Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling
Abstract
:Simple Summary
Abstract
1. Introduction
2. Other Related Work
2.1. Graph Neural Networks
2.2. Pan-Cancer Biomarkers
2.3. Machine Learning in Drug Synergy Prediction
3. Methodology
3.1. Problem Configuration
3.2. The Proposed SANEpool Model
3.3. The Overall Architecture
3.3.1. Hierarchical Graph Pooling
3.3.2. Readout Mechanism
3.4. Comparison to Related Works
3.4.1. Comparison to Other Graph Pooling Models
3.4.2. Comparison to Other GNNs for Drug Synergy Prediction
4. Experiments
4.1. Dataset Description
4.1.1. NCI-DCD Dataset
4.1.2. O’Neil-DCD Dataset
4.1.3. GDSC-SDD Dataset
4.2. Baseline Methods
4.3. Experimental Results
4.3.1. Predictive Performance
4.3.2. Interpretability
4.4. Statistical Analysis and Visualizations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Cell-Line Based Visualization Results
Appendix B. Cell Lines and FDA Approved Drugs
Appendix C. Details of K-S Test
Appendix D. Advantage of Using Pre-Defined Order of Genes in SANEpool
Appendix E. Details of the Overall Model Architecture
References
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Podolsky, S.H.; Greene, J.A. Combination drugs—Hype, harm, and hope. N. Engl. J. Med. 2011, 365, 488–491. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Cokol-Cakmak, M.; Sahin, N.; Yilancioglu, K.; Kazan, H.; Collins, J.J.; Cokol, M. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol. Syst. Biol. 2016, 12, 872. [Google Scholar] [CrossRef]
- Radic-Sarikas, B.; Tsafou, K.P.; Emdal, K.B.; Papamarkou, T.; Huber, K.V.; Mutz, C.; Toretsky, J.A.; Bennett, K.L.; Olsen, J.V.; Brunak, S.; et al. Combinatorial drug screening identifies Ewing sarcoma—Specific sensitivities. Mol. Cancer Ther. 2017, 16, 88–101. [Google Scholar] [CrossRef]
- O’Neil, J.; Benita, Y.; Feldman, I.; Chenard, M.; Roberts, B.; Liu, Y.; Li, J.; Kral, A.; Lejnine, S.; Loboda, A.; et al. An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 2016, 15, 1155–1162. [Google Scholar] [CrossRef]
- Devita, V.T., Jr.; Young, R.C.; Canellos, G.P. Combination versus single agent chemotherapy: A review of the basis for selection of drug treatment of cancer. Cancer 1975, 35, 98–110. [Google Scholar] [CrossRef]
- Crino, L.; Scagliotti, G.; Marangolo, M.; Figoli, F.; Clerici, M.; De Marinis, F.; Salvati, F.; Cruciani, G.; Dogliotti, L.; Pucci, F.; et al. Cisplatin-gemcitabine combination in advanced non-small-cell lung cancer: A phase II study. J. Clin. Oncol. 1997, 15, 297–303. [Google Scholar] [CrossRef]
- Carew, J.S.; Giles, F.J.; Nawrocki, S.T. Histone deacetylase inhibitors: Mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008, 269, 7–17. [Google Scholar] [CrossRef]
- Shuhendler, A.J.; Cheung, R.Y.; Manias, J.; Connor, A.; Rauth, A.M.; Wu, X.Y. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res. Treat. 2010, 119, 255–269. [Google Scholar] [CrossRef]
- Mott, B.T.; Eastman, R.T.; Guha, R.; Sherlach, K.S.; Siriwardana, A.; Shinn, P.; McKnight, C.; Michael, S.; Lacerda-Queiroz, N.; Patel, P.R.; et al. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci. Rep. 2015, 5, 13891. [Google Scholar] [CrossRef]
- Griner, L.A.M.; Guha, R.; Shinn, P.; Young, R.M.; Keller, J.M.; Liu, D.; Goldlust, I.S.; Yasgar, A.; McKnight, C.; Boxer, M.B.; et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA 2014, 111, 2349–2354. [Google Scholar] [CrossRef] [PubMed]
- Holbeck, S.L.; Camalier, R.; Crowell, J.A.; Govindharajulu, J.P.; Hollingshead, M.; Anderson, L.W.; Polley, E.; Rubinstein, L.; Srivastava, A.; Wilsker, D.; et al. The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 2017, 77, 3564–3576. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.H.; Mok, T.; Han, B.; Orlando, M.; Puri, T.; Park, K. A review of regimens combining pemetrexed with an epidermal growth factor receptor tyrosine kinase inhibitor in the treatment of advanced nonsquamous non-small-cell lung cancer. Clin. Lung Cancer 2018, 19, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, L.; Payne, P.R.; Li, F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. In Translational Bioinformatics for Therapeutic Development; Springer: Berlin/Heidelberg, Germany, 2021; pp. 223–238. [Google Scholar]
- Janizek, J.D.; Celik, S.; Lee, S.I. Explainable machine learning prediction of synergistic drug combinations for precision cancer medicine. bioRxiv 2018, 331769. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Preuer, K.; Lewis, R.P.; Hochreiter, S.; Bender, A.; Bulusu, K.C.; Klambauer, G. DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 2018, 34, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, P.; Naulaerts, S.; Ariey-Bonnet, J.; Pasquier, E.; Ballester, P.J. Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front. Chem. 2019, 7, 509. [Google Scholar] [CrossRef]
- Kuru, H.I.; Tastan, O.; Cicek, E. MatchMaker: A deep learning framework for drug synergy prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 2334–2344. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Zhou, X. CCSynergy: An integrative deep-learning framework enabling context-aware prediction of anti-cancer drug synergy. Briefings Bioinform. 2023, 24, bbac588. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput. Biol. 2021, 17, e1008653. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, S.; Zhang, W.; Xu, L. Predicting cell line-specific synergistic drug combinations through a relational graph convolutional network with attention mechanism. Briefings Bioinform. 2022, 23, bbac403. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Shen, S.; Deng, L.; Liu, H. DeepDDS: Deep graph neural network with attention mechanism to predict synergistic drug combinations. Briefings Bioinform. 2022, 23, bbab390. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Burkart, N.; Huber, M.F. A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 2021, 70, 245–317. [Google Scholar] [CrossRef]
- Monti, F.; Bronstein, M.M.; Bresson, X. Geometric matrix completion with recurrent multi-graph neural networks. arXiv 2017, arXiv:1704.06803. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar]
- Fout, A.M. Protein iNterface Prediction Using Graph Convolutional Networks. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2017. [Google Scholar]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, M.; Li, F.; Chen, Y. Pace: A parallelizable computation encoder for directed acyclic graphs. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; PMLR: London, UK, 2022; pp. 5360–5377. [Google Scholar]
- Dong, Z.; Cao, W.; Zhang, M.; Tao, D.; Chen, Y.; Zhang, X. CktGNN: Circuit Graph Neural Network for Electronic Design Automation. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2017, arXiv:1706.02216. [Google Scholar]
- Schütt, K.T.; Kindermans, P.J.; Sauceda, H.E.; Chmiela, S.; Tkatchenko, A.; Müller, K.R. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. arXiv 2017, arXiv:1706.08566. [Google Scholar]
- Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31, pp. 5165–5175. [Google Scholar]
- Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; PMLR: London, UK, 2016; pp. 2702–2711. [Google Scholar]
- Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An end-to-end deep learning architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; Leskovec, J. Hierarchical graph representation learning with differentiable pooling. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018, 173, 321–337. [Google Scholar] [CrossRef]
- Pan, R.; Ruvolo, V.; Mu, H.; Leverson, J.D.; Nichols, G.; Reed, J.C.; Konopleva, M.; Andreeff, M. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: Mechanisms and superior antileukemic efficacy. Cancer Cell 2017, 32, 748–760. [Google Scholar] [CrossRef]
- Jaaks, P.; Coker, E.A.; Vis, D.J.; Edwards, O.; Carpenter, E.F.; Leto, S.M.; Dwane, L.; Sassi, F.; Lightfoot, H.; Barthorpe, S.; et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022, 603, 166–173. [Google Scholar] [CrossRef]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Berg, R.v.d.; Titov, I.; Welling, M. Modeling relational data with graph convolutional networks. In Proceedings of the European Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 593–607. [Google Scholar]
- Verma, S.; Zhang, Z.L. Graph capsule convolutional neural networks. arXiv 2018, arXiv:1805.08090. [Google Scholar]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; PMLR: London, UK, 2016; pp. 2014–2023. [Google Scholar]
- Yao, J.; Arcila, M.E.; Ladanyi, M.; Hechtman, J.F. Pan-Cancer Biomarkers: Changing the Landscape of Molecular Testing. Arch. Pathol. Lab. Med. 2021, 145, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhao, H.; Zhou, X.; Wong, S.T. An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 2011, 27, i310–i316. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhao, X.M.; Chen, L. A systems biology approach to identify effective cocktail drugs. BMC Syst. Biol. 2010, 4, S7. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Lu, P.; Liu, X.; Cao, H. Synergy evaluation by a pathway–pathway interaction network: A new way to predict drug combination. Mol. BioSyst. 2016, 12, 614–623. [Google Scholar] [CrossRef]
- Li, P.; Huang, C.; Fu, Y.; Wang, J.; Wu, Z.; Ru, J.; Zheng, C.; Guo, Z.; Chen, X.; Zhou, W.; et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015, 31, 2007–2016. [Google Scholar] [CrossRef]
- Xu, K.J.; Hu, F.Y.; Song, J.; Zhao, X.M. Exploring drug combinations in a drug-cocktail network. In Proceedings of the 2011 IEEE International Conference on Systems Biology (ISB), Zhuhai, China, 2–4 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 382–387. [Google Scholar]
- Yin, N.; Ma, W.; Pei, J.; Ouyang, Q.; Tang, C.; Lai, L. Synergistic and antagonistic drug combinations depend on network topology. PLoS ONE 2014, 9, e93960. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, H.; Chen, Y.; Li, F. Interpretable Drug Synergy Prediction with Graph Neural Networks for Human-AI Collaboration in Healthcare. arXiv 2021, arXiv:2105.07082. [Google Scholar]
- Parikh, A.P.; Täckström, O.; Das, D.; Uszkoreit, J. A decomposable attention model for natural language inference. arXiv 2016, arXiv:1606.01933. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Yan, S.; Zheng, Y.; Ao, W.; Zeng, X.; Zhang, M. Does unsupervised architecture representation learning help neural architecture search? Adv. Neural Inf. Process. Syst. 2020, 33, 12486–12498. [Google Scholar]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio’, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903. [Google Scholar]
- Cheng, J.; Dong, L.; Lapata, M. Long short-term memory-networks for machine reading. arXiv 2016, arXiv:1601.06733. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR: London, UK, 2019; pp. 7354–7363. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Lee, J.; Lee, I.; Kang, J. Self-attention graph pooling. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR: London, UK, 2019; pp. 3734–3743. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. arXiv 2016, arXiv:1606.09375. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Cangea, C.; Veličković, P.; Jovanović, N.; Kipf, T.; Liò, P. Towards sparse hierarchical graph classifiers. arXiv 2018, arXiv:1811.01287. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y. Inductive matrix completion based on graph neural networks. arXiv 2019, arXiv:1904.12058. [Google Scholar]
- Bento, A.P.; Hersey, A.; Félix, E.; Landrum, G.; Gaulton, A.; Atkinson, F.; Bellis, L.J.; De Veij, M.; Leach, A.R. An open source chemical structure curation pipeline using RDKit. J. Cheminform. 2020, 12, 51. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, H.; Li, F. Investigating the relevance of major signaling pathways in cancer survival using a biologically meaningful deep learning model. BMC Bioinform. 2021, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
Model | NCI-DCD | GDSC-SDD | O’Neil-DCD | |||
---|---|---|---|---|---|---|
Pearson’r ↑ | MSE ↓ | Pearson’r ↑ | RMSE ↓ | Pearson’r ↑ | RMSE ↓ | |
DeepSynergy | 0.589 ± 0.022 | 47.742 ± 2.950 | 0.703 ± 0.014 | 0.0166 ± 0.0020 | 0.537 ± 0.021 | 187.56 ± 16.75 |
DeepSignalingSynergy | 0.631 ± 0.019 | 45.218 ± 1.889 | 0.744 ± 0.011 | 0.0143 ± 0.0012 | 0.598 ± 0.022 | 166.15 ± 19.56 |
TransSynergy | 0.644 ± 0.023 | 46.219 ± 3.208 | 0.794 ± 0.022 | 0.0129 ± 0.0031 | 0.615 ± 0.020 | 160.19 ± 17.33 |
GIN | 0.565 ± 0.042 | 51.732 ± 5.636 | 0.716 ± 0.015 | 0.0155 ± 0.0017 | 0.550 ± 0.019 | 184.58 ± 17.06 |
GCN | 0.494 ± 0.049 | 58.585 ± 5.618 | 0.707 ± 0.014 | 0.0169 ± 0.0014 | 0.540 ± 0.024 | 187.84 ± 18.39 |
DAGNN | 0.509 ± 0.025 | 57.827 ± 3.174 | 0.638 ± 0.016 | 0.0198 ± 0.0018 | 0.431 ± 0.023 | 213.28 ± 20.19 |
GAT | 0.571 ± 0.031 | 50.995 ± 3.021 | 0.623 ± 0.013 | 0.0230 ± 0.0015 | 0.522 ± 0.017 | 189.27 ± 18.51 |
SAGpool | 0.537 ± 0.031 | 53.125 ± 4.116 | 0.568 ± 0.011 | 0.0270 ± 0.0024 | 0.478 ± 0.016 | 197.69 ± 22.94 |
Diffpool | 0.577 ± 0.022 | 52.449 ± 3.155 | 0.658 ± 0.014 | 0.0186 ± 0.0039 | 0.517 ± 0.026 | 191.27 ± 18.31 |
SANEpool (our model) | 0.656 ± 0.016 | 44.352 ± 2.241 | 0.825 ± 0.009 | 0.0113 ± 0.0013 | 0.614 ± 0.019 | 159.29 ± 23.01 |
Cell Line | p Value | Cell Line | p Value | Cell Line | p Value | Cell Line | p Value | Cell Line | p Value |
---|---|---|---|---|---|---|---|---|---|
UACC-62 | <0.001 | NCI-H522 | <0.001 | HT29 | 0.002 | MDA-MB-435 | <0.001 | A549/ATCC | 0.003 |
OVCAR-8 | <0.001 | HOP-62 | 0.003 | HCT-15 | <0.001 | RPMI-8226 | <0.001 | MDA-MB-231/ATCC | <0.001 |
OVCAR-3 | <0.001 | HS 578T | 0.003 | UO-31 | <0.001 | BT-549 | 0.005 | UACC-257 | <0.001 |
LOX IMVI | 0.003 | SW-620 | <0.001 | MCF7 | <0.001 | NCI-H460 | <0.001 | EKVX | <0.001 |
HOP-92 | <0.001 | SF-268 | <0.001 | K-562 | 0.007 | T-47D | 0.002 | MDA-MB-468 | <0.001 |
MALME-3M | <0.001 | SK-MEL-5 | <0.001 | SF-295 | 0.004 | NCI-H23 | <0.001 | OVCAR-4 | 0.002 |
SF-539 | <0.001 | U251 | <0.001 | PC-3 | 0.005 | CAKI-1 | 0.007 | HCT-116 | <0.001 |
IGROV1 | <0.001 | SK-OV-3 | 0.006 | A498 | <0.001 | NCI-H322M | <0.001 | ACHN | <0.001 |
HL-60(TB) | 0.005 | KM12 | <0.001 | NCI-H226 | <0.001 | SK-MEL-28 | <0.001 | DU-145 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Zhang, H.; Chen, Y.; Payne, P.R.O.; Li, F. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers 2023, 15, 4210. https://doi.org/10.3390/cancers15174210
Dong Z, Zhang H, Chen Y, Payne PRO, Li F. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers. 2023; 15(17):4210. https://doi.org/10.3390/cancers15174210
Chicago/Turabian StyleDong, Zehao, Heming Zhang, Yixin Chen, Philip R. O. Payne, and Fuhai Li. 2023. "Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling" Cancers 15, no. 17: 4210. https://doi.org/10.3390/cancers15174210
APA StyleDong, Z., Zhang, H., Chen, Y., Payne, P. R. O., & Li, F. (2023). Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers, 15(17), 4210. https://doi.org/10.3390/cancers15174210