Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Strategy
3. Claudins Expression in the Normal Head and Neck Regions
4. Claudins Expression in Oral Squamous Cell Carcinoma
5. Claudins Expression in Tongue Squamous Cell Carcinoma
6. Claudins Expression in Lip Squamous Cell Carcinoma
7. Claudins Expression in Tonsillar Squamous Cell Carcinoma
8. Claudins Expression in Salivary Gland Carcinomas
9. Claudins Expression in Laryngeal Squamous Cell Carcinoma
10. Claudins Expression in Nasal Squamous Cell Carcinoma
11. Claudins Expression in Hypopharyngeal Squamous Cell Carcinoma
12. Claudins Expression in Nasopharyngeal Squamous Cell Carcinoma
13. Mechanisms of Aberrant Claudins Expressions in Head and Neck Cancers and Their Therapeutic Value
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010, 5, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Fogg, V.C.; Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 2006, 22, 207–235. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M. Tight and leaky junctions of epithelia: A perspective on kisses in the dark. Fed. Proc. 1974, 33, 2220–2224. [Google Scholar] [PubMed]
- Dhawan, P.; Ahmad, R.; Chaturvedi, R.; Smith, J.J.; Midha, R.; Mittal, M.K.; Krishnan, M.; Chen, X.; Eschrich, S.; Yeatman, T.J.; et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: Role of epidermal growth factor receptor activation. Oncogene 2011, 30, 3234–3247. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, P.; Singh, A.B.; Deane, N.G.; No, Y.; Shiou, S.R.; Schmidt, C.; Neff, J.; Washington, M.K.; Beauchamp, R.D. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Investig. 2005, 115, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mishra, A.K.; Ylaya, K.; Hewitt, S.M.; Sharma, K.C.; Saxena, S. Wilms tumor-1, claudin-1 and ezrin are useful immunohistochemical markers that help to distinguish schwannoma from fibroblastic meningioma. Pathol. Oncol. Res. 2012, 18, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.B.; Sharma, A.; Smith, J.J.; Krishnan, M.; Chen, X.; Eschrich, S.; Washington, M.K.; Yeatman, T.J.; Beauchamp, R.D.; Dhawan, P. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology 2011, 141, 2140–2153. [Google Scholar] [CrossRef] [PubMed]
- Balda, M.S.; Matter, K. Tight junctions in health and disease. Semin. Cell Dev. Biol. 2014, 36, 147–148. [Google Scholar] [CrossRef]
- Farkas, A.E.; Capaldo, C.T.; Nusrat, A. Regulation of epithelial proliferation by tight junction proteins. Ann. N. Y. Acad. Sci. 2012, 1258, 115–124. [Google Scholar] [CrossRef]
- Zihni, C.; Balda, M.S.; Matter, K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J. Cell Sci. 2014, 127, 3401–3413. [Google Scholar] [CrossRef]
- Severson, E.A.; Parkos, C.A. Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann. N. Y. Acad. Sci. 2009, 1165, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.; Anwer, S.; Szászi, K. Claudin-2: Roles beyond Permeability Functions. Int. J. Mol. Sci. 2019, 20, 5655. [Google Scholar] [CrossRef]
- Singh, A.B.; Uppada, S.B.; Dhawan, P. Claudin proteins, outside-in signaling, and carcinogenesis. Pflug. Arch. 2017, 469, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Sasabe, E.; Ueta, E.; Yamamoto, T.; Osaki, T. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006, 66, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, P.P.; Bharadwaj, R.R.; Machado, J.; Macmillan, C.; Pintilie, M.; Sukhai, M.A.; Perez-Ordonez, B.; Gullane, P.; Irish, J.; Kamel-Reid, S. Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer 2008, 113, 3169–3180. [Google Scholar] [CrossRef]
- Ouban, A.; Ahmed, A.A. Claudins in human cancer: A review. Histol. Histopathol. 2010, 25, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ouban, A.; Hamdan, H.; Hakam, A.; Ahmed, A.A. Claudin-1 expression in squamous cell carcinomas of different organs: Comparative study of cancerous tissues and normal controls. Int. J. Surg. Pathol. 2012, 20, 132–138. [Google Scholar] [CrossRef]
- Kojima, M.; Sugimoto, K.; Kobayashi, M.; Ichikawa-Tomikawa, N.; Kashiwagi, K.; Watanabe, T.; Soeda, S.; Fujimori, K.; Chiba, H. Aberrant Claudin-6–Adhesion Signaling Promotes Endometrial Cancer Progression via Estrogen Receptor α. Mol. Cancer Res. 2021, 19, 1208–1220. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, Q. Twist1-mediated transcriptional activation of Claudin-4 promotes cervical cancer cell migration and invasion. Oncol. Lett. 2023, 26, 335. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, B.; Tamang, R.L.; Talmon, G.A.; Dhawan, P.; Singh, A.B. P62/SQSTM1 binds with claudin-2 to target for selective autophagy in stressed intestinal epithelium. Commun. Biol. 2023, 6, 740. [Google Scholar] [CrossRef]
- Su, K.; Yao, X.; Guo, C.; Qian, C.; Wang, Y.; Ma, X.; Wang, X.; Yang, Y. Solasodine suppresses the metastasis of gastric cancer through claudin-2 via the AMPK/STAT3/NF-κB pathway. Chem. Biol. Interact. 2023, 379, 110520. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, J.; Li, Y.; Xu, Y.; Jia, H.; An, L.; Wang, X.; Yang, Y. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma. J. Transl. Med. 2023, 21, 379. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Jin, Q.; Sun, M.; Qi, D.; Qu, H.; Wang, X.; Quan, C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J. Exp. Clin. Cancer Res. 2023, 42, 68. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, N.; Pei, B.; Ma, X.; Yang, W. Claudin and pancreatic cancer. Front. Oncol. 2023, 13, 1136227. [Google Scholar] [CrossRef] [PubMed]
- Voutsadakis, I.A. EMT Features in Claudin-Low versus Claudin-Non-Suppressed Breast Cancers and the Role of Epigenetic Modifications. Curr. Issues Mol. Biol. 2023, 45, 6040–6054. [Google Scholar] [CrossRef] [PubMed]
- Pantia, S.; Kangsamaksin, T.; Janvilisri, T.; Komyod, W. Asiatic Acid Inhibits Nasopharyngeal Carcinoma Cell Viability and Migration via Suppressing STAT3 and Claudin-1. Pharmaceuticals 2023, 16, 902. [Google Scholar] [CrossRef]
- Hayashi, T.; Kobayashi, N.; Ushida, K.; Asai, N.; Nakano, S.; Fujii, K.; Ando, T.; Utsumi, T. Effect of eribulin on epithelial-mesenchymal transition plasticity in metastatic breast cancer: An exploratory, prospective study. Genes Cells 2023, 28, 364–373. [Google Scholar] [CrossRef]
- Choi, S.; Kim, N.; Park, J.H.; Nam, R.H.; Song, C.H.; Lee, H.S. Effect of Helicobacter pylori infection and its eradication on the expression of tight junction proteins in the gastric epithelium in relation to gastric carcinogenesis. Helicobacter 2022, 27, e12929. [Google Scholar] [CrossRef]
- Fukasawa, M. Claudin 1 as a target for anti-hepatitis C virus strategy. Yakugaku Zasshi 2014, 134, 635–640. [Google Scholar] [CrossRef]
- Fujiwara-Tani, R.; Mori, S.; Ogata, R.; Sasaki, R.; Ikemoto, A.; Kishi, S.; Kondoh, M.; Kuniyasu, H. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 5494. [Google Scholar] [CrossRef]
- Roehlen, N.; Muller, M.; Nehme, Z.; Crouchet, E.; Jühling, F.; Del Zompo, F.; Cherradi, S.; Duong, F.H.T.; Almeida, N.; Saviano, A.; et al. Treatment of HCC with claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment. J. Hepatol. 2023, 78, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef]
- de Rijke, J.M.; Schouten, L.J.; Schouten, H.C.; Jager, J.J.; Koppejan, A.G.; van den Brandt, P.A. Age-specific differences in the diagnostics and treatment of cancer patients aged 50 years and older in the province of Limburg, The Netherlands. Ann. Oncol. 1996, 7, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Argiris, A.; Eng, C. Epidemiology, staging, and screening of head and neck cancer. Cancer Treat. Res. 2003, 114, 15–60. [Google Scholar] [CrossRef] [PubMed]
- VanderWalde, N.A.; Fleming, M.; Weiss, J.; Chera, B.S. Treatment of older patients with head and neck cancer: A review. Oncologist 2013, 18, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.W.; Lee, S.H.; Jin, S.M.; Do, S.I.; Lee, H.J. Prognostic Significance of the Expression of Claudin-1 in Head and Neck Squamous Cell Carcinoma. Korean J. Otorhinolaryngol. Head. Neck Surg. 2021, 64, 336–343. [Google Scholar] [CrossRef]
- Upadhaya, P.; Barhoi, D.; Giri, A.; Bhattacharjee, A.; Giri, S. Joint detection of claudin-1 and junctional adhesion molecule-A as a therapeutic target in oral epithelial dysplasia and oral squamous cell carcinoma. J. Cell. Biochem. 2019, 120, 18117–18127. [Google Scholar] [CrossRef]
- Ouban, A.; Ahmed, A. Analysis of the Distribution and Expression of Claudin-1 Tight Junction Protein in the Oral Cavity. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 444–448. [Google Scholar] [CrossRef]
- Nelhűbel, G.A.; Károly, B.; Szabó, B.; Lotz, G.; Kiss, A.; Tóvári, J.; Kenessey, I. The Prognostic Role of Claudins in Head and Neck Squamous Cell Carcinomas. Pathol. Oncol. Res. 2014, 20, 99–106. [Google Scholar] [CrossRef]
- Zejc, T.; Piontek, J.; Schulzke, J.-D.; Fromm, M.; Ervens, J.; Rosenthal, R. Clinical Significance of Claudin Expression in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 11234. [Google Scholar] [CrossRef]
- De Vicente, J.C.; Fernández-Valle, Á.; Vivanco-Allende, B.; Santamarta, T.R.; Lequerica-Fernández, P.; Hernández-Vallejo, G.; Allonca-Campa, E. The prognostic role of claudins-1 and -4 in oral squamous cell carcinoma. Anticancer Res. 2015, 35, 2949–2959. [Google Scholar] [PubMed]
- Sappayatosok, K.; Phattarataratip, E. Overexpression of Claudin-1 is Associated with Advanced Clinical Stage and Invasive Pathologic Characteristics of Oral Squamous Cell Carcinoma. Head Neck Pathol. 2015, 9, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.; Delgado, L.; Amaral, B.; Ricardo, S.; Fraga, M.; Lopes, C.; Warnakulasuriya, S. Occludin and claudin-1 are potential prognostic biomarkers in patients with oral squamous cell carcinomas: An observational study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 134, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Bello, I.O.; Vilen, S.-T.; Niinimaa, A.; Kantola, S.; Soini, Y.; Salo, T. Expression of claudins 1, 4, 5, and 7 and occludin, and relationship with prognosis in squamous cell carcinoma of the tongue. Human Pathol. 2008, 39, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, D.; Kayamori, K.; Sakamoto, K.; Tsuchiya, M.; Ikeda, T.; Harada, H.; Yoda, T.; Watabe, T.; Hara-Yokoyama, M. Intracellular claudin-1 at the invasive front of tongue squamous cell carcinoma is associated with lymph node metastasis. Cancer Sci. 2020, 111, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, A.; Takano, K.-I.; Kojima, T.; Ohkuni, T.; Kamekura, R.; Ogasawara, N.; Go, M.; Sawada, N.; Himi, T. Altered expression of claudin-1, claudin-7, and tricellulin regardless of human papilloma virus infection in human tonsillar squamous cell carcinoma. Acta Oto-Laryngol. 2011, 131, 861–868. [Google Scholar] [CrossRef] [PubMed]
- de Arruda, C.F.J.; Coutinho-Camillo, C.M.; Marques, M.M.; Nagano, C.P.; Bologna, S.B.; Bettim, B.B.; Germano, J.N.; Pinto, C.A.L.; Hsieh, R.; Lourenço, S.V. Claudin expression is maintained in mucoepidermoid carcinoma of the salivary gland. Pathol. Res. Pract. 2020, 216, 153161. [Google Scholar] [CrossRef]
- Hsueh, C.; Chang, Y.-S.; Tseng, N.-M.; Liao, C.-T.; Hsueh, S.; Chang, J.-H.; Wu, I.C.; Chang, K.-P. Expression pattern and prognostic significance of claudins 1, 4, and 7 in nasopharyngeal carcinoma. Human Pathol. 2010, 41, 944–950. [Google Scholar] [CrossRef]
- Li, W.; Dong, Q.; Li, L.; Zhang, Z.; Cai, X.; Pan, X. Prognostic significance of claudin-1 and cyclin B1 protein expression in patients with hypopharyngeal squamous cell carcinoma. Oncol. Lett. 2016, 11, 2995–3002. [Google Scholar] [CrossRef]
- Li, W.J.; Zhang, Z.L.; Yu, X.M.; Cai, X.L.; Pan, X.L.; Yang, X.Y. Expression of claudin-1 and its relationship with lymphatic microvessel generation in hypopharyngeal squamous cell carcinoma. Genet. Mol. Res. 2015, 14, 11814–11826. [Google Scholar] [CrossRef]
- de Aquino, A.R.L.; de Carvalho, C.H.P.; Nonaka, C.F.W.; Freitas, R.d.A.; de Souza, L.B.; Pinto, L.P. Immunoexpression of Claudin-1 and Nm23-H1 in Metastatic and Nonmetastatic Lower Lip Squamous-cell Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Piao, X.; Wang, C.; Wang, R.; Song, Z. Identification of claudin-1, -3, -7 and -8 as prognostic markers in human laryngeal carcinoma. Mol. Med. Rep. 2019, 20, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.V.; Coutinho-Camillo, C.M.; Buim, M.E.C.; Pereira, C.M.; Carvalho, A.L.; Kowalski, L.P.; Soares, F.A. Oral squamous cell carcinoma: Status of tight junction claudins in the different histopathological patterns and relationship with clinical parameters. A tissue-microarray-based study of 136 cases. J. Clin. Pathol. 2010, 63, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yu, B.; Chen, W.; Li, W.; Sun, Y.; Fang, Y. CircSERPINA3 promoted cell proliferation, migration, and invasion of laryngeal squamous cell carcinoma by targeting miR-885-5p. Cell Biol. Int. 2022, 46, 1852–1863. [Google Scholar] [CrossRef] [PubMed]
- Kojima, F.; Ishida, M.; Takikita-Suzuki, M.; Hotta, M.; Katsura, K.; Nagata, A.; Enoki, Y.; Kato, G.I.; Okabe, H. Claudin expression profiles in Epstein-Barr virus-associated nasopharyngeal carcinoma. Oncol. Rep. 2010, 23, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Phattarataratip, E.; Sappayatosok, K. Expression of claudin-5, claudin-7 and occludin in oral squamous cell carcinoma and their clinico-pathological significance. J. Clin. Exp. Dent. 2016, 8, e299–e306. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, W. IRF2-induced Claudin-7 suppresses cell proliferation, invasion and migration of oral squamous cell carcinoma. Exp. Ther. Med. 2021, 23, 7. [Google Scholar] [CrossRef]
- Xu, Y.-N.; Deng, M.-S.; Liu, Y.-F.; Yao, J.; Xiao, Z.-Y. Tight junction protein CLDN17 serves as a tumor suppressor to reduce the invasion and migration of oral cancer cells by inhibiting epithelial-mesenchymal transition. Arch. Oral Biol. 2022, 133, 105301. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, K.; Fu, K.; Dong, X.; Chen, X.; Liu, J.; Cui, N.; Ni, J. DNA demethylation of claudin-4 suppresses migration and invasion in laryngeal squamous carcinoma cells. Hum. Pathol. 2018, 75, 71–80. [Google Scholar] [CrossRef]
- Abd El-Ghani, S.F.; Kasem, R.F.; Ghallab, N.A.; Shaker, O.G. Detection of claudin-4 in salivary gland neoplasms (a study utilizing RT-PCR and immunohistochemistry). J. Oral Pathol. Med. 2013, 42, 781–787. [Google Scholar] [CrossRef]
- Ji, H.; Ding, X.; Zhang, W.; Zheng, Y.; Du, H.; Zheng, Y.; Song, H.; Li, M.; Jiang, Y.; Xie, J.; et al. Claudin-7 Inhibits Proliferation and Metastasis in Salivary Adenoid Cystic Carcinoma through Wnt/β-Catenin Signaling. Cell Transplant. 2020, 29, 096368972094358. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Cao, B.; Lin, L.; Zhou, C.; Ye, D.; Qiu, S.; Li, Q.; Cui, X. The Clinical Signification of Claudin-11 Promoter Hypermethylation for Laryngeal Squamous Cell Carcinoma. Med. Sci. Monit. 2017, 23, 3635–3640. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.N.; Park, Y.W.; Yazici, Y.D.; Gu, M.; Santillan, A.A.; Nong, X.; Kim, S.; Jasser, S.A.; El-Naggar, A.K.; Myers, J.N. Concomitant inhibition of epidermal growth factor and vascular endothelial growth factor receptor tyrosine kinases reduces growth and metastasis of human salivary adenoid cystic carcinoma in an orthotopic nude mouse model. Mol. Cancer Ther. 2006, 5, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Xiang, R.-L.; Cong, X.; Zhang, Y.; Li, J.; Yi, X.; Park, K.; Han, J.-Y.; Wu, L.-L.; Yu, G.-Y. Claudin-3 is required for modulation of paracellular permeability by TNF-α through ERK1/2/slug signaling axis in submandibular gland. Cell Signal. 2015, 27, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.-T.; Wu, Y.-H.; Liu, S.-H.; Song, X.-B.; Xu, H.; Li, J.; Shi, L. Pilocarpine improves submandibular gland dysfunction in irradiated rats by downregulating the tight junction protein claudin-4. Oral Dis. 2022, 28, 1528–1538. [Google Scholar] [CrossRef] [PubMed]
- Kapral, M.; Strzalka-Mrozik, B.; Kowalczyk, M.; Paluch, J.; Gola, J.; Gierek, T.; Weglarz, L. Transcriptional activities of histone H3, cyclin D1 and claudin 7 encoding genes in laryngeal cancer. Eur. Arch. Oto-Rhino-Laryngol. 2011, 268, 709–714. [Google Scholar] [CrossRef]
- Elgart, K.; Faden, D.L. Sinonasal Squamous Cell Carcinoma: Etiology, Pathogenesis, and the Role of Human Papilloma Virus. Curr. Otorhinolaryngol. Rep. 2020, 8, 111–119. [Google Scholar] [CrossRef]
- Lee, J.-W.; Hsiao, W.-T.; Chen, H.-Y.; Hsu, L.-P.; Chen, P.-R.; Lin, M.-D.; Chiu, S.-J.; Shih, W.-L.; Hsu, Y.-C. Upregulated claudin-1 expression confers resistance to cell death of nasopharyngeal carcinoma cells. Int. J. Cancer 2010, 126, 1353–1366. [Google Scholar] [CrossRef]
- McClane, B.A.; McDonel, J.L. Protective effects of osmotic stabilizers on morphological and permeability alterations induced in Vero cells by Clostridium perfringens enterotoxin. Biochim. Biophys. Acta 1981, 641, 401–409. [Google Scholar] [CrossRef]
- Chang, J.W.; Seo, S.T.; Im, M.A.; Won, H.-R.; Liu, L.; Oh, C.; Jin, Y.L.; Piao, Y.; Kim, H.J.; Kim, J.T.; et al. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl. Res. 2022, 247, 58–78. [Google Scholar] [CrossRef]
- Pang, X.; Tang, Y.L.; Liang, X.H. Transforming growth factor-β signaling in head and neck squamous cell carcinoma: Insights into cellular responses (Review). Oncol. Lett. 2018, 16, 4799–4806. [Google Scholar] [CrossRef] [PubMed]
- Jank, B.J.; Schnoell, J.; Kladnik, K.; Sparr, C.; Haas, M.; Gurnhofer, E.; Lein, A.L.; Brunner, M.; Kenner, L.; Kadletz-Wanke, L.; et al. Targeting TGF beta receptor 1 in head and neck squamous cell carcinoma. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Daste, A.; Ravaud, A.; Salas, S.; Isambert, N.; McClay, E.; Awada, A.; Borel, C.; Ojalvo, L.S.; Helwig, C.; et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in advanced squamous cell carcinoma of the head and neck: Results from a phase I cohort. J. Immunother. Cancer 2020, 8, e000664. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.J.; Dangi-Garimella, S.; Shields, M.A.; Diamond, M.E.; Sun, L.; Koblinski, J.E.; Munshi, H.G. Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J. Cell. Biochem. 2009, 108, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Cappellesso, R.; Marioni, G.; Crescenzi, M.; Giacomelli, L.; Guzzardo, V.; Mussato, A.; Staffieri, A.; Martini, A.; Blandamura, S.; Fassina, A. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathology 2015, 67, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Riechelmann, H.; Steinbichler, T.B.; Sprung, S.; Santer, M.; Runge, A.; Ganswindt, U.; Gamerith, G.; Dudas, J. The Epithelial-Mesenchymal Transcription Factor Slug Predicts Survival Benefit of Up-Front Surgery in Head and Neck Cancer. Cancers 2021, 13, 772. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Teknos, T.N.; Pan, Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 287–292. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, V.; Flores-Maldonado, C.; Rincon-Heredia, R.; Verdejo-Torres, O.; Bonilla-Delgado, J.; Meneses-Morales, I.; Gariglio, P.; Contreras, R.G. EGF regulates claudin-2 and -4 expression through Src and STAT3 in MDCK cells. J. Cell Physiol. 2015, 230, 105–115. [Google Scholar] [CrossRef]
- Moreira, D.; Sampath, S.; Won, H.; White, S.V.; Su, Y.-L.; Alcantara, M.; Wang, C.; Lee, P.; Maghami, E.; Massarelli, E.; et al. Myeloid cell–targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell–mediated immunity. J. Clin. Investig. 2021, 131, e137001. [Google Scholar] [CrossRef]
- Zuo, J.H.; Zhu, W.; Li, M.Y.; Li, X.H.; Yi, H.; Zeng, G.Q.; Wan, X.X.; He, Q.Y.; Li, J.H.; Qu, J.Q.; et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J. Cell. Biochem. 2011, 112, 2508–2517. [Google Scholar] [CrossRef]
Claudins Overexpression | Type of Cancer | Clinical Significance | Methodology | Reference(s) |
---|---|---|---|---|
1 | OSCC | Poor recurrence-free and cancer-specific survival * | IHC and Western blot | [37,40,41,42,43] |
TSCC | Increased cervical lymph node metastasis | IHC | [44,45] | |
Tonsillar squamous cell carcinoma | N/A | IHC and PCR | [46] | |
Mucoepidermoid carcinomas | N/A | IHC and PCR | [47] | |
NPC | N/A | IHC | [48] | |
HSCC | Poor differentiation, lymph node metastasis, and reduced survival rates | IHC | [49,50] | |
LLSCC | Advanced tumor staging | IHC | [51] | |
2 | OSCC | Shorter recurrence-free survival * | IHC | [37,39] |
3 | Mucoepidermoid carcinomas | N/A | IHC and PCR | [47] |
LSCC | Distant metastasis and poor | PCR and Western blot | [52] | |
4 | OSCC | Increased perineural infiltration and poor recurrence-free survival | IHC | [39,41,53] |
Mucoepidermoid carcinomas * | N/A | IHC and PCR | [47] | |
LSCC * | N/A | Western blot | [54] | |
NPC | N/A | IHC | [48,55] | |
5 | Mucoepidermoid carcinomas | N/A | IHC and PCR | [46] |
7 | TSCC | Poor survival | IHC and Western blot | [44] |
Mucoepidermoid carcinomas | N/A | IHC and PCR | [47] | |
NPC | Distant metastasis, increased tumor stages, and poor distant metastases-free survival | IHC | [48] | |
8 | LSCC | Poor histological grade and survival | PCR and Western blot | [52] |
Claudins Underexpression | Type of Cancer | Clinical Significance | Methodology | Reference(s) |
---|---|---|---|---|
1 | LSCC | Poor survival | IHC | [52] |
2 | NPC | N/A | IHC | [55] |
4 | OSCC | Poor recurrence-free survival and increased perineural infiltration * | Western blot and IHC | [40,41,42,53] |
NPC | Poor distant metastases-free surivval | IHC | [48] | |
LSCC * | N/A | IHC and PCR | [59] | |
Salivary gland carcinomas * | N/A | IHC and PCR | [60] | |
5 | OSCC | N/A | IHC and Western blot | [39,40] |
TSCC | N/A | IHC | [44] | |
7 | OSCC | High pathological grade, advanced staging, increased perineural, vascular, and lymphatic invasions, and poor survival | Western blot and IHC | [40,56] |
Salivary adenoid cystic carcinoma | Increased lymph node metastasis and recurrence | IHC, PCR, Western blot, and IFC | [61] | |
Tonsillar squamous cell carcinoma | N/A | IHC and PCR | [46] | |
LSCC * | Poor survival and distant metastasis | PCR and Western blot | [52] | |
11 | LSCC | Lymph node metastasis, advanced clinical stages, increased T classifications, and poor survival (correlates with claudin-11 promoter hypermethylation) | PCR | [62] |
17 | OSCC | Poor TNM staging and survival | PCR, IHC, and Western blot | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabi, T.Z.; Algheryafi, L.A.; Alodah, N.A.; Enabi, H.M.K.; Alshehry, A.A.; Ouban, A. Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review. Cancers 2023, 15, 4208. https://doi.org/10.3390/cancers15174208
Arabi TZ, Algheryafi LA, Alodah NA, Enabi HMK, Alshehry AA, Ouban A. Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review. Cancers. 2023; 15(17):4208. https://doi.org/10.3390/cancers15174208
Chicago/Turabian StyleArabi, Tarek Ziad, Linah Abdulmohsen Algheryafi, Nora A. Alodah, Hamza M. Kossai Enabi, Amjad Abdullah Alshehry, and Abderrahman Ouban. 2023. "Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review" Cancers 15, no. 17: 4208. https://doi.org/10.3390/cancers15174208
APA StyleArabi, T. Z., Algheryafi, L. A., Alodah, N. A., Enabi, H. M. K., Alshehry, A. A., & Ouban, A. (2023). Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review. Cancers, 15(17), 4208. https://doi.org/10.3390/cancers15174208