SMAD4 Positive Pancreatic Ductal Adenocarcinomas Are Associated with Better Outcomes in Patients Receiving FOLFIRINOX-Based Neoadjuvant Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Series
2.2. Immunohistochemistry
2.3. Semi-Quantitative Analysis of SMAD4 Expression
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. SMAD4 Expression Analysis and Association between SMAD4 Status and Clinicopathological Characteristics
3.3. The Impact of the Clinicopathological Variables on Outcome
3.4. The Impact of SMAD4 Status on Outcome
3.5. Interaction Tests between SMAD4 Status and NAT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sohal, D.P.S. Pancreatic Adenocarcinoma Management. JCO Oncol. Pract. 2022, 19, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2015, 26, v56–v68, Erratum in Ann. Oncol. 2017, 28 (Suppl. 4), iv167–iv168. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef]
- Schorn, S.; Demir, I.E.; Reyes, C.M.; Saricaoglu, C.; Samm, N.; Schirren, R.; Tieftrunk, E.; Hartmann, D.; Friess, H.; Ceyhan, G.O. The impact of neoadjuvant therapy on the histopathological features of pancreatic ductal adenocarcinoma—A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 55, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Schlitter, A.M.; Esposito, I. Definition of Microscopic Tumor Clearance (R0) in Pancreatic Cancer Resections. Cancers 2010, 2, 2001–2010. [Google Scholar] [CrossRef]
- Iacobuzio-Donahue, C.A.; Fu, B.; Yachida, S.; Luo, M.; Abe, H.; Henderson, C.M.; Vilardell, F.; Wang, Z.; Keller, J.W.; Banerjee, P.; et al. DPC4 Gene Status of the Primary Carcinoma Correlates with Patterns of Failure in Patients with Pancreatic Cancer. J. Clin. Oncol. 2009, 27, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Hishinuma, S.; Ogata, Y.; Tomikawa, M.; Ozawa, I.; Hirabayashi, K.; Igarashi, S. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract. 2006, 10, 511–518. [Google Scholar] [CrossRef]
- Merkow, R.P.; Bilimoria, K.Y.; Tomlinson, J.S.; Paruch, J.L.; Fleming, J.B.; Talamonti, M.S.; Ko, C.Y.; Bentrem, D.J. Postoperative Complications Reduce Adjuvant Chemotherapy Use in Resectable Pancreatic Cancer. Ann. Surg. 2014, 260, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Dhir, M.; Malhotra, G.K.; Sohal, D.P.S.; Hein, N.A.; Smith, L.M.; O’Reilly, E.M.; Bahary, N.; Are, C. Neoadjuvant treatment of pancreatic adenocarcinoma: A systematic review and meta-analysis of 5520 patients. World J. Surg. Oncol. 2017, 15, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, Q.P.; van Dam, J.L.; Doppenberg, D.; Prakash, L.R.; van Eijck, C.H.J.; Jarnagin, W.R.; Reilly, E.M.O.; Paniccia, A.; Besselink, M.G.; Katz, M.H.G.; et al. FOLFIRINOX as Initial Treatment for Localized Pancreatic Adenocarcinoma: A Retrospective Analysis by the Trans-Atlantic Pancreatic Surgery Consortium. JNCI J. Natl. Cancer Inst. 2022, 114, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Truty, M.J.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Cleary, S.P.; Graham, R.P.; Goenka, A.H.; Hallemeier, C.L.; Haddock, M.G.; Harmsen, W.S.; et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Ann. Surg. 2021, 273, 341–349. [Google Scholar] [CrossRef]
- He, J.; Blair, A.B.; Groot, V.P.; Javed, A.A.; Burkhart, R.A.; Gemenetzis, G.; Hruban, R.H.; Waters, K.M.; Poling, J.; Zheng, L.; et al. Is a Pathological Complete Response Following Neoadjuvant Chemoradiation Associated with Prolonged Survival in Patients with Pancreatic Cancer? Ann. Surg. 2018, 268, 1–8. [Google Scholar] [CrossRef]
- Waddell, N.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, A.; Hong, J.; Iacobuzio-Donahue, C.A. The pancreatic cancer genome revisited. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 469–481. [Google Scholar] [CrossRef]
- Dardare, J.; Witz, A.; Merlin, J.L.; Gilson, P.; Harlé, A. SMAD4 and the TGFβ Pathway in Patients with Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2020, 21, 3534. [Google Scholar] [CrossRef]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef]
- Hahn, S.A.; Hoque, A.T.; Moskaluk, C.A.; da Costa, L.T.; Schutte, M.; Rozenblum, E.; Seymour, A.B.; Weinstein, C.L.; Yeo, C.J.; Hruban, R.H.; et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996, 56, 490–494. [Google Scholar]
- Schutte, M.; Hruban, R.H.; Hedrick, L.; Cho, K.R.; Nadasdy, G.M.; Weinstein, C.L.; Bova, G.S.; Isaacs, W.B.; Cairns, P.; Nawroz, H.; et al. DPC4 gene in various tumor types. Cancer Res. 1996, 56, 2527–2530. [Google Scholar] [PubMed]
- Wilentz, R.E.; Su, G.H.; Dai, J.L.; Sparks, A.B.; Argani, P.; Sohn, T.A.; Yeo, C.J.; Kern, S.E.; Hruban, R.H. Immunohistochemical Labeling for Dpc4 Mirrors Genetic Status in Pancreatic Adenocarcinomas. Am. J. Pathol. 2000, 156, 37–43. [Google Scholar] [CrossRef]
- Yamada, S.; Fujii, T.; Shimoyama, Y.; Kanda, M.; Nakayama, G.; Sugimoto, H.; Koike, M.; Nomoto, S.; Fujiwara, M.; Nakao, A.; et al. SMAD4 Expression Predicts Local Spread and Treatment Failure in Resected Pancreatic Cancer. Pancreas 2015, 44, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Kim, H.J.; Hwang, D.W.; Lee, J.H.; Song, K.B.; Jun, E.; Shim, I.K.; Hong, S.-M.; Kim, H.J.; Park, K.-M.; et al. The DPC4/SMAD4 genetic status determines recurrence patterns and treatment outcomes in resected pancreatic ductal adenocarcinoma: A prospective cohort study. Oncotarget 2017, 8, 17945–17959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tascilar, M.; Skinner, H.G.; Rosty, C.; Sohn, T.; Wilentz, R.E.; Offerhaus, G.J.A.; Adsay, V.; Abrams, R.A.; Cameron, J.L.; Kern, S.E.; et al. The SMAD4 Protein and Prognosis of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2001, 7, 4115–4121. [Google Scholar]
- Gits, H.C.; Tang, A.H.; Harmsen, W.S.; Bamlet, W.R.; Graham, R.P.; Petersen, G.M.; Smyrk, T.C.; Mahipal, A.; Kowalchuk, R.O.; Ashman, J.B.; et al. Intact SMAD-4 is a predictor of increased locoregional recurrence in upfront resected pancreas cancer receiving adjuvant therapy. J. Gastrointest. Oncol. 2021, 12, 2275–2286. [Google Scholar] [CrossRef]
- Herman, J.M.; Jabbour, S.K.; Lin, S.H.; Deek, M.P.; Hsu, C.C.; Fishman, E.K.; Kim, S.; Cameron, J.L.; Chekmareva, M.; Laheru, D.A.; et al. Smad4 Loss Correlates with Higher Rates of Local and Distant Failure in Pancreatic Adenocarcinoma Patients Receiving Adjuvant Chemoradiation. Pancreas 2018, 47, 208–212. [Google Scholar] [CrossRef]
- Xu, W.; Lee, S.H.; Qiu, F.; Zhou, L.; Wang, X.; Ye, T.; Hu, X. Association of SMAD4 loss with drug resistance in clinical cancer patients: A systematic meta-analysis. PLoS ONE 2021, 16, e0250634. [Google Scholar] [CrossRef]
- Wang, F.; Xia, X.; Yang, C.; Shen, J.; Mai, J.; Kim, H.C.; Kirui, D.; Kang, Y.; Fleming, J.B.; Koay, E.J.; et al. SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 3176–3185. [Google Scholar] [CrossRef] [Green Version]
- Kassardjian, A.; Wang, H.L. SMAD4-Expressing Pancreatic Ductal Adenocarcinomas Have Better Response to Neoadjuvant Therapy and Significantly Lower Lymph Node Metastasis Rates. Pancreas 2020, 49, 1153–1160. [Google Scholar] [CrossRef]
- Ecker, B.L.; Court, C.M.; Janssen, Q.P.; Tao, A.J.; D’Angelica, M.I.; Drebin, J.A.; Mithat, G.; Eileen, O.; William, J.; Alice, W.; et al. Alterations in Somatic Driver Genes Are Associated with Response to Neoadjuvant FOLFIRINOX in Patients with Localized Pancreatic Ductal Adenocarcinoma. J. Am. Coll. Surg. 2022, 235, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Kadera, B.E.; Sunjaya, D.B.; Isacoff, W.H.; Li, L.; Hines, O.J.; Tomlinson, J.S.; Dawson, D.W.; Rochefort, M.M.; Donald, G.W.; Clerkin, B.M.; et al. Locally Advanced Pancreatic Cancer: Association Between Prolonged Preoperative Treatment and Lymph-Node Negativity and Overall Survival. JAMA Surg. 2014, 149, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK). JNCI J. Natl. Cancer Inst. 2005, 97, 1180–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, R.K.; Pai, R.K. Pathologic assessment of gastrointestinal tract and pancreatic carcinoma after neoadjuvant therapy. Mod. Pathol. 2018, 31, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathologists TRC of Search Results. Available online: https://www.rcpath.org/search-results.html?q=pancreas (accessed on 25 October 2022).
- National Comprehesive Cancer Network Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. Version 1 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 17 October 2022).
- AlMasri, S.; Zenati, M.; Hammad, A.; Singhi, A.; Paniccia, A.; Lee, K.; Aldakkak, M.; Evans, D.; Tsai, S.; Zureikat, A.; et al. Implications of SMAD4 Status in Pancreatic Carcinoma Treated with Radiation Therapy: A Multi-Institutional Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S145. [Google Scholar] [CrossRef]
- Whittle, M.C.; Izeradjene, K.; Rani, P.G.; Feng, L.; Carlson, M.A.; DelGiorno, K.E.; Wood, L.D.; Goggins, M.; Hruban, R.H.; Chang, A.E.; et al. RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell 2015, 161, 1345–1360. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Navarro-Serer, B.; Jeong, Y.J.; Chianchiano, P.; Xia, L.; Luchini, C.; Veronese, N.; Dowiak, C.; Ng, T.; Trujillo, M.A.; et al. Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome. Cancer Res. 2020, 80, 2804–2817. [Google Scholar] [CrossRef]
- Boone, B.A.; Sabbaghian, S.; Zenati, M.; Marsh, J.W.; Moser, A.J.; Zureikat, A.H.; Singhi, A.D.; Zeh, H.J., III; Krasinskas, A.M. Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer: Pre-Op SMAD4 in PDA with Venous Invasion. J. Surg. Oncol. 2014, 110, 171–175. [Google Scholar] [CrossRef]
- Crane, C.H.; Varadhachary, G.R.; Yordy, J.S.; Staerkel, G.A.; Javle, M.M.; Safran, H.; Haque, W.; Hobbs, B.D.; Krishnan, S.; Fleming, J.B.; et al. Phase II Trial of Cetuximab, Gemcitabine, and Oxaliplatin Followed by Chemoradiation with Cetuximab for Locally Advanced (T4) Pancreatic Adenocarcinoma: Correlation of Smad4(Dpc4) Immunostaining with Pattern of Disease Progression. J. Clin. Oncol. 2011, 29, 3037–3043. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Cohen, C.; Little, J.V.; Sequeira, J.H.; Mosunjac, M.B.; Siddiqui, M.T. The utility of SMAD4 as a diagnostic immunohistochemical marker for pancreatic adenocarcinoma, and its expression in other solid tumors. Diagn. Cytopathol. 2007, 35, 644–648. [Google Scholar] [CrossRef]
- Matsuda, Y.; Esaka, S.; Suzuki, A.; Hamashima, Y.; Imaizumi, M.; Matsukawa, M.; Fujii, Y.; Aida, J.; Takubo, K.; Ishiwat, T.; et al. Abnormal immunolabelling of SMAD 4 in cell block specimens to distinguish malignant and benign pancreatic cells. Cytopathology 2019, 30, 201–208. [Google Scholar] [CrossRef]
- Wang, J.D.; Jin, K.; Chen, X.Y.; Lv, J.Q.; Ji, K.W. Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: A systematic review and meta-analysis. Oncotarget 2017, 8, 16704–16711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadj Bachir, E.; Poiraud, C.; Paget, S.; Stoup, N.; El Moghrabi, S.; Duchêne, B.; Jouy, N.; Bongiovanni, A.; Tardivel, M.; Weiswald, L.-B.; et al. A new pancreatic adenocarcinoma-derived organoid model of acquired chemoresistance to FOLFIRINOX: First insight of the underlying mechanisms. Biol. Cell. 2022, 114, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.M.; Mayhew, G.; Beebe, K.; Eisner, J.R.; Ladnier, D.; Collisson, E.A.; Matrisian, L.M. Abstract PO-002: Initial retrospective analysis of mechanisms of FOLFIRINOX resistance using clinical and molecular data from the Know Your Tumor (KYT) pancreatic ductal adenocarcinoma (PDAC) cohort. Cancer Res. 2021, 81 (Suppl. 22), PO-002. [Google Scholar] [CrossRef]
- Pishvaian, M.J.; Blais, E.M.; Brody, J.R.; Lyons, E.; DeArbeloa, P.; Hendifar, A.; Mikhail, S.; Chung, V.; Sahai, V.; Sohal, D.P.S.; et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: A retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 2020, 21, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.M.; Paik, S.; Hayes, D.F. Use of Archived Specimens in Evaluation of Prognostic and Predictive Biomarkers. JNCI J. Natl. Cancer Inst. 2009, 101, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
OS | PFS | MFS | |||||
---|---|---|---|---|---|---|---|
Variables | n = 59 | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
Sex, n (%) | |||||||
Male | 37 (62.71%) | 1 | 1 | 1 | |||
Female | 22 (37.29%) | 0.52 (0.25–1.07) | 0.06 | 0.63(0.34–1.18) | 0.14 | 0.70 (0.37–1.31) | 0.25 |
Age, mean (range), y | 62 (41–79) | 0.99 (0.96–1.03) | 0.87 1 | 1.02 (0.99–1.05) | 0.31 1 | 1.01 (0.98–1.04) | 0.41 1 |
CA19.9, mean (range), U/mL | 2437 (0–40,739) | 0.99 (0.99–1) | 0.27 1 | 0.99 (0.99–1.00002) | 0.26 1 | 0.99 (0.99–1) | 0.44 1 |
Year of surgery, median (range) | 2018 (2005–2021) | 0.99 (0.99–1) | 0.35 1 | 0.99 (0.9993–0.9998) | 0.001 1 | 0.99 (0.9994–0.9999) | 0.004 1 |
Resectability, n (%) | |||||||
Resectable | 14 (23.73%) | 1 | 1 | 1 | |||
Borderline | 25 (42.37%) | 1.19 (0.46–3.05) | 0.80 (0.35–1.82) | 0.78 (0.34–1.78) | |||
Locally advanced | 17 (28.81%) | 0.83 (0.32–2.19) | 0.86 (0.37–2.02) | 0.87 (0.37–2.04) | |||
Metastatic | 2 (3.39%) | 3.52 (0.58–21.40) | 1.22 (0.26–5.69) | 1.29 (0.27–6.05) | |||
Unknown | 1 (1.69%) | 0.68 | 0.81 | 0.82 | |||
Type of neoadjuvant therapy, n (%) | |||||||
FOLFIRINOX-based | 41 (69.49%) | 1 | 1 | 1 | |||
Gemcitabine-based | 16 (27.12%) | 1.6 (0.80–3.20) | 3.06 (1.61–5.81) | 3.01 (1.58–5.7) | |||
Other | 2 (3.39%) | 0.28 | 0.007 | 0.008 | |||
Adjuvant therapy, n (%) | |||||||
No | 7 (11.86%) | 1 | 1 | 1 | |||
Yes | 47 (79.66%) | 0.67 (0.25–1.76) | 1.04 (0.44–2.48) | 1.29 (0.27–6.04) | |||
Unknown | 5 (8.47%) | 0.45 | 0.92 | 0.57 | |||
Type of adjuvant therapy, n (%) | |||||||
Gemcitabine | 27 (45.76%) | 1 | 1 | 1 | |||
FOLFIRINOX | 18 (30.51%) | 0.72 (0.31–1.63) | 0.71 (0.37–1.45) | 0.75 (0.37–1.51) | |||
Other | 1 (1.69%) | ||||||
Unknown | 1 (1.69%) | 0.22 | 0.28 | 0.36 | |||
Histologic grade, n (%) | |||||||
Well-differentiated (G1) | 12 (20.34%) | 1 | 1 | 1 | |||
Moderately differentiated (G2) | 23 (38.98%) | 0.45 (0.50–1.47) | 1.99 (0.93–4.77) | 2.88 (1.07–7.78) | |||
Poorly differentiated (G3) | 17 (28.81%) | 2.88 (0.91–9.08) | 2.07 (0.82–5.24) | 2.93 (1.05–8.21) | |||
Unknown | 7 (11.86%) | 0.15 | 0.03 | 0.04 | |||
Size, mean (range), mm | 33 (6–80) | 1.03 (1.01–1.05) | 0.002 1 | 1.02 (1.005–1.04) | 0.01 1 | 1.02 (1.006–1.04) | 0.007 1 |
pT, n (%) | |||||||
pT1a | 0 (0%) | ||||||
pT1b | 2 (3.39%) | ||||||
pT1c | 10 (16.95%) | 1 | 1 | 1 | |||
pT2 | 29(49.15%) | ||||||
pT3 | 17 (28.81%) | 2.49 (0.89–6.94) | 2.11 (0.89–4.96) | 2.39 (0.94–6.02) | |||
pT4 | 1 (1.69%) | 6.23 (1.74–22.20) | 0.04 2 | 2.79 (1.13–6.90) | 0.06 2 | 3.78 (1.36–10.50) | 0.06 2 |
pN, n (%) | |||||||
pN0 | 24 (40.68%) | 1 | 1 | 1 | |||
pN+ | 35 (59.32%) | ||||||
pN1 | 20 (33.90%) | 1.68 (0.78–3.59) | 1.50 (0.74–3.06) | 1.44 (0.70–3.002) | |||
pN2 | 15 (25.42%) | 1.64 (0.67–3.98) | 0.28 | 3.16 (1.49–6.70) | 0.02 | 2.96 (1.40–6.28) | 0.04 |
Positive LN ratio, mean (range) | 0.10 (0–0.63) | 10.08 (0.86–118.04) | 0.09 1 | 252.42 (12.78–4986.16) | 0.003 1 | 275.36 (13.42–5649.54) | 0.0003 1 |
Lymphatic invasion, n (%) | |||||||
Negative | 27 (45.76%) | 1 | 1 | 1 | |||
Positive | 32 (54.24%) | 1.39 (0.71–2.71) | 0.33 | 1.68 (0.94–3.02) | 0.08 | 1.61 (0.89–2.92) | 0.12 |
Vascular invasion, n (%) | |||||||
Negative | 11 (18.64%) | 1 | 1 | 1 | |||
Positive | 48 (81.36%) | 1.47 (0.66–3.26) | 0.36 | 2.75 (1.37–5.50) | 0.02 | 1.99 (0.97–4.06) | 0.09 |
Perineural invasion, n (%) | |||||||
Negative | 12 (20.34%) | 1 | 1 | 1 | |||
Positive | 47 (79.66%) | 1.004 (0.45–2.22) | 0.99 | 1.24 (0.59–2.60) | 0.54 | 1.46 (0.68–3.15) | 0.29 |
Resection margin (RCP), n (%) | |||||||
Negative | 15 (25.42%) | 1 | 1 | 1 | |||
Positive | 44 (74.58%) | 1.16 (0.52–2.58) | 0.71 | 1.56 (0.75–3.24) | 0.22 | 1.84 (0.85–3.97) | 0.1 |
Histologic tumor regression score (CAP), n (%) | |||||||
Complete response (score 0) | 0 (0%) | 1 | 1 | 1 | |||
Near complete response (score 1) | 3 (5.08%) | 1.001 (0.23–4.30) | 1.02 (0.24–4.39) | 1.01 (0.24–4.33) | |||
Partial response (score 2) | 38 (64.41%) | 1.32 (0.28–6.28) | 2.30 (0.52–10.19) | 2.23 (0.50–9.82) | |||
Poor or no response (score 3) | 18 (30.51%) | 0.43 | 0.02 | 0.03 |
Variables | SMAD4 − | SMAD4 + | Fisher’s Exact Test or Chi2 Test (except n) |
---|---|---|---|
(n = 29) | (n = 30) | ||
Sex, n (%) | |||
Female | 10 (34.48%) | 12 (40%) | |
Male | 19 (65.52%) | 18 (60%) | 0.79 |
Age, mean (range), y | |||
64 (41–79) | 60 (42–75) | 0.73 1 | |
Size, mean (range), mm | |||
36 (12–80) | 31 (6–64) | 0.50 1 | |
CA19.9, mean (range), U/mL | |||
1243.39 (1.91–7977) | 3488.36 (0–40,738.80) | 0.17 1 | |
Histologic grade, n (%) | |||
Well-differentiated (G1) | 5 (17.24%) | 7 (23.33%) | |
Moderately differentiated (G2) | 13 (44.83%) | 10 (33.33%) | |
Poorly differentiated (G3) | 8 (27.59%) | 9 (30%) | |
Unknown | 3 (10.34%) | 4 (13.33%) | 0.68 |
pT, n (%) | |||
pT1b | 0 (0%) | 2 (6.67%) | |
pT1c | 5 (17.24%) | 5 (16.67%) | |
pT2 | 15 (51.72%) | 14 (46.67%) | |
pT3 | 8 (27.59%) | 9 (30%) | |
pT4 | 1 (3.45%) | 0 (0%) | |
Unknown | 0 (0%) | 0 (0%) | 0.75 2 |
pN, n (%) | |||
pN0 | 8 (27.59%) | 16 (53.33%) | |
pN+ | 21 (72.41%) | 14 (46.67%) | |
pN1 | 11(37.93%) | 9 (30%) | |
pN2 | 10 (34.48%) | 5 (16.67%) | |
Unknown | 0 (0%) | 0 (0%) | 0.10 |
Positive LN ratio, mean (range) | 0.13 (0–0.65) | 0.07 (0–0.35) | 0.03 1 |
Lymphatic invasion, n (%) | |||
Positive | 16 (55.17%) | 11 (36.67%) | |
Negative | 13 (44.83%) | 19 (63.33%) | 0.19 |
Vascular invasion, n (%) | |||
Positive | 7 (24.14%) | 4 (13.33%) | |
Negative | 22 (75.86%) | 26 (86.67%) | 0.33 |
Perineural invasion, n (%) | |||
Positive | 24 (82.76%) | 23 (76.67%) | |
Negative | 5 (17.24%) | 7 (23.33%) | 0.75 |
Resection margin (RCP), n (%) | |||
Positive | 22 (75.86%) | 22 (73.33%) | |
Negative | 7 (24.14%) | 8 (26.67%) | >0.99 |
Histologic tumor regression score (CAP), n (%) | |||
Complete response (score 0) | 0 (0%) | 0 (0%) | |
Near complete response (score 1) | 0 (0%) | 3 (10.00%) | |
Partial response (score 2) | 18 (62.07%) | 20 (66.67%) | |
Poor or no response (score 3) | 11 (37.93%) | 7 (23.33%) | NA 3 |
Model p-Value | Variables | HR | 95% CI | p-Value |
---|---|---|---|---|
Overall survival p = 0.003 | Sex (male vs. female) 1 | 0.50 | [0.24–1.05] | 0.07 |
Tumor size (in mm) | 1.03 | [1.009–1.05] | 0.004 | |
SMAD4 status 2 | 0.62 | [0.30–1.26] | 0.19 | |
Progression-free survival p < 0.00001 | Type of NAT (FOLFIRINOX-based vs. Gemcitabine based) 3 | 7.70 | [3.16–18.77] | 0.000007 |
pN (pN0–1 vs. pN2) 4 | 2.90 | [1.35–6.20] | 0.006 | |
Histologic grade (G1–2 vs. G3) 5 | 1.55 | [0.78–3.09] | 0.21 | |
Tumor regression score (CAP score 1–2 vs. 3) 6 | 1.80 | [0.91–3.56] | 0.09 | |
SMAD4 status 2 | 0.72 | [0.35–1.50] | 0.37 | |
Metastasis-free survival p = 0.00001 | Type of NAT (FOLFIRINOX-based vs. Gemcitabine based) 3 | 5.49 | [2.44–12.31] | 0.00004 |
pN (pN0–1 vs. pN2) 4 | 3.43 | [1.59–7.41] | 0.002 | |
pT (pT1 vs. pT2-3-4) 7 | 4.67 | [1.45–15.05] | 0.01 | |
Tumor regression score (CAP score 1 vs. 2–3) 8 | 0.13 | [0.02–0.95] | 0.04 | |
SMAD4 status 2 | 0.87 | [0.44–1.74] | 0.71 |
Model p-Value | Variables | HR | 95% CI |
---|---|---|---|
Progression-free survival p = 0.001 | Gemcitabine-based NAT/SMAD4− | 1 | |
Gemcitabine-based NAT/SMAD4+ | 1.60 | [0.57–4.43] | |
FOLFIRINOX-based NAT/SMAD4+ | 0.27 | [0.12–0.60] | |
FOLFIRINOX-based NAT/SMAD4− | 0.68 | [0.30–1.53] | |
Metastasis-free survival p = 0.0008 | Gemcitabine-based NAT/SMAD4− | 1 | |
Gemcitabine-based NAT/SMAD4+ | 1.86 | [0.67–5.20] | |
FOLFIRINOX-based NAT/SMAD4+ | 0.27 | [0.12–0.61] | |
FOLFIRINOX-based NAT/SMAD4− | 0.71 | [0.31–1.58] |
Model p-Value | Variables | HR | 95% CI | p-Value |
---|---|---|---|---|
Disease-free survival p < 0.00001 | Gemcitabine-based NAT/SMAD4− | 1 | ||
Gemcitabine-based NAT/SMAD4+ | 1.31 | [0.46–3.71] | 0.61 | |
FOLFIRINOX-based NAT/SMAD4+ | 0.10 | [0.03–0.29] | 0.00002 | |
FOLFIRINOX-based NAT/SMAD4− | 0.21 | [0.07–0.60] | 0.004 | |
pN (pN0–1 vs. pN2) 1 | 2.65 | [1.23–5.72] | 0.01 | |
Histologic grade (G1–2 vs. G2) 2 | 1.43 | [0.71–2.86] | 0.31 | |
Tumor regression score (CAP score 1–2 vs. 3) 3 | 2.21 | [1.11–4.38] | 0.02 | |
Metastasis-free survival p = 0.00001 | Gemcitabine-based NAT/SMAD4− | 1 | ||
Gemcitabine-based NAT/SMAD4+ | 1.02 | [0.35–2.95] | 0.97 | |
FOLFIRINOX-based NAT/SMAD4+ | 0.15 | [0.06–0.39] | 0.00009 | |
FOLFIRINOX-based NAT/SMAD4− | 0.21 | [0.07–0.61] | 0.004 | |
pN (pN0–1 vs. pN2) 1 | 3.11 | [1.36–7.11] | 0.007 | |
pT (pT1 vs. pT2-3-4) 4 | 5.07 | [1.52–16.92] | 0.008 | |
Tumor regression score (CAP score 1 vs. 2–3) 5 | 0.11 | [0.02–0.83] | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racu, M.-L.; Bernardi, D.; Chaouche, A.; Zindy, E.; Navez, J.; Loi, P.; Maris, C.; Closset, J.; Van Laethem, J.-L.; Decaestecker, C.; et al. SMAD4 Positive Pancreatic Ductal Adenocarcinomas Are Associated with Better Outcomes in Patients Receiving FOLFIRINOX-Based Neoadjuvant Therapy. Cancers 2023, 15, 3765. https://doi.org/10.3390/cancers15153765
Racu M-L, Bernardi D, Chaouche A, Zindy E, Navez J, Loi P, Maris C, Closset J, Van Laethem J-L, Decaestecker C, et al. SMAD4 Positive Pancreatic Ductal Adenocarcinomas Are Associated with Better Outcomes in Patients Receiving FOLFIRINOX-Based Neoadjuvant Therapy. Cancers. 2023; 15(15):3765. https://doi.org/10.3390/cancers15153765
Chicago/Turabian StyleRacu, Marie-Lucie, Dana Bernardi, Aniss Chaouche, Egor Zindy, Julie Navez, Patrizia Loi, Calliope Maris, Jean Closset, Jean-Luc Van Laethem, Christine Decaestecker, and et al. 2023. "SMAD4 Positive Pancreatic Ductal Adenocarcinomas Are Associated with Better Outcomes in Patients Receiving FOLFIRINOX-Based Neoadjuvant Therapy" Cancers 15, no. 15: 3765. https://doi.org/10.3390/cancers15153765
APA StyleRacu, M.-L., Bernardi, D., Chaouche, A., Zindy, E., Navez, J., Loi, P., Maris, C., Closset, J., Van Laethem, J.-L., Decaestecker, C., Salmon, I., & D’Haene, N. (2023). SMAD4 Positive Pancreatic Ductal Adenocarcinomas Are Associated with Better Outcomes in Patients Receiving FOLFIRINOX-Based Neoadjuvant Therapy. Cancers, 15(15), 3765. https://doi.org/10.3390/cancers15153765