Association of Tumor Microenvironment with Biological and Chronological Age in Head and Neck Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Immunohistochemistry (IHC)
2.4. Analysis of IHC
2.5. Assessment of Biological Age
3. Results
3.1. Tumor Characteristics
3.2. Immunological Markers
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noone, A.M.; Howlader, N.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2015; Natl Cancer Institute: Bethesda, MD, USA, 2006.
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottazzi, B.; Riboli, E.; Mantovani, A. Aging, inflammation and cancer. Semin. Immunol. 2018, 40, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Bras, L.; Driessen, D.A.J.J.; de Vries, J.; Festen, S.; van der Laan, B.F.A.M.; van Leeuwen, B.L.; de Bock, G.H.; Halmos, G.B. Patients with head and neck cancer: Are they frailer than patients with other solid malignancies? Eur. J. Cancer Care 2020, 29, e13170. [Google Scholar] [CrossRef] [Green Version]
- Bras, L.; de Vries, J.; Festen, S.; Steenbakkers, R.J.; Langendijk, J.A.; Witjes, M.J.; van der Laan, B.F.; de Bock, G.H.; Halmos, G.B. Frailty and restrictions in geriatric domains are associated with surgical complications but not with radiation-induced acute toxicity in head and neck cancer patients: A prospective study. Oral Oncol. 2021, 118, 105329. [Google Scholar] [CrossRef]
- Pignon, J.-P.; le Maître, A.; Maillard, E.; Bourhis, J.; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef] [PubMed]
- van der Kamp, M.F.; Halmos, G.B.; Guryev, V.; Horvatovich, P.L.; Schuuring, E.; van der Laan, B.F.A.M.; van der Vegt, B.; Plaat, B.E.C.; Verhoeven, C.J. Age-specific oncogenic pathways in head and neck squamous cell carcinoma—Are elderly a different subcategory? Cell. Oncol. 2022, 45, 1–18. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Shin, S.; Ahn, J.; Lee, M.; Kim, H. The efficacy of immune checkpoint inhibitors in elderly patients: A meta-analysis and meta-regression. ESMO Open 2022, 7, 100577. [Google Scholar] [CrossRef]
- de Kruijf, E.M.; Bastiaannet, E.; Rubertá, F.; de Craen, A.J.; Kuppen, P.J.; Smit, V.T.; van de Velde, C.J.; Liefers, G.J. Comparison of frequencies and prognostic effect of molecular subtypes between young and elderly breast cancer patients. Mol. Oncol. 2014, 8, 1014–1025. [Google Scholar] [CrossRef]
- Pickering, C.R.; Zhang, J.; Neskey, D.M.; Zhao, M.; Jasser, S.A.; Wang, J.; Ward, A.; Tsai, C.J.; Alves, M.V.O.; Zhou, J.H.; et al. Squamous Cell Carcinoma of the Oral Tongue in Young Non-Smokers Is Genomically Similar to Tumors in Older Smokers. Clin. Cancer Res. 2014, 20, 3842–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naz, S.; Salah, K.; Khurshid, A.; Hashmi, A.A.; Faridi, N. Head and Neck Squamous Cell Carcinoma—Comparative Evaluation of Pathological Parameters in Young and Old Patients. Asian Pac. J. Cancer Prev. 2015, 16, 4061–4063. [Google Scholar] [CrossRef]
- Sidorenkov, G.; Nagel, J.; Meijer, C.; Duker, J.J.; Groen, H.J.M.; Halmos, G.B.; Oonk, M.H.M.; Oostergo, R.J.; van der Vegt, B.; Witjes, M.J.H.; et al. The OncoLifeS data-biobank for oncology: A comprehensive repository of clinical data, biological samples, and the patient’s perspective. J. Transl. Med. 2019, 17, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattje, W.J.; Schuuring, E.; Mastik, M.F.; Slagter-Menkema, L.; Schrijvers, M.L.; Alessi, S.; Laan, B.F.A.M.v.d.; Roodenburg, J.L.N.; Langendijk, J.A.; van der Wal, J.E. The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer. Br. J. Cancer 2010, 102, 1778–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K. Conceptual Models of Frailty: Accumulation of Deficits. Can. J. Cardiol. 2016, 32, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, M.E.; Jonker, J.M.; de Rooij, S.E.; Vos, A.G.; Smorenburg, C.H.; van Munster, B.C. Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: A systematic review. Lancet Oncol. 2012, 13, e437–e444. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.; Bras, L.; Sidorenkov, G.; Festen, S.; Steenbakkers, R.J.; Langendijk, J.A.; Witjes, M.J.; van der Laan, B.F.; de Bock, G.H.; Halmos, G.B. Frailty is associated with decline in health-related quality of life of patients treated for head and neck cancer. Oral Oncol. 2020, 111, 105020. [Google Scholar] [CrossRef]
- de Vries, J.; Bras, L.; Sidorenkov, G.; Festen, S.; Steenbakkers, R.J.H.M.; Langendijk, J.A.; Witjes, M.J.H.; van der Laan, B.F.A.M.; de Bock, G.H.; Halmos, G.B. Association of Deficits Identified by Geriatric Assessment With Deterioration of Health-Related Quality of Life in Patients Treated for Head and Neck Cancer. JAMA Otolaryngol. Neck Surg. 2021, 147, 1089–1099. [Google Scholar] [CrossRef]
- Jeske, S.S.; Schuler, P.J.; Doescher, J.; Theodoraki, M.N.; Laban, S.; Brunner, C.; Hoffmann, T.K.; Wigand, M.C. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. Immun. Ageing 2020, 17, 3. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, H.; Togashi, Y. Aging, cancer, and antitumor immunity. Int. J. Clin. Oncol. 2021, 27, 316–322. [Google Scholar] [CrossRef]
- Teixeira, L.R.; Dds, L.Y.A.; Silva, R.N.; Dds, A.T.M.M.; Colturato, C.B.N.; Dds, H.A.S.; Duarte, A.; Ribeiro-Silva, A.; León, J.E. Young and elderly oral squamous cell carcinoma patients present similar angiogenic profile and predominance of M2 macrophages: Comparative immunohistochemical study. Head Neck 2019, 41, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Lenouvel, D.; González-Moles, M.; Ruiz-Ávila, I.; Gonzalez-Ruiz, L.; Gonzalez-Ruiz, I.; Ramos-García, P. Prognostic and clinicopathological significance of PD-L1 overexpression in oral squamous cell carcinoma: A systematic review and comprehensive meta-analysis. Oral Oncol. 2020, 106, 104722. [Google Scholar] [CrossRef] [PubMed]
- Ngamphaiboon, N.; Chureemas, T.; Siripoon, T.; Arsa, L.; Trachu, N.; Jiarpinitnun, C.; Pattaranutaporn, P.; Sirachainan, E.; Larbcharoensub, N. Characteristics and impact of programmed death-ligand 1 expression, CD8+ tumor-infiltrating lymphocytes, and p16 status in head and neck squamous cell carcinoma. Med. Oncol. 2019, 36, 21. [Google Scholar] [CrossRef]
- Ryu, H.J.; Kim, E.K.; Cho, B.C.; Yoon, S.O. Characterization of head and neck squamous cell carcinoma arising in young patients: Particular focus on molecular alteration and tumor immunity. Head Neck 2018, 41, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Hanna, G.; Woo, S.-B.; Li, Y.; Barletta, J.; Hammerman, P.; Lorch, J. Tumor PD-L1 expression is associated with improved survival and lower recurrence risk in young women with oral cavity squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2018, 47, 568–577. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
Domain | Questionnaires/Assessments | Abbreviation | Cut-off Value |
---|---|---|---|
Physical | Adult Comorbidity Evaluation | ACE-27 | None, mild, moderate, and severe |
Malnutrition Universal Screening | MUST | ≥1 medium-to-high risk of malnutrition | |
Functional | The Katz Activities of Daily Living * | ADL | <1 considered impairment |
Instrumental Activities of Daily Living ** | IADL | Female: ≤6 considered impairment Male: ≤3 considered impairment | |
Timed Up and Go | TUG | ≥20 impaired mobility | |
Psychological | Mini Mental State Examination | MMSE | ≤24 considered impaired cognition |
Geriatric Depression Scale 15 | GDS-15 | ≥6 relates to the presence of depression |
Characteristic | N (%) |
---|---|
Total | n = 164 (%) |
Chronological Age | |
Mean (± SD) | 67.02 (10.49) |
Median (p25-p75) | 66.53 (41–93) |
Biological Age * | |
Biologically young | 107 (67.9%) |
Biologically old | 52 (32.7%) |
Sex | |
Male | 113 (68.9%) |
Female | 51 (31.1%) |
Tumor site | |
Oral cavity | 62 (37.8%) |
Larynx | 61 (37.2%) |
Oropharynx | 31 (18.9%) |
Hypopharynx | 10 (6.1%) |
Stage | |
I | 36 (22%) |
II | 29 (17.7%) |
III | 25 (15.2%) |
IV | 74 (45.1%) |
Primary treatment ** | |
Surgery | 83 (54.6%) |
Radiotherapy | 47 (30.9%) |
Chemoradiotherapy | 22 (14.5%) |
Chronological Age | Biological Age | ||||||
---|---|---|---|---|---|---|---|
Total n = 164 (100%) | Young < 65 y n = 72 (43.9%) | Old ≥ 65 y n = 92 (56.1%) | p-Value | Young n = 107 (67.9%) | Old n = 52 (32.7%) | p-Value | |
Tumor diameter (mm) median (±range) | 25 (0–70) a | 21 (1–70) b | 27 (0–65) c | 0.138 ¶ | 23 (0–70) d | 27 (1–60) e | 0.462 ¶ |
Depth of invasion (mm) median (±range) | 6 (1–55) f | 6 (1–30) g | 6 (0–55) h | 0.465 ¶ | 6 (1–30) i | 7 (1–55) j | 0.580 ¶ |
Differentiation grade Well differentiated Moderately Poorly | n = 151 30(19.9%) 115 (76.2%) 6 (4%) | n = 65 14 (21.5%) 47 (72.3%) 4 (6.2%) | n = 86 16 (18.6%) 68 (79.1%) 2 (2.3%) | 0.456 ¥ | n = 101 21 (20.8%) 75 (74.3%) 5 (5%) | n = 46 8 (17.4%) 37 (80.9%) 1 (2.2%) | 0.735 ¥ |
Growth pattern Infiltrative Pushing | n = 81 59 (72.8%) 22 (27.2%) | n = 33 25 (75.8%) 8 (24.2%) | n = 48 34 (71.4%) 14 (28.6%) | 0.800 | n = 52 39 (75%) 13 (25%) | n = 25 16 (64%) 9 (36%) | 0.420 |
Perineural growth Yes No | n = 128 17 (13.3%) 111 (86.7%) | n = 56 7 (12.5%) 49 (87.5%) | n = 72 10 (13.9%) 62 (86.1%) | 1 | n = 84 11 (13.1%) 72 (86.9%) | n = 41 6 (14.6%) 35 (85.4%) | 1 |
Lymphangio-invasion Yes No | n = 130 15 (11.7%) 113 (88.3%) | n = 56 5 (8.9%) 51 (91.1%) | n = 70 10 (13.9%) 62 (86.1%) | 0.423 | n = 83 8 (9.6%) 75 (90.4%) | n = 42 7 (16.7%) 35 (83.3%) | 0.382 ¥ |
Bone/cartilage invasion Yes No | n = 9 4 (44.4%) 5 (55.6%) | n = 2 0 2 (100%) | n = 7 4 (57.1%) 3 (42.9%) | 0.444 ¥ | n = 5 3 (60%) 2 (40%) | n = 4 1 (25%) 3 (75%) | 0.524 ¥ |
Proliferation index <median ≥median | n = 73 41 (56.2%) 32 (43.8%) | n = 31 14 (45.2%) 17 (54.8%) | n = 42 27 (64.3%) 15 (35.7%) | 0.104 | n = 50 26 (52%) 24 (48%) | n = 22 15 (68.2%) 7 (31.8%) | 0.201 |
Chronological Age | Biological Age | ||||||
---|---|---|---|---|---|---|---|
Staining | n = 167 | Odds Ratio (95%CI) | p-Value | n = 162 | Odds Ratio (95%CI) | p-Value | |
Macrophages | CD163 <median ≥median | 44 (53%) 39 (47%) | Ref 0.667 (0.277–1.607) | 0.366 | 43 (52.4%) 39 (47.6%) | Ref 0.335 (0.121–0.929) | 0.036 |
CD68 <median ≥median | 43 (52.4%) 39 (47.6%) | Ref 0.940 (0.388–2.274) | 0.891 | 43 (53.1%) 38 (46.9%) | Ref 0.579 (0.218–1.537) | 0.273 | |
T-cells | FOXP3 <median ≥median | 46 (54.8%) 38 (45.2%) | Ref 0.724 (0.302–1.739) | 0.470 | 45 (54.2%) 38 (45.8%) | Ref 1.003 (0.387–2.599) | 0.995 |
CD4 <median ≥median | 44 (53.7%) 38 (46.3%) | Ref 0.467 (0.190–1.146) | 0.096 | 44 (54.3%) 37 (45.7%) | Ref 0.280 (0.097–0.808) | 0.019 | |
CD8 <median ≥median | 45 (54.9%) 37 (45.1%) | Ref 0.797 (0.328–1.934) | 0.616 | 45 (55.6%) 36 (44.4%) | Ref 0.300 (0.104–0.866) | 0.026 | |
B-cells | CD20 <median ≥median | 46 (22.4%) 37 (44.6%) | Ref 0.458 (0.188–1.118) | 0.087 | 46 (56.1%) 36 (43.9%) | Ref 0.412 (0.149–1.141) | 0.088 |
NK-cells | CD57 <median ≥median | 40 (48.8%) 42 (51.2%) | Ref 0.980 (0.405–2.371) | 0.965 | 40 (49.4%) 41 (50.6%) | Ref 0.762 (0.293–1.982) | 0.577 |
Immune checkpoint inhibition | PD-L1 <1% ≥1% | 24 (29.6%) 57 (70.4% | Ref 0.292 (0.096–0.891) | 0.030 | 24 (30%) 56 (70%) | Ref 0.732 (0.260–2.059) | 0.554 |
Univariable Analyses | Bivariable Analyses | |||||
---|---|---|---|---|---|---|
Chronological Age | Biological Age | |||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Chronological age <65 ≥65 | Ref 0.871 (0.465–1.63350) | 0.864 | ||||
Biological age Young Old | Ref 1.860 (0.949–3.646) | 0.071 | ||||
Sex Male Female | Ref 1.333 (0.693–2.565) | 0.390 | Ref 1.329 (0.691–2.558) | 0.394 | Ref 1.416 (0.717–2.796) | 0.317 |
Location Oral cavity Larynx Oropharynx Hypopharynx | Ref 0.685 (0.324–1.448) 1.119 (0.479–2.616) 1.230 (0.358–4.225) | 0.322 0.794 0.743 | Ref 0.675 (0.319–1.431) 1.100 (0.470–2.578) 1.243 (0.362–4.275) | 0.306 0.826 0.730 | Ref 0.594 (0.269–1.312) 1.101 (0.452–2.685) 1.386 (0.401–4.794) | 0.198 0.832 0.606 |
Tumor stage Early stage (I–II) Advanced stage (III–IV) | Ref 3.293 (1.512–7.170) | 0.003 | Ref 3.290 (1.511–7.165) | 0.003 | Ref 3.690 (1.614–8.439) | 0.002 |
Treatment Surgery Radiotherapy Chemoradiation | Ref 0.978 (0.486–1.966) 0.715 (0.247–2.066) | 0.950 0.535 | Ref 0.985 (0.490–1.982) 0.674 (0.228–1.997) | 0.967 0.477 | Ref 0.838 (0.397–1.771) 0.732 (0.251–2.131) | 0.644 0.567 |
Tumor diameter ≤2 cm >2 cm–≤4 cm ≥4 cm | Ref 2.193 (0.862–5.577) 1.790 (0.601–5.332) | 0.099 0.296 | Ref 2.516 (0.959–6.600) 1.887 (0.631–5.641) | 0.061 0.256 | Ref 2.228 (0.874–5.681) 1.354 (0.427–4.294) | 0.093 0.607 |
Depth of invasion ≤4 mm >4 mm | Ref 2.664 (0.866–8.193) | 0.087 | Ref 2.916 (0.941–9.036) | 0.064 | Ref 3.017 (0.971–9.375) | 0.056 |
Differentiation grade Well differentiated Moderately differentiated Poorly differentiated | Ref 1.278 (0.561–2.912) 0.598 (0.074–4.860) | 0.559 0.630 | Ref 1.298 (0.569–2.960) 0.571 (0.070–4.655) | 0.535 0.601 | Ref 1.387 (0.574–3.352) 0.721 (0.087–5.991) | 0.468 0.762 |
Growth pattern Pushing Infiltrative | Ref 1.981 (0.680–5.771) | 0.210 | Ref 2.016 (0.689–5.892) | 0.200 | Ref 1.934 (0.657–5.691) | 0.231 |
Perineural growth No Yes | Ref 2.816 (1.264–6.277) | 0.011 | Ref 2.944 (1.309–6.626) | 0.009 | Ref 3.048 (1.341–6.929) | 0.008 |
Lymphangio-invasion No Yes | Ref 0.474 (0.195–1.150) | 0.099 | Ref 0.437 (0.177–1.080) | 0.073 | Ref 0.462 (0.186–1.145) | 0.095 |
Bone/cartilage invasion No Yes | Ref 0.275 (0.030–2.504) | 0.252 | Ref 0.348 (0.031–3.937) | 0.394 | Ref 0.299 (0.0.31–2.862) | 0.295 |
Proliferation index <median ≥median | Ref 1.695 (0.702–4.094) | 0.241 | Ref 1.605 (0.652–3.952) | 0.304 | Ref 2.498 (0.988–6.313) | 0.053 |
Univariable | Bivariable | ||||||
---|---|---|---|---|---|---|---|
Chronological Age | Biological Age | ||||||
Immunomarker | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Chronological age <65 ≥65 | Ref 0.871 (0.465–1.634) | 0.864 | |||||
Biological age Young Old | Ref 1.860 (0.949–3.646) | 0.071 | |||||
Macrophages | CD163 <median ≥median | Ref 1.416 (0.612–3.277) | 0.417 | Ref 1.391 (0.600–3.224) | 0.441 | Ref 1.934 (0.797–4.693) | 0.145 |
CD68 <median ≥median | Ref 1.400 (0.605–3.242) | 0.432 | Ref 1.347 (0.580–3.130) | 0.488 | Ref 2.030 (0.836–4.927) | 0.118 | |
T-cells | FOXP3 <median ≥median | Ref 0.932 (0.398–2.182) | 0.872 | Ref 0.901 (0.384–2.113) | 0.810 | Ref 0.968 (0.413—2.270) | 0.940 |
CD4 <median ≥median | Ref 0.559 (0.234–1.333) | 0.190 | Ref 0.514 (0.213–1.237) | 0.137 | Ref 0.691 (0.284–1.683) | 0.416 | |
CD8 <median ≥median | Ref 1.150 (0.498–2.653) | 0.743 | Ref 1.145 (0.496–2.643) | 0.751 | Ref 1.547 (0.649–3.686) | 0.325 | |
B-cells | CD20 <median ≥median | Ref 0.993 (0.429–2.298) | 0.986 | Ref 0.930 (0.398–2.174) | 0.866 | Ref 1.191 (0.509–2.786) | 0.688 |
NK-cells | CD57 <median ≥median | Ref 0.497 (0.209–1.187) | 0.115 | Ref 0.499 (0.209–1.190) | 0.117 | Ref 0.516 (0.216–1.231) | 0.136 |
Immune checkpoint inhibitor | PD-L1 <1% ≥1% | Ref 1.263 (0.494–3.229) | 0.626 | Ref 0.837 (0.419–2.929) | 0.837 | Ref 1.519 (0.587–3.929) | 0.389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Kamp, M.F.; Hiddingh, E.; de Vries, J.; van Dijk, B.A.C.; Schuuring, E.; Slagter-Menkema, L.; van der Vegt, B.; Halmos, G.B. Association of Tumor Microenvironment with Biological and Chronological Age in Head and Neck Cancer. Cancers 2023, 15, 3834. https://doi.org/10.3390/cancers15153834
van der Kamp MF, Hiddingh E, de Vries J, van Dijk BAC, Schuuring E, Slagter-Menkema L, van der Vegt B, Halmos GB. Association of Tumor Microenvironment with Biological and Chronological Age in Head and Neck Cancer. Cancers. 2023; 15(15):3834. https://doi.org/10.3390/cancers15153834
Chicago/Turabian Stylevan der Kamp, Martine Froukje, Eric Hiddingh, Julius de Vries, Boukje Annemarie Cornelia van Dijk, Ed Schuuring, Lorian Slagter-Menkema, Bert van der Vegt, and Gyorgy Bela Halmos. 2023. "Association of Tumor Microenvironment with Biological and Chronological Age in Head and Neck Cancer" Cancers 15, no. 15: 3834. https://doi.org/10.3390/cancers15153834
APA Stylevan der Kamp, M. F., Hiddingh, E., de Vries, J., van Dijk, B. A. C., Schuuring, E., Slagter-Menkema, L., van der Vegt, B., & Halmos, G. B. (2023). Association of Tumor Microenvironment with Biological and Chronological Age in Head and Neck Cancer. Cancers, 15(15), 3834. https://doi.org/10.3390/cancers15153834