The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules
Abstract
:Simple Summary
Abstract
1. Introduction
Thyroid Cards
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Prevalence
3.2. Baseline Characteristics
3.3. Cancer Type and Correlation with Clinicopathological Characteristics
3.4. Patient Management
3.5. Patient Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BRAF | v-raf murine sarcoma viral oncogene homolog B1 |
DSV | diffuse sclerosing variant |
FTC | follicular cell carcinoma |
HCC | Hürthle cell carcinoma |
IGF2BP3 | insulin-like growth factor 2 mRNA-binding protein 3 |
MAPK | mitogen-activated protein kinase |
MEK | mitogen-activated protein kinase kinase |
NIFTP | noninvasive follicular thyroid neoplasm with papillary-like nuclear features |
PI3K | phosphatidylinositol 3-kinase |
PTC | papillary thyroid cancer |
RET | rearranged during transfection |
THADA | thyroid adenoma associated |
USFNA | ultrasound-guided fine needle aspiration |
References
- Furuya-Kanamori, L.; Bell, K.J.L.; Clark, J.; Glasziou, P.; Doi, S.A.R. Prevalence of Differentiated Thyroid Cancer in Autopsy Studies Over Six Decades: A Meta-Analysis. J. Clin. Oncol. 2016, 34, 3672–3679. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Ohori, N.P.; Hodak, S.P.; Carty, S.E.; LeBeau, S.O.; Ferris, R.L.; Yip, L.; Seethala, R.R.; Tublin, M.E.; Stang, M.T.; et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 2011, 96, 3390–3397. [Google Scholar] [CrossRef] [Green Version]
- Danese, D.; Sciacchitano, S.; Farsetti, A.; Andreoli, M.; Pentecorvi, A. Diagnostic Accuracy of Conventional Versus Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Thyroid 1998, 8, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Mahar, S.A.; Husain, A.; Islam, N. Fine needle aspiration cytology of thyroid nodule: Diagnostic accuracy and pitfalls. J. Ayub Med. Coll. 2006, 18, 26–29. [Google Scholar]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Salas, S.; Martínez, J.R.; Urra, S.; Domínguez, J.M.; Mena, N.; Uslar, T.; Lagos, M.; Henríquez, M.; González, H.E. Genetic testing for indeterminate thyroid cytology: Review and meta-analysis. Endocr. Relat. Cancer 2018, 25, R163–R177. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patient with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Nylén, C.; Mechera, R.; Maréchal-Ross, I.; Tsang, V.; Chou, A.; Gill, A.J.; Clifton-Bligh, R.J.; Robinson, B.G.; Sywak, M.S.; Sidhu, S.B.; et al. Molecular Markers Guiding Thyroid Cancer Management. Cancers 2020, 12, 2164. [Google Scholar] [CrossRef]
- Durante, C.; Costante, G.; Lucisano, G.; Bruno, R.; Meringolo, D.; Paciaroni, A.; Puxeddu, E.; Torlontano, M.; Tumino, S.; Attard, M.; et al. The natural history of benign thyroid nodules. JAMA 2015, 313, 926–935. [Google Scholar] [CrossRef]
- Al-Kurd, A.; Maree, A.; Mizrahi, I.; Kaganov, K.; Weinberger, J.M.; Mali, B.; Mazeh, H.; Hirshoren, N. An Institutional Analysis of Malignancy Rate in Bethesda III and IV Nodules of the Thyroid. Am. J. Otolaryngol. Head Neck Surg. 2019, 2, 1034. [Google Scholar]
- Ho, A.S.; Sarti, E.E.; Jain, K.S.; Wang, H.; Nixon, I.J.; Shaha, A.R.; Shah, J.P.; Kraus, D.H.; Ghossein, R.; Fish, S.A.; et al. Malignancy Rate in Thyroid Nodules Classified as Bethesda Category III (AUS/FLUS). Thyroid 2014, 24, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Bayrak, B.Y.; Eruyar, A.T. Malignancy rates for Bethesda III and IV thyroid nodules: A retrospective study of the correlation between fine-needle aspiration cytology and histopathology. BMC Endocr. Disord. 2020, 20, 48. [Google Scholar] [CrossRef] [Green Version]
- Stephen, J.K.; Chitale, D.; Narra, V.; Chen, K.M.; Sawhney, R.; Worsham, M.J. DNA methylation in thyroid tumorigenesis. Cancers 2011, 3, 1732–1743. [Google Scholar] [CrossRef]
- Cavaco, D.; Martin, A.F.; Cabrera, R.; Vilar, H.; Leite, V. Diffuse sclerosing variant of papillary thyroid carcinoma: Outcomes of 33 cases. Eur. Thyroid J. 2022, 11, e210020. [Google Scholar] [CrossRef]
- Vuong, H.G.; Kondo, T.; Phan, T.Q.; Oishi, N.; Mochizuki, K.; Nakazawa, T.; Hassell, L.; Katoh, R. Prognostic significance of diffuse sclerosing variant papillary thyroid carcinoma: A systematic review and meta-analysis. Eur. J. Endocrinol. 2017, 176, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Stransky, N.; Cerami, E.; Schalm, S.; Kim, J.L.; Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 2014, 5, 4846. [Google Scholar] [CrossRef] [Green Version]
- Nikiforov, Y.E.; Carty, S.E.; Chiosea, S.I.; Coyne, C.; Duvvuri, U.; Ferris, R.L.; Gooding, W.E.; Hodak, S.P.; LeBeau, S.O.; Ohori, N.P.; et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014, 120, 3627–3634. [Google Scholar] [CrossRef]
- Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; et al. The Cancer Genome Atlas Research Network, Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Giordano, T.J.; Haugen, B.R.; Sherman, S.I.; Shah, M.H.; Caoili, E.M.; Koenig, R.J. Pioglitazone Therapy of PAX8-PPARγ Fusion Protein Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2018, 103, 1277–1281. [Google Scholar] [CrossRef]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.; Gawel, D.; Godlewska, M. Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update. Int. J. Mol. Sci. 2021, 22, 11829. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Ciampi, R.; Elisei, R. A Comprehensive Overview of the Role of the RET Proto-Oncogene in Thyroid Carcinoma. Nat. Rev. Endocrinol. 2016, 12, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Pozzo, A.; Sisdelli, L.; Cordioli, M.I.V.; Vaisman, F.; Caria, P.; Mai, S.; Cerutti, J.M. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers 2020, 12, 3146. [Google Scholar] [CrossRef]
- Ciampi, R.; Nikiforov, Y.E. RET/PTC Rearrangements and BRAF Mutations in Thyroid Tumorigenesis. Endocrinology 2007, 148, 936–941. [Google Scholar] [CrossRef]
- Khan, M.S.; Qadri, Q.; Makhdoomi, M.J.; Wani, M.A.; Malik, A.A.; Nihaz, M.; Masoodi, S.R.; Andrabi, K.I.; Ahmad, R.; Mufassar, S. RET/PTC Gene Rearrangements in Thyroid Carcinogenesis: Assessment and Clinico-Pathological Correlations. Pathol. Oncol. Res. 2020, 26, 507–513. [Google Scholar] [CrossRef]
- Pacini, F.; Elisei, R.; Romei, C.; Pinchera, A. RET proto-oncogene mutations in thyroid carcinomas: Clinical relevance. J. Endocrinol. Investig. 2000, 23, 328–338. [Google Scholar] [CrossRef]
- Zhang, X.; Su, X.; Chen, W.C.; Li, Y.; Yang, Z.Y.; Deng, W.Z.; Deng, T.C.; Yang, A.K. RET/ PTC rearrangement affects multifocal formation of papillary thyroid carcinoma. Chin. J. Otorhinolaryngol. Head Neck Surg. 2016, 52, 435–439. [Google Scholar]
- Guerra, A.; Zeppa, P.; Bifulco, M.; Vitale, M. Concomitant BRAF(V600E) mutation and RET/PTC rearrangement is a frequent occurrence in papillary thyroid carcinoma. Thyroid 2014, 24, 254–259. [Google Scholar] [CrossRef]
- Panebiano, F.; Kelly, L.M.; Liu, P.; Zhong, S.; Dacic, S.; Wang, X.; Singhi, A.D.; Dhir, R.; Chiosea, S.I.; Kuan, S.-F.; et al. Thada Fusion is a Mechanism of IGF2BP3 Activation and IGF1R Signaling in Thyroid Cancer. Proc. Natl. Acad. Sci. USA 2017, 114, 2307–2312. [Google Scholar] [CrossRef] [Green Version]
- Flanigan, S.A.; Pitts, T.M.; Newton, T.P.; Kulikowski, G.N.; Tn, A.C.; McManus, M.C.; Spreafico, A.; Kachaeva, M.I. Overcoming IGF1R/IR resistance through inhibition of MEK signaling in colorectal cancer models. Clin. Cancer Res. 2013, 19, 6219–6229. [Google Scholar] [CrossRef] [Green Version]
- Rippe, V.; Drieschner, N.; Meiboom, M.; Escobar, H.M.; Bonk, U.; Belge, G.; Bullerdiek, J. Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene 2003, 22, 6111–6114. [Google Scholar] [CrossRef] [Green Version]
- Kloth, L.; Belge, G.; Burchardt, K.; Loeschke, S.; Wosniok, W.; Fu, X.; Nimzyk, R.; Mohamed, S.A.; Drieschner, N.; Rippe, V.; et al. Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue. BMC Clin. Pathol. 2011, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Marotta, V.; Guerra, A.; Sapio, M.R.; Vitale, M. RET/PTC Rearrangement in Benign and Malignant Thyroid Diseases: A clinical standpoint. Eur. J. Endocrinol. 2011, 165, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Morariu, E.M.; McCoy, K.L.; Chiosea, S.I.; Nikitski, A.V.; Manroa, P.; Nikiforova, M.N.; Nikiforov, Y.E. Clinicopathologic Characteristics of Thyroid Nodules Positive for the THADA-IGF2BP3 Fusion on Preoperative Molecular Analysis. Thyroid 2021, 31, 1212–1218. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Balock, Z.W.; Basolo, F.; Thompson, L.D.R.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016, 2, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Kopczyńska, E.; Kwapisz, J.; Junik, R.; Tyrakowski, T. Cellular tumor markers in thyroid cancer. Pol. Merkur. Lekarski. 2007, 22, 295–299. [Google Scholar]
Baseline Characteristics | ||||||||
---|---|---|---|---|---|---|---|---|
Mutation | n | Mean Age (Years) | Gender (% Female) | FNA Bethesda Score Distribution | Final Pathology Size (cm) | |||
III | IV | V | VI | |||||
THADA/IGF2BP3 | 7 | 51.7 | 71% | 4 | 3 | 0 | 0 | 2.06 (1–3.6) |
RET/PTC | 5 | 38.7 | 100% | 0 | 0 | 1 | 4 | 1.15 (0.7–1.8) |
THADA/IGF2BP3 Fusion | Patient | Age (Years) | Gender | Bethesda | Pathology Size (cm) | Procedure | TNM | Histology | Variant | Lymph Node Metastasis | Positive LN/LN Examined | Positive Central LN/Central LN Examined | Extranodal Spread | Extrathyroidal Extension | Lymphovascular Invasion | Perineural Invasion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 64 | Male | 4 | 1.3 | Hemi/subtotal thyroidectomy | T1bN0a | Papillary Ca | Follicular | Negative | 0/2 | - | No | No | No | No | |
2 | 53 | Female | 3 | 1.9 | Hemi/subtotal thyroidectomy | T1bN0a | Papillary Ca | Follicular | Negative | 0/2 | - | No | No | No | No | |
3 | 62 | Female | 4 | 1.2 | Hemi/subtotal thyroidectomy | T1bN0a | Papillary Ca | Follicular | Negative | 0/1 | - | No | No | No | No | |
4 | 48 | Female | 3 | 3.4 | Hemi/subtotal thyroidectomy | T2N0a | Papillary Ca | Follcicular | Negative | 0/1 | - | No | Yes (focal) | No | No | |
5 | 47 | Male | 4 | 1.0 | Hemi/subtotal thyroidectomy | - | NIFTP | - | Negative | 0/6 | 0/2 | No | No | No | No | |
6 | 47 | Female | 3 | 2.0 | Hemi/subtotal thyroidectomy | T1bN0a | Papillary Ca | Follicular | Negative | 0/1 | - | No | No | No | No | |
7 | 41 | Female | 3 | 3.6 | Hemi/subtotal thyroidectomy | - | NIFTP | - | Negative | 0/1 | - | No | No | No | No | |
RET/PTC fusion | ||||||||||||||||
1 | 46 | Female | 6 | 1.8 | Total Thyroidectomy | T1bN1a | Papillary Ca | Classical | Positive | 1/3 | 0/1 | No | No | No | No | |
2 | 38 | Female | 6 | 0.7 | Total Thyroidectomy | T1bN1a | Papillary Ca | DSV | Positive | 4/5 | 3/4 | No | Yes (minimal) | Yes (extensive) | No | |
3 | 31 | Female | 6 | 0.9 | Total Thyroidectomy | T1bN1a | Papillary Ca | DSV | Positive | 1/2 | 0/1 | No | No | Yes (extensive) | No | |
4 | 34 | Female | 6 | 1.2 | Total Thyroidectomy | T1bN1a | Papillary Ca | DSV | Positive | 4/4 | 2/2 | Yes | No | Yes | No | |
5 | 57 | Female | 5 | 1.2 | Hemi/subtotal Thyroidectomy | T1bN0a | Papillary Ca | Classical | Negative | 0/1 | - | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tali, G.; Payne, A.E.; Hudson, T.J.; da Silva, S.D.; Pusztaszeri, M.; Tamilia, M.; Forest, V.-I. The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules. Cancers 2023, 15, 3394. https://doi.org/10.3390/cancers15133394
Tali G, Payne AE, Hudson TJ, da Silva SD, Pusztaszeri M, Tamilia M, Forest V-I. The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules. Cancers. 2023; 15(13):3394. https://doi.org/10.3390/cancers15133394
Chicago/Turabian StyleTali, George, Alexandra E. Payne, Thomas J. Hudson, Sabrina Daniela da Silva, Marc Pusztaszeri, Michael Tamilia, and Véronique-Isabelle Forest. 2023. "The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules" Cancers 15, no. 13: 3394. https://doi.org/10.3390/cancers15133394
APA StyleTali, G., Payne, A. E., Hudson, T. J., da Silva, S. D., Pusztaszeri, M., Tamilia, M., & Forest, V. -I. (2023). The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules. Cancers, 15(13), 3394. https://doi.org/10.3390/cancers15133394