Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Study Quality Assessment
2.5. Data Synthesis
Ref | CDSS Description | Sample Size | Modality | Brain Tumour Types | Techniques Used | Accuracy | Outcome |
---|---|---|---|---|---|---|---|
[9] | Data-driven prognostic support | 42 | Fluid-attenuated inversion recovery (FLAIR) or T2-weighted MRI | Diffuse low-grade gliomas | Linear and exponential mathematical models with coefficient of determination R2 and t-test to evaluate quality of model predictions | 89.00% | Notifies clinicians of changes in tumour diameter and whether to continue/stop treatment |
[10] | Diagnostic support for the detection and classification of tumours | Benign: training 75, testing 65 Malignant: training 75, testing 65 | MRI | All | Denoising by the genetic median filter, segmentation by hierarchical fuzzy clustering, feature extraction by GLCM and Gabor feature, feature selection by lion optimization, and classifier by BSVM | 97.69% | Analyses size and type of tumour, stage of cancer |
[11] | Diagnostic support that identifies and grades tumours in terms of their severity | Hospital: 134, dataset: 80 | T1-weighted, T2-weighted, T1 post-contrast and FLAIR MRI | Low-grade and high-grade gliomas | MRI pulse fusion, segmentation by adaptive thresholding, feature extraction by run length matrix, identification and classification by NB classifier | 96.47% | Detects and specifies tumours |
[12] | Diagnostic support is not integrated but ready to be used at local and remote level | 30 | 3D T1-weighted MRI | All | Segmentation by semi-automated 3D segmentation method, feature extraction by BoW, classification by SVM | 99.00% | Provides tumour detection, segmentation and 3D visualisation |
[13] | Diagnostic support for detection and classification of tumours | 48 | T1 post-contrast MRI | Glioblastoma and metastases | Feature extraction by Student’s t-test and correlation analysis; classifiers used QDA, NB, k-NN, SVM and NNW | 97.92% | Automatically differentiates between glioblastoma multiforme and solitary metastasis |
[14] | A multi-stage classifier for MR spectra of brain tumours developed as part of a DSS | 81 astrocytoma, 32 metastases, 37 meningioma, 6 oligodendroglioma, 6 lymphoma, 5 primitive neuroectodermal tumour, 4 schwannoma, 4 haemangioblastomas and 14 healthy | 1H MRS | All | 3 diagnostic classifiers used: LDA, decision trees, and k-NN | 99.30% | Provides accurate predictions and reduces classification errors |
[15] | Diagnostic support for the detection and classification of tumours | - | 1H MRS | All | Pattern recognition and data visualisation by LDA | 90.00% | Non-invasive tumour diagnosis and grading |
[16] | Diagnostic support and qualitative evaluation of Curiam BT | 55 | 1H MRS | All | Fisher LDA and Peak Integration | >83.00% | Classification and grading of brain tumours |
[17] | Diagnostic support: FASMA for brain tumour classification | 126 | T2-weighted, T1 post-contrast MRI/1H MRS, DWI, DTI, PWI | Gliomas, solitary metastases, atypical meningiomas | SVM, LDA, k-NN and NB | >80.00% | Used advanced MRI techniques for brain tumour classification |
[18] | Childhood cancer diagnosis by MIROR | 48 | T1-weighted, T2-weighted MRI/1H MRS, DWI | All | SVM and k-NN | 89% and 93% | Performs non-region-specific quantitative analysis of brain imaging data |
[19] | Diagnostic support for paediatric brain tumour characterisation (part of HealthAgents) | 33 | 1H MRS | Pilocytic astrocytoma, ependymoma, medulloblastoma | Principal component analysis, linear discriminant analysis on MRS data | 94.00% | Categorises children’s brain tumours |
[20] | Diagnostic support for brain tumour diagnosis and prognosis (part of HealthAgents) | 182 | MRS, ex vivo high-resolution magic angle spinning (HR-MAS) | All | LDA, SVM and LSVM | >90.00% | Diagnosis and management brain tumours |
[21] | Diagnostic support automatic classification framework as a part of HealthAgents | - | MRS | All | Classifiers: LDA, KNN, LS-SVM | >80.00% | Classification of brain tumours |
[22] | INTERPRET | - | T1 post-contrast, MRS | All | short, long and concatenated short + long TE | 89.00% | Diagnosis and grading of tumours |
[23] | Diagnostic support and evaluation of INTERPRET 2.0 | 38 | T1 Spin Echo (SE), axial T2 SE, axial FLAIR, axial T1 SE, axial T1 post-contrast, coronal T1-post-contrast and DWI | All | short, long and concatenated short + long TE | 87.00% | Classification of brain tumours |
[24] | Diagnostic support and evaluation of INTERPRET DSS v3 | From INTERPRET: 266 From IDI-Bellvitge: 70 | T1-weighted, T2-weighted, 1H MRS | All | LDA-based classifiers: short, long and concatenated short + long TE | >69.84% | Categorisation of MRS from abnormal brain mass |
[25] | Diagnostic support for the detection and classification of tumours developed by INTERPRET project | 334 | Axial T2-weighted, axial T1-weighted pre-contrast, axial T1-weighted post-contrast MRI, 1H MRS | All | LDA-classifier | >90.00% | Prediction of tumour classes and grading of tumours |
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. CDSSs Used in the Diagnosis and Prognosis of Brain Tumours
3.3.1. Diagnostic Support Systems
3.3.2. Prognostic Support Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BSVM | boosting support vector machine |
CDSS | clinical decision support system |
CT | computed tomography |
DLGG | diffuse low-grade glioma |
DSS | decision support system |
DTI | diffusion tensor imaging |
DWI | diffusion weighted imaging |
FASMA | fast spectroscopic multiple analysis |
GLCM | gray-level co-occurrence matrix |
HGG | high-grade glioma |
HR-MAS | high-resolution magic angle spinning nuclear magnetic resonance |
INTERPRET | international network for pattern recognition of tumours using MR |
k-NN | k-nearest neighbors algorithm |
LDA | linear discriminant analysis |
LGG | low-grade glioma |
LTE | long echo time |
MeSH | medical subject headings |
MIROR | modular medical image region of interest analysis tool and repository |
MRI | magnetic resonance imaging |
MR | magnetic resonance |
MRS | magnetic resonance spectroscopy |
NB | naïve Bayes |
NNW | neural network |
PACS | picture archiving and communication system |
PET | positron emission tomography |
PRISMA | preferred reporting items for systematic reviews and meta-analyses |
PWI | perfusion weighted imaging |
QDA | quadratic discriminant analysis |
STE | short echo time |
SVM | support vector machine |
TMZ | Temozolomide |
WHO | World Health Organization |
References
- Khan, M.A.; Khan, A.; Alhaisoni, M.; Alqahtani, A.; Alsubai, S.; Alharbi, M.; Malik, N.A.; Damaševičius, R. Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst. Technol. 2022, 33, 572–587. [Google Scholar] [CrossRef]
- Özkaraca, O.; Bağrıaçık, O.İ.; Gürüler, H.; Khan, F.; Hussain, J.; Khan, J.; Laila, U.E. Multiple brain tumor classification with dense CNN architecture using brain MRI images. Life 2023, 13, 349. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Ullah, Z.; Gwak, J. MRI-based brain tumor classification using ensemble of deep features and Machine Learning Classifiers. Sensors 2021, 21, 2222. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for Success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Tsolaki, E.; Kousi, E.; Svolos, P.; Kapsalaki, E.; Theodorou, K.; Kappas, C.; Tsougos, I. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques. World J. Radiol. 2014, 6, 72–81. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar] [CrossRef]
- Keshav, S. How to read a paper. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 83–84. [Google Scholar] [CrossRef]
- Abdallah, M.B.; Blonski, M.; Wantz-Mezieres, S.; Gaudeau, Y.; Taillandier, L.; Moureaux, J.M.; Darlix, A.; de Champfleur, N.M.; Duffau, H. Data-driven predictive models of diffuse low-grade gliomas under chemotherapy. IEEE J. Biomed. Health Inform. 2019, 23, 38–46. [Google Scholar] [CrossRef]
- Arasi, P.R.; Suganthi, M. A clinical support system for brain tumor classification using soft computing techniques. J. Med. Syst. 2019, 43, 144. [Google Scholar] [CrossRef]
- Gupta, N.; Bhatele, P.; Khanna, P. Identification of gliomas from brain MRI through adaptive segmentation and run length of centralized patterns. J. Comput. Sci. 2017, 25, 213–220. [Google Scholar] [CrossRef]
- Mehmood, I.; Sajjad, M.; Muhammad, K.; Shah, S.I.; Sangaiah, A.K.; Shoaib, M.; Baik, S.W. An efficient computerized decision support system for the analysis and 3D visualization of brain tumor. Multimed. Tools Appl. 2019, 78, 12723–12748. [Google Scholar] [CrossRef]
- Yang, G.; Jones, T.L.; Barrick, T.R.; Howe, F.A. Discrimination between glioblastoma multiforme and solitary metastasis using morphological features derived from the p:q tensor decomposition of diffusion tensor imaging. NMR Biomed. 2014, 27, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Minguillón, J.; Tate, A.R.; Arús, C.; Griffiths, J.R. Classifier combination for in vivo magnetic resonance spectra of brain tumours. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2002; Volume 3, pp. 282–292. [Google Scholar] [CrossRef] [Green Version]
- Underwood, J.; Tate, A.R.; Luckin, R.; Majós, C.; Capdevila, A.; Howe, F.; Griffiths, J.; Anús, C. A prototype decision support system for MR spectroscopy-assisted diagnosis of brain tumours. In MEDINFO; IOS Press: Amsterdam, The Netherlands, 2001; pp. 561–565. [Google Scholar] [CrossRef]
- Sáez, C.; Martí-Bonmatí, L.; Alberich-Bayarri, Á.; Robles, M.; García-Gómez, J.M. Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on sv 1H MRS: Evaluation as an additional information procedure for novice radiologists. Comput. Biol. Med. 2014, 45, 26–33. [Google Scholar] [CrossRef]
- Tsolaki, E.; Svolos, P.; Kousi, E.; Kapsalaki, E.; Fezoulidis, I.; Fountas, K.; Theodorou, K.; Kappas, C.; Tsougos, I. Fast Spectroscopic Multiple Analysis (FASMA) for Brain Tumor Classification: A clinical decision support system utilizing multi-parametric 3T mr data. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1149–1166. [Google Scholar] [CrossRef]
- Zarinabad, N.; Meeus, E.M.; Manias, K.; Foster, K.; Peet, A. Automated Modular Magnetic Resonance Imaging Clinical Decision Support System (MIROR): An application in pediatric cancer diagnosis (preprint). JMIR Med. Inform. 2018, 6, e30. [Google Scholar] [CrossRef]
- Gibb, A.; Easton, J.; Davies, N.; Sun, Y.; MacPherson, L.; Natarajan, K.; Arvanitis, T.; Peet, A. The development of a graphical user interface, functional elements and classifiers for the non-invasive characterization of childhood brain tumours using magnetic resonance spectroscopy. Knowl. Eng. Rev. 2011, 26, 353–363. [Google Scholar] [CrossRef] [Green Version]
- González-Vélez, H.; Mier, M.; Julià-Sapé, M.; Arvanitis, T.N.; García-Gómez, J.M.; Robles, M.; Lewis, P.H.; Dasmahapatra, S.; Dupplaw, D.; Peet, A.; et al. HealthAgents: Distributed multi-agent brain tumor diagnosis and prognosis. Appl. Intell. 2009, 30, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Sáez, C.; García-Gómez, J.M.; Vicente, J.; Tortajada, S.; Luts, J.; Dupplaw, D.; Van Huffel, S.; Robles, M. A generic and Extensible Automatic Classification Framework applied to brain tumour diagnosis in HealthAgents. Knowl. Eng. Rev. 2011, 26, 283–301. [Google Scholar] [CrossRef]
- Julià-Sapé, M.; Griffiths, J.R.; Tate, R.A.; Howe, F.A.; Acosta, D.; Postma, G.; Underwood, J.; Majós, C.; Arús, C. Classification of brain tumours from mr spectra: The interpret collaboration and its outcomes. NMR Biomed. 2015, 29, 371. [Google Scholar] [CrossRef]
- Julià-Sapé, M.; Majós, C.; Camins, À.; Samitier, A.; Baquero, M.; Serrallonga, M.; Doménech, S.; Grivé, E.; Howe, F.A.; Opstad, K.; et al. Multicentre evaluation of the interpret decision support system 2.0 for Brain tumour classification. NMR Biomed. 2014, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ruiz, A.; Julià-Sapé, M.; Mercadal, G.; Olier, I.; Majós, C.; Arús, C. The interpret decision-support system version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinform. 2010, 11, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, A.R.; Underwood, J.; Acosta, D.M.; Julià-Sapé, M.; Majós, C.; Moreno-Torres, À.; Howe, F.A.; van der Graaf, M.; Lefournier, V.; Murphy, M.M.; et al. Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 2006, 19, 411–434. [Google Scholar] [CrossRef]
- Khairat, S.; Marc, D.; Crosby, W.; Al Sanousi, A. Reasons for physicians not adopting clinical decision support systems: Critical Analysis (preprint). JMIR Med. Inform. 2018, 6, e24. [Google Scholar] [CrossRef]
- Belard, A.; Buchman, T.; Forsberg, J.; Potter, B.K.; Dente, C.J.; Kirk, A.; Elster, E. Precision diagnosis: A view of the clinical decision support systems (CDSS) landscape through the lens of critical care. J. Clin. Monit. Comput. 2017, 31, 261–271. [Google Scholar] [CrossRef]
- Lu, S.-C.; Brown, R.J.; Michalowski, M. A clinical decision support system design framework for nursing practice. ACI Open 2021, 5, e84–e93. [Google Scholar] [CrossRef]
- Mazo, C.; Kearns, C.; Mooney, C.; Gallagher, W.M. Clinical Decision Support Systems in breast cancer: A systematic review. Cancers 2020, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Schreier, D.J.; Barreto, E.F. Clinical decision support tools for reduced and changing kidney function. Kidney360 2022, 3, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
Study Design | Number of Papers | Percentage of Papers (%) |
---|---|---|
Prospective cohort study 1 | 6 | 35 |
Retrospective study | 1 | 6 |
Registry-based | 10 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, T.; Pournik, O.; Lim Choi Keung, S.N.; Arvanitis, T.N. Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancers 2023, 15, 3523. https://doi.org/10.3390/cancers15133523
Mukherjee T, Pournik O, Lim Choi Keung SN, Arvanitis TN. Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancers. 2023; 15(13):3523. https://doi.org/10.3390/cancers15133523
Chicago/Turabian StyleMukherjee, Teesta, Omid Pournik, Sarah N. Lim Choi Keung, and Theodoros N. Arvanitis. 2023. "Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review" Cancers 15, no. 13: 3523. https://doi.org/10.3390/cancers15133523
APA StyleMukherjee, T., Pournik, O., Lim Choi Keung, S. N., & Arvanitis, T. N. (2023). Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancers, 15(13), 3523. https://doi.org/10.3390/cancers15133523