Ashrafi, A.S.; et al. Lobar or Sublobar Resection for Peripheral Stage IA Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 388, 489–498. [Google Scholar] [CrossRef]
- Dylewski, M.R.; Ohaeto, A.C.; Pereira, J.F. Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin. Thorac. Cardiovasc. Surg. 2011, 23, 36–42. [Google Scholar] [CrossRef]
- Nguyen, D.; Gharagozloo, F.; Tempesta, B.; Meyer, M.; Gruessner, A. Long-term results of robotic anatomical segmentectomy for early-stage non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 2019, 55, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Sun, X.; Qin, Y.; Liu, A.; Miao, S.; Jiao, W. Short-term outcomes of typical versus atypical lung segmentectomy by minimally invasive surgeries. Thorac. Cancer 2019, 10, 1812–1818. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, A.; Nardecchia, E.; Cattoni, M.; Mohamed, S.; Di Natale, D.; Righi, I.; Mendogni, P.; Diotti, C.; Rotolo, N.; Dominioni, L.; et al. Perioperative identifications of non-palpable pulmonary nodules: A narrative review. J. Thorac. Dis. 2021, 13, 2524–2531. [Google Scholar] [CrossRef] [PubMed]
- Taje, R.; Gallina, F.T.; Forcella, D.; Vallati, G.E.; Cappelli, F.; Pierconti, F.; Visca, P.; Melis, E.; Facciolo, F. Fluorescence-guided lung nodule identification during minimally invasive lung resections. Front. Surg. 2022, 9, 943829. [Google Scholar] [CrossRef]
- Dunn, B.K.; Blaj, M.; Stahl, J.; Speicher, J.; Anciano, C.; Hudson, S.; Kragel, E.A.; Bowling, M.R. Evaluation of Electromagnetic Navigational Bronchoscopy Using Tomosynthesis-Assisted Visualization, Intraprocedural Positional Correction and Continuous Guidance for Evaluation of Peripheral Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2023, 30, 16–23. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; Singer, E.; D’Souza, D.M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Hospital cost and clinical effectiveness of robotic-assisted versus video-assisted thoracoscopic and open lobectomy: A propensity score–weighted comparison. J. Thorac. Cardiovasc. Surg. 2019, 157, 2018–2026.e2012. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Sarkaria, I.S.; Song, C.; Reddy, R.M.; Villamizar, N.; Herrera, L.J.; Shi, L.; Liu, E.; Rice, D.; Oh, D.S. Clinical and economic comparative effectiveness of robotic-assisted, video-assisted thoracoscopic, and open lobectomy. J. Thorac. Dis. 2020, 12, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kang, P.; Tao, S.; Li, Q.; Wang, R.; Tan, Q. Cost-effectiveness evaluation of robotic-assisted thoracoscopic surgery versus open thoracotomy and video-assisted thoracoscopic surgery for operable non-small cell lung cancer. Lung Cancer 2021, 153, 99–107. [Google Scholar] [CrossRef]
- Heiden, B.T.; Mitchell, J.D.; Rome, E.; Puri, V.; Meyers, B.F.; Chang, S.-H.; Kozower, B.D. Cost-Effectiveness Analysis of Robotic-assisted Lobectomy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2022, 114, 265–272. [Google Scholar] [CrossRef]
- Epstein, S.; Sparer, E.H.; Tran, B.N.; Ruan, Q.Z.; Dennerlein, J.T.; Singhal, D.; Lee, B.T. Prevalence of Work-Related Musculoskeletal Disorders Among Surgeons and Interventionalists: A Systematic Review and Meta-analysis. JAMA Surg. 2018, 153, e174947. [Google Scholar] [CrossRef]
- Grant, K.M.K.; Vo, T.; Tiong, L.U. The painful truth: Work-related musculoskeletal disorders in Australian surgeons. Occup. Med. 2019, 70, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Catanzarite, T.; Tan-Kim, J.; Whitcomb, E.L.; Menefee, S. Ergonomics in Surgery: A Review. Female Pelvic Med. Reconstr. Surg. 2018, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- van der Schatte Olivier, R.H.; Van’t Hullenaar, C.D.P.; Ruurda, J.P.; Broeders, I.A.M.J. Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg. Endosc. 2009, 23, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Mendes, V.; Bruyere, F.; Escoffre, J.M.; Binet, A.; Lardy, H.; Marret, H.; Marchal, F.; Hebert, T. Experience implication in subjective surgical ergonomics comparison between laparoscopic and robot-assisted surgeries. J. Robot. Surg. 2020, 14, 115–121. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Type of Study | Number of Patients | Comparison | Outcomes | Results |
---|---|---|---|---|---|---|
Liang et al. [37] | 2018 | Meta-analysis (14 studies) | 7438 (3239 RATS and 4199 VATS) | VATS vs. RATS lobectomy/segmentectomy | Perioperative and short-term outcomes | 30-day mortality and conversion to open significantly lower in RATS group (p = 0.045 and p < 0.001, resp.). No other significant differences. |
Guo et al. [36] | 2019 | Meta-analysis (14 studies) | 20,948 (2553 RATS and 18,431 VATS) | VATS vs. RATS lobectomy | Perioperative and short-term outcomes | No signifiant difference between VATS and RATS regarding conversion rates, lymph node dissection, hospital LOS, surgical duration, chest drainage volume, PAL, and morbidity. |
Hu et al. [48] | 2020 | Meta-analysis (32 studies) | 6593 (2346 RATS, 2553 VATS, and 1694 open) | VATS vs. RATS lobectomy/segmentectomy | Perioperative and short-term outcomes | RATS had longer operative times and higher lymp node dissection rates compared to VATS. No other significant differences. |
Wu et al. [49] | 2020 | Meta-analysis (25 studies) | 50,404 patients (7135 RATS and 43,269 VATS) | VATS vs. RATS anatomical resections | Long- and short-term outcomes | RATS had a longer DFS compared to VATS (p = 0.03). OS showed a similar trend but was not statistically significant (p = 0.10). RATS showed a significantly lower 30-day mortality (p = 0.002). No significant difference was found in postoperative complications, conversion rate to open surgery, or lymph node upstaging. |
Mao et al. [50] | 2021 | Meta-analysis (18 studies) | 60,349 patients (8726 RATS and 51,623 VATS) | VATS vs. RATS lobectomy/segmentectomy | Perioperative and short-term outcomes | RATS had longer operative times (p < 0.001), lower postoperative complication rates after 2015 (p = 0.010), and improved lymph node dissection rates (p = 0.001) No other significant differences. |
ROMAN Study (Veronesi et al.) [45] | 2021 | RCT | 76 patients (39 RATS and 38 VATS) | VATS vs. RATS (bi)lobectomy/segmentectomy | Perioperative outcomes | RATS had improved lymph node dissection rates (p = 0.0002). No significant difference regarding perioperative complications, conversions, duration of surgery, or duration of hospital LOS. |
Ma et al. [51] | 2021 | Meta-analysis (18 studies) | 11,247 patients (5114 RATS and 6133 VATS) | VATS vs. RATS lobectomy/segmentectomy | Long- and short-term outcomes | No significant difference between RATS and VATS in operative time, mortality, OS, and DFS. Sensitivity analysis showed no significant regarding conversion rate, number of harvested lymph nodes and stations, and overall complications. |
Zhang et al. [41] | 2022 | Meta-analysis (26 studies) | 45,733 patients (14,271 RATS and 31,462 VATS) | VATS vs. RATS lobectomy/segmentectomy | Long- and short-term outcomes | RATS had less blood loss, a lower conversion rate to open, a shorter hospital LOS, more lymph node dissection, and better 5-year DFS compared to VATS group: No significant differences in operative time, any complications, tumor size, chest drain duration, R0 resection rate, lymph station, 5-year OS, and recurrence rate. |
Jin et al. [46] | 2022 | RCT | 320 patients (157 RATS and 163 VATS) | VATS vs. RATS lobectomy | Short-term outcomes | RATS had significantly higher number of harvested lymph nodes (p = 0.02) and stations (p < 0.001). Perioperative outcomes were comparable between the two groups, including the hospital LOS (p = 0.76) and the rate of postoperative complications (p = 0.45). No perioperative mortality occurred in either group. |
Clinical Trial | Phase | Inclusion | Comparison | Estimated Enrollment (nr. of Patients) | Endpoint(s) |
---|---|---|---|---|---|
NCT02481661 | III | cT1aN0M0 peripheral NSCLC | Lobectomy vs. anatomic segmentectomy | 610 | Primary: 5-year RFS Secondary: 5-year OS, retaining pulmonary function, and the rates of loco-regional and systemic recurrence |
NCT02718365 | NA | Stage IA NSCLC | Wedge resection vs. anatomic segmentectomy | 1382 | Primary: 5-year PFS Secondary: 3-year PFS, 5-year OS, retaining pulmonary function in the 1st year after surgery, 30-day morbidity, 30-day mortality, 10-year OS |
NCT04944563 | NA | Early-stage NSCLC ≤ 2 cm in the middle third of lung field. | Lobectomy vs. anatomic segmentectomy | 1120 | Primary: 5-year DFS Secondary: 3-year DFS, 5-year OS, retaining pulmonary function in the 1st year after surgery, 30-day morbidity, 30-day mortality |
NCT02360761 | III | Elderly patients with cT1N0M0 NSCLC | Sublobar resection vs. lobectomy | 339 | Primary: 3-year DFS Secondary: perioperative complications, 30-day mortality, hospital LOS, intubation time after surgery, 3-year OS, 3-year PFS, retaining pulmonary function 3 years postoperatively, percentage of VATS procedures, QoL scores |
NCT03066297 | NA | Clinical stage IA NSCLC | Wide wedge resection vs. segmentectomy vs. lobectomy | 1000 | Primary: 5-year DFS Secondary: 5-year OS, rate of locoregional recurence at 5 years, rate of systemic recurrence at 5 years, FEV1 (until 1 years postoperatively), DLco (until 1 years postoperatively), perioperative complications, C/T ration 2 months preoperatively, pathology subtype, incidence of LN metastasis |
NCT02011997 | III | Clinical stage IA NSCLC | VATS lobectomy vs. segmentectomy | 500 | Primary: 5-year RFS Secondary: 5-year OS, postoperative complications, pulmonary function (until 6 months postoperatively), QoL scores |
NCT00499330 | III | Clinical stage IA NSCLC | Lobectomy vs. segmentectomy | 701 | Primary: 7-year DFS Secondary: 7-year OS, rate of locoregional or systemic recurence at 7 years, FEV1 (at 6 months postoperatively) |
NCT03108560 | NA | cT1N0M0 NSCLC | Sublobar resection vs. lobectomy | 600 | Primary: 5-year OS Secondary: 5-year DFS, rate of locoregional or systemic recurence at 5 years, pulmonary function (until 2 years postoperatively), 30-day morbidity, 30-day mortality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzenji, L.; Wen, W.; Verleden, S.; Claes, E.; Yogeswaran, S.K.; Lauwers, P.; Van Schil, P.; Hendriks, J.M.H. Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand? Cancers 2023, 15, 4281. https://doi.org/10.3390/cancers15174281
Berzenji L, Wen W, Verleden S, Claes E, Yogeswaran SK, Lauwers P, Van Schil P, Hendriks JMH. Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand? Cancers. 2023; 15(17):4281. https://doi.org/10.3390/cancers15174281
Chicago/Turabian StyleBerzenji, Lawek, Wen Wen, Stijn Verleden, Erik Claes, Suresh Krishan Yogeswaran, Patrick Lauwers, Paul Van Schil, and Jeroen M. H. Hendriks. 2023. "Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand?" Cancers 15, no. 17: 4281. https://doi.org/10.3390/cancers15174281
APA StyleBerzenji, L., Wen, W., Verleden, S., Claes, E., Yogeswaran, S. K., Lauwers, P., Van Schil, P., & Hendriks, J. M. H. (2023). Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand? Cancers, 15(17), 4281. https://doi.org/10.3390/cancers15174281