Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. DNA Isolation
2.3. Exome Sequencing Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Williams, V.L.; Hallanger Johnson, J.; Valderrabano, P. Thyroid cancer incidence trends in the United States: Association with changes in professional guideline recommendations. Thyroid 2020, 30, 1132–1140. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef]
- Alrawaji, A.; Alshahrani, Z.; Alzahrani, W.; Alomran, F.; Almadouj, A.; Alshehri, S.; Alzahrani, A.; Bazarbashi, S.; Alhashmi, H.; Almutlaq, H. Cancer Incidence Report Saudi Arabia 2015; Saudi Cancer Registry: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Park, S.; Kim, W.G.; Song, E.; Oh, H.-S.; Kim, M.; Kwon, H.; Jeon, M.J.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Dynamic risk stratification for predicting recurrence in patients with differentiated thyroid cancer treated without radioactive iodine remnant ablation therapy. Thyroid 2017, 27, 524–530. [Google Scholar] [CrossRef]
- Leboulleux, S.; Rubino, C.; Baudin, E.; Caillou, B.; Hartl, D.M.; Bidart, J.-M.; Travagli, J.-P.; Schlumberger, M. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J. Clin. Endocrinol. Metab. 2005, 90, 5723–5729. [Google Scholar] [CrossRef]
- Risch, N. The genetic epidemiology of cancer: Interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomark. Prev. 2001, 10, 733–741. [Google Scholar]
- Frich, L.; Glattre, E.; Akslen, L.A. Familial occurrence of nonmedullary thyroid cancer: A population-based study of 5673 first-degree relatives of thyroid cancer patients from Norway. Cancer Epidemiol. Biomark. Prev. 2001, 10, 113–117. [Google Scholar]
- Czene, K.; Lichtenstein, P.; Hemminki, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int. J. Cancer 2002, 99, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Goldgar, D.E.; Easton, D.F.; Cannon-Albright, L.A.; Skolnick, M.H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J. Natl. Cancer Inst. 1994, 86, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Amundadottir, L.T.; Thorvaldsson, S.; Gudbjartsson, D.F.; Sulem, P.; Kristjansson, K.; Arnason, S.; Gulcher, J.R.; Bjornsson, J.; Kong, A.; Thorsteinsdottir, U.; et al. Cancer as a complex phenotype: Pattern of cancer distribution within and beyond the nuclear family. PLoS Med. 2004, 1, e65. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Thorleifsson, G.; Sigurdsson, J.K.; Stefansdottir, L.; Jonasson, J.G.; Gudjonsson, S.A.; Gudbjartsson, D.F.; Masson, G.; Johannsdottir, H.; Halldorsson, G.H.; et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nat. Commun. 2017, 8, 14517. [Google Scholar] [CrossRef] [PubMed]
- Mancikova, V.; Cruz, R.; Inglada-Perez, L.; Fernandez-Rozadilla, C.; Landa, I.; Cameselle-Teijeiro, J.; Celeiro, C.; Pastor, S.; Velazquez, A.; Marcos, R.; et al. Thyroid cancer GWAS identifies 10q26.12 and 6q14.1 as novel susceptibility loci and reveals genetic heterogeneity among populations. Int. J. Cancer 2015, 137, 1870–1878. [Google Scholar] [CrossRef]
- Son, H.Y.; Hwangbo, Y.; Yoo, S.K.; Im, S.W.; Yang, S.D.; Kwak, S.J.; Park, M.S.; Kwak, S.H.; Cho, S.W.; Ryu, J.S.; et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat. Commun. 2017, 8, 15966. [Google Scholar] [CrossRef]
- Figlioli, G.; Kohler, A.; Chen, B.; Elisei, R.; Romei, C.; Cipollini, M.; Cristaudo, A.; Bambi, F.; Paolicchi, E.; Hoffmann, P.; et al. Novel genome-wide association study-based candidate loci for differentiated thyroid cancer risk. J. Clin. Endocrinol. Metab. 2014, 99, E2084–E2092. [Google Scholar] [CrossRef]
- Zhou, W.; Brumpton, B.; Kabil, O.; Gudmundsson, J.; Thorleifsson, G.; Weinstock, J.; Zawistowski, M.; Nielsen, J.B.; Chaker, L.; Medici, M.; et al. GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer. Nat. Commun. 2020, 11, 3981. [Google Scholar] [CrossRef]
- Oh, J.J.; Shivakumar, M.; Miller, J.; Verma, S.; Lee, H.; Hong, S.K.; Lee, S.E.; Lee, Y.; Lee, S.J.; Sung, J.; et al. An exome-wide rare variant analysis of Korean men identifies three novel genes predisposing to prostate cancer. Sci. Rep. 2019, 9, 17173. [Google Scholar] [CrossRef]
- Grant, R.C.; Denroche, R.E.; Borgida, A.; Virtanen, C.; Cook, N.; Smith, A.L.; Connor, A.A.; Wilson, J.M.; Peterson, G.; Roberts, N.J.; et al. Exome-Wide Association Study of Pancreatic Cancer Risk. Gastroenterology 2018, 154, 719–722.e713. [Google Scholar] [CrossRef]
- Shivakumar, M.; Miller, J.E.; Dasari, V.R.; Gogoi, R.; Kim, D. Exome-Wide Rare Variant Analysis from the DiscovEHR Study Identifies Novel Candidate Predisposition Genes for Endometrial Cancer. Front. Oncol. 2019, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simoes, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer: What changed and why? J. Thyroid 2017, 27, 751–756. [Google Scholar] [CrossRef]
- Abubaker, J.; Jehan, Z.; Bavi, P.; Sultana, M.; Al-Harbi, S.; Ibrahim, M.; Al-Nuaim, A.; Ahmed, M.; Amin, T.; Al-Fehaily, M.; et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J. Clin. Endocrinol. Metab. 2008, 93, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Parvathareddy, S.K.; Al-Sobhi, S.S.; AlDawish, M.; Alkuraya, F.S.; Al-Kuraya, K.S. Evolution and Impact of Subclonal Mutations in Papillary Thyroid Cancer. Am. J. Hum. Genet. 2019, 105, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Jagadeesh, K.A.; Wenger, A.M.; Berger, M.J.; Guturu, H.; Stenson, P.D.; Cooper, D.N.; Bernstein, J.A.; Bejerano, G. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 2016, 48, 1581–1586. [Google Scholar] [CrossRef]
- Laskowski, R.A. PDBsum new things. Nucleic Acids Res. 2009, 37, D355–D359. [Google Scholar] [CrossRef]
- Gill, D.J.; Tham, K.M.; Chia, J.; Wang, S.C.; Steentoft, C.; Clausen, H.; Bard-Chapeau, E.A.; Bard, F.A. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 2013, 110, E3152–E3161. [Google Scholar] [CrossRef]
- Schjoldager, K.T.; Vester-Christensen, M.B.; Goth, C.K.; Petersen, T.N.; Brunak, S.; Bennett, E.P.; Levery, S.B.; Clausen, H. A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing. J. Biol. Chem. 2011, 286, 40122–40132. [Google Scholar] [CrossRef]
- Clarke, E.; Green, R.C.; Green, J.S.; Mahoney, K.; Parfrey, P.S.; Younghusband, H.B.; Woods, M.O. Inherited deleterious variants in GALNT12 are associated with CRC susceptibility. Hum. Mutat. 2012, 33, 1056–1058. [Google Scholar] [CrossRef]
- Guda, K.; Veigl, M.L.; Varadan, V.; Nosrati, A.; Ravi, L.; Lutterbaugh, J.; Beard, L.; Willson, J.K.; Sedwick, W.D.; Wang, Z.J.; et al. Novel recurrently mutated genes in African American colon cancers. Proc. Natl. Acad. Sci. USA 2015, 112, 1149–1154. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, T.; Leng, Y.H.; Tang, Y.H.; Chen, S.; Lv, Y.Y.; Liang, J.Y.; Liu, Y.N.; Liu, T.H.; Shen, L.; et al. The O-glycosylating enzyme GALNT2 acts as an oncogenic driver in non-small cell lung cancer. Cell. Mol. Biol. Lett. 2022, 27, 71. [Google Scholar] [CrossRef]
- Beaman, E.M.; Carter, D.R.F.; Brooks, S.A. GALNTs: Master regulators of metastasis-associated epithelial-mesenchymal transition (EMT)? Glycobiology 2022, 32, 556–579. [Google Scholar] [CrossRef] [PubMed]
- Song, K.H.; Park, M.S.; Nandu, T.S.; Gadad, S.; Kim, S.C.; Kim, M.Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun. 2016, 7, 13796. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Zhuang, S.M.; Xia, Z.; Xiao, Z.W.; Huang, C.X.; Su, Q.; Chen, J.; Liao, J. Pan-cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma. J. Leukoc. Biol. 2022, 112, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y. Role of GALNT14 in lung metastasis of breast cancer. BMB Rep. 2017, 50, 233–234. [Google Scholar] [CrossRef]
- Lee, P.C.; Chen, S.T.; Kuo, T.C.; Lino, T.C.; Lin, M.C.; Huang, J.; Hung, J.S.; Hsu, C.L.; Juan, H.F.; Lee, P.H.; et al. C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 2020, 39, 2724–2740. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Xu, L.; Shi, Y.; Zhang, X.; Shi, S.; Hou, K.; Fan, Y.; Li, C.; Wang, X.; et al. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of alpha2M. Aging 2020, 12, 11794–11811. [Google Scholar] [CrossRef]
- Lee, O.H.; Lee, J.; Lee, K.H.; Woo, Y.M.; Kang, J.H.; Yoon, H.G.; Bae, S.K.; Songyang, Z.; Oh, S.H.; Choi, Y. Role of the focal adhesion protein TRIM15 in colon cancer development. Biochim. Biophys. Acta 2015, 1853, 409–421. [Google Scholar] [CrossRef]
- Marzano, F.; Caratozzolo, M.F.; Pesole, G.; Sbisa, E.; Tullo, A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Okumura, F.; Takahashi, N.; Kataoka, A.; Kamiyama, T.; Todo, S.; Hatakeyama, S. TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 2011, 32, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Ryu, J.M.; Park, J.S.; Im, S.A.; Jung, S.Y.; Kim, E.K.; Park, W.C.; Min, J.W.; Lee, J.; You, J.Y.; et al. Clinicopathological Features of Patients with the BRCA1 c.5339T>C (p.Leu1780Pro) Variant. Cancer Res. Treat. 2020, 52, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, T.; Dandekar, S.; Lu, B.Y.; Wang, J.; Han, E.; Bitterman, D.; Jones, C.L.; Evensen, N.A.; Magid, M.; Meyer, J.A.; et al. Genomic Characterization of Poorly Differentiated Neuroendocrine Carcinoma in a Pediatric Patient. J. Pediatr. Hematol. Oncol. 2016, 38, e21–e25. [Google Scholar] [CrossRef]
- Scharer, C.D.; McCabe, C.D.; Ali-Seyed, M.; Berger, M.F.; Bulyk, M.L.; Moreno, C.S. Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res. 2009, 69, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, Q.; Lei, Y.; Yao, M.; Li, L.; Gao, X.; Feng, J.; Zhang, Y.; Gao, H.; Liu, D.-X. SOX4 Induces Epithelial–Mesenchymal Transition and Contributes to Breast Cancer Progression. Cancer Res. 2012, 72, 4597–4608. [Google Scholar] [CrossRef]
- Chen, J.; Ju, H.L.; Yuan, X.Y.; Wang, T.J.; Lai, B.Q. SOX4 is a potential prognostic factor in human cancers: A systematic review and meta-analysis. Clin. Transl. Oncol. 2016, 18, 65–72. [Google Scholar] [CrossRef]
- Moreno, C.S. SOX4: The unappreciated oncogene. Semin. Cancer Biol. 2020, 67, 57–64. [Google Scholar] [CrossRef]
Total | ||
---|---|---|
No. | % | |
Total | 249 | |
Age at surgery (years) | ||
Median (range) | 39.2 (10.0–83.0) | |
<55 | 210 | 84.3 |
≥55 | 39 | 15.7 |
Gender | ||
Male | 54 | 21.7 |
Female | 195 | 78.3 |
Histologic subtype | ||
Classical variant | 125 | 50.2 |
Follicular variant | 53 | 21.3 |
Tall cell variant | 36 | 14.5 |
Other variants | 35 | 14.0 |
Tumor laterality | ||
Unilateral | 180 | 72.3 |
Bilateral | 69 | 27.7 |
Tumor focality | ||
Unifocal | 130 | 52.2 |
Multifocal | 119 | 47.8 |
Extrathyroidal extension | ||
Absent | 145 | 58.2 |
Present | 104 | 41.8 |
Lymphovascular invasion | ||
Present | 95 | 38.2 |
Absent | 154 | 61.8 |
Tumor size | ||
≤1 cm | 23 | 9.2 |
1.1–2 cm | 45 | 18.1 |
2.1–4 cm | 85 | 34.1 |
>4 cm | 96 | 38.6 |
Regional LN metastasis | ||
N0 | 118 | 47.3 |
N1 | 95 | 38.2 |
Nx | 36 | 14.5 |
Distant metastasis | ||
Present | 16 | 6.4 |
Absent | 233 | 93.6 |
TNM Stage | ||
I | 217 | 87.5 |
II | 20 | 8.1 |
III | 6 | 2.4 |
IV | 5 | 2.0 |
S. No. | Gene | No. of Cases | % | No. of Controls | % | Odds Ratio | p-Value | Significance Level | Type of Variant Analysis |
---|---|---|---|---|---|---|---|---|---|
1 | GALNT9 | 4 | 1.6 | 1 | 0.1 | 22.75 | 5.09 × 10−5 | suggestive | RIV |
2 | TRIM40 | 6 | 2.4 | 0 | 0.0 | 74.50 | 6.31 × 10−9 | exome-wide | RDV |
3 | ARHGAP23 | 7 | 2.8 | 1 | 0.1 | 40.32 | 1.05 × 10−8 | exome-wide | RDV |
4 | SOX4 | 6 | 2.4 | 1 | 0.1 | 34.40 | 1.80 × 10−7 | exome-wide | RDV |
Gene | Chr | Position | Reference | Alternate | Variant Type | No. of Cases | % | No. of Controls | % | p-Value | Odds Ratio | Type of Variant |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GALNT9 | 12 | 132,839,102 | G | - | Frameshift deletion | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.84 | RIV |
GALNT9 | 12 | 132,688,237 | - | GCGGGGAGACGGC | Splicing | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.84 | RIV |
GALNT9 | 12 | 132,690,466 | A | G | Splicing | 2 | 0.8 | 1 | 0.1 | 0.013 | 11.28 | RIV |
TRIM40 | 6 | 30,114,877 | C | T | missense | 5 | 2.0 | 0 | 0.0 | 1.15 × 10−7 | 62.78 | RDV |
ARHGAP23 | 17 | 36,667,177 | C | T | missense | 3 | 1.2 | 0 | 0.0 | 4.07 × 10−5 | 39.63 | RDV |
SOX4 | 6 | 21,595,904 | C | T | missense | 3 | 1.2 | 0 | 0.0 | 4.07 × 10−5 | 39.63 | RDV |
ARHGAP23 | 17 | 36,666,646 | C | T | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
ARHGAP23 | 17 | 36,614,410 | C | T | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
ARHGAP23 | 17 | 36,619,098 | C | T | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
ARHGAP23 | 17 | 36,622,633 | C | T | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
SOX4 | 6 | 21,595,481 | C | T | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
SOX4 | 6 | 21,595,276 | G | A | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
SOX4 | 6 | 21,595,618 | G | A | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
TRIM40 | 6 | 30,113,787 | G | A | missense | 1 | 0.4 | 0 | 0.0 | 0.018 | 16.85 | RDV |
ARHGAP23 | 17 | 36,619,383 | G | A | missense | 0 | 0.0 | 1 | 0.1 | 0.673 | 1.86 | RDV |
SOX4 | 6 | 21,595,955 | C | G | missense | 0 | 0.0 | 1 | 0.1 | 0.673 | 1.86 | RDV |
S. No. | Gene | No. of Cases | % | No. of Controls | % | p-Value | Odds Ratio |
---|---|---|---|---|---|---|---|
1 | DNAH14 | 8 | 3.2% | 45 | 3.2% | 0.991 | 1.00 |
2 | WDR67 | 7 | 2.8% | 18 | 1.3% | 0.071 | 2.21 |
3 | CYP4X1 | 6 | 2.4% | 8 | 0.6% | 0.004 | 4.28 |
4 | CRYGN | 6 | 2.4% | 9 | 0.6% | 0.007 | 3.80 |
5 | RBM23 | 6 | 2.4% | 11 | 0.8% | 0.020 | 3.11 |
6 | TTC23L | 6 | 2.4% | 12 | 0.9% | 0.030 | 2.85 |
7 | CYP2R1 | 6 | 2.4% | 12 | 0.9% | 0.030 | 2.85 |
8 | AP3S1 | 5 | 2.0% | 5 | 0.4% | 0.002 | 5.51 |
9 | TTC23 | 5 | 2.0% | 6 | 0.4% | 0.005 | 4.59 |
10 | TEKT5 | 5 | 2.0% | 6 | 0.4% | 0.005 | 4.59 |
S. No. | Gene | No. of Cases | % | No. of Controls | % | p-Value (SKAT) | Odds Ratio |
---|---|---|---|---|---|---|---|
1 | VARS1 | 11 | 4.4 | 0 | 0.0 | 3.98 × 10−10 | 134.58 |
2 | ZBED9 | 8 | 3.2 | 0 | 0.0 | 1.26 × 10−7 | 98.23 |
3 | PRRC2A | 7 | 2.8 | 0 | 0.0 | 8.50 × 10−7 | 86.32 |
4 | VWA7 | 7 | 2.8 | 0 | 0.0 | 8.50 × 10−7 | 86.32 |
5 | TRIM31 | 7 | 2.8 | 0 | 0.0 | 8.50 × 10−7 | 86.32 |
6 | TRIM40 | 7 | 2.8 | 0 | 0.0 | 8.50 × 10−7 | 86.32 |
7 | COL8A2 | 7 | 2.8 | 0 | 0.0 | 8.50 × 10−7 | 86.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, R.; Siraj, A.K.; Azam, S.; Iqbal, K.; Qadri, Z.; Al-Rasheed, M.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk. Cancers 2023, 15, 4235. https://doi.org/10.3390/cancers15174235
Bu R, Siraj AK, Azam S, Iqbal K, Qadri Z, Al-Rasheed M, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk. Cancers. 2023; 15(17):4235. https://doi.org/10.3390/cancers15174235
Chicago/Turabian StyleBu, Rong, Abdul K. Siraj, Saud Azam, Kaleem Iqbal, Zeeshan Qadri, Maha Al-Rasheed, Saif S. Al-Sobhi, Fouad Al-Dayel, and Khawla S. Al-Kuraya. 2023. "Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk" Cancers 15, no. 17: 4235. https://doi.org/10.3390/cancers15174235
APA StyleBu, R., Siraj, A. K., Azam, S., Iqbal, K., Qadri, Z., Al-Rasheed, M., Al-Sobhi, S. S., Al-Dayel, F., & Al-Kuraya, K. S. (2023). Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk. Cancers, 15(17), 4235. https://doi.org/10.3390/cancers15174235