Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Prostate Cancer
2. Microtubule Stabilizing Agents
3. Preclinical Studies of MSAs as Anti-Prostate Cancer Agents
3.1. Paclitaxel and Analogs (Taxanes)
3.2. Epothilones
3.3. Taccalonolides
3.4. FR182877 (Cyclostreptin)
3.5. Protopine
3.6. Other Representative MSAs
Compound | Origin | Chemical Scaffold | In Vitro Evaluation | In Vivo Evaluation | Tubulin Binding Mode | Refs. |
---|---|---|---|---|---|---|
Dictyostatin | Marine sponge | Macrolide polyketide | N/A | N/A | reversible | [53,54] |
Discodermolide | Marine sponge | Polyhedroxylated lactone | N/A | N/A | reversible | [55] |
Eleutherobin | Marine coral | Diterpene glycoside | PC-3 DU145 | N/A | reversible | [56] |
Sarcodictyins | Marine coral | Diterpene | N/A | N/A | reversible | [57] |
Zampanolide | Marine sponge | macrolide | PC-3 | N/A | irreversible | [26] |
Dactyolide | Marine sponge | macrolide | PC-3 | N/A | irreversible | [26] |
Laulimalide | Marine sponge | macrolide | N/A | N/A | reversible | [58] |
Isolaulimalide | Marine sponge | macrolide | N/A | N/A | reversible | [58] |
Peloruside | Marine sponge | macrolide | N/A | N/A | reversible | [59] |
Ceratamines | Marine sponge | Heterocyclic alkaloid | N/A | N/A | reversible | [60] |
Rhazinilam | plant | Biphenyl lactam | N/A | N/A | reversible | [61] |
4. Clinical Studies and Use of MSAs for Patients with Prostate Cancer
4.1. Paclitaxel
4.2. Docetaxel
4.3. Cabazitaxel
4.4. Ixabepilone, Epothilone B, and Sagopilone
5. The Mechanisms of Action of MSAs as Anti-Prostate Cancer Agents
5.1. Stop Cell Mitosis
5.2. Block AR Trafficking
5.3. Induce Bcl-2 Phosphorylation
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Tan, E.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.-L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshan, N.G.R.D.; Rettig, M.; Jung, M.E. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med. Res. Rev. 2019, 39, 910–960. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Tangen, C.M.; Hussain, M.H.A.; Lara, P.N., Jr.; Jones, J.A.; Taplin, M.E.; Burch, P.A.; Berry, D.; Moinpour, C.; Kohli, M.; et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 2004, 351, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Fong, K.-W.; Gritsina, G.; Zhang, A.; Zhao, J.C.; Kim, J.; Sharp, A.; Yuan, W.; Aversa, C.; Yang, X.J.; et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 2019, 79, 2580–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroad of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef]
- Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers 2021, 13, 2187. [Google Scholar] [CrossRef] [PubMed]
- Kingston, D.G.I. Tubulin-interactive natural products as anticancer agents. J. Nat. Prod. 2009, 72, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Kingston, D.G.I. Taxol and its analogs. In Anticancer Agents from Natural Products, 2nd ed.; Cragg, G.M., Kingston, D.G.I., Newman, D.J., Eds.; CRC Press: New York, NY, USA, 2012; pp. 123–175. [Google Scholar]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef]
- Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 1980, 77, 1561–1565. [Google Scholar] [CrossRef] [Green Version]
- Rohena, C.C.; Mooberry, S.L. Recent progress with microtubule stabilizers: New compounds, binding modes and cellular activities. Nat. Prod. Rep. 2014, 31, 335–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischer, J.; Gergely, F. Anti-mitotic therapies in cancer. J. Cell Biol. 2018, 218, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.T. Discovery of ixabepilone. Mol. Cancer Ther. 2009, 8, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Komlodi-Pasztor, E.; Sackett, D.L.; Fojo, A.T. Inhibitors targeting mitosis: Tales of how great drugs against a promising target were brought down by a flawed rationale. Clin. Cancer Res. 2012, 18, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komlodi-Pasztor, E.; Sackett, D.; Wilkerson, J.; Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 2011, 8, 244–250. [Google Scholar] [CrossRef]
- Poruchynsky, M.S.; Komlodi-Pasztor, E.; Trostel, S.; Wilkerson, J.; Regairaz, M.; Rommier, Y.; Zhang, X.; Maity, T.K.; Robey, R.; Burotto, M.; et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA 2015, 112, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Field, J.J.; Kanakkanthara, A.; Miller, J.H. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg. Med. Chem. 2014, 22, 5050–5059. [Google Scholar] [CrossRef]
- de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.-P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Tannock, L.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Kim, N.; Oudard, S.; Theodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- Thadani-Mulero, M.; Nanus, D.M.; Giannakakou, P. Androgen receptor on the move: Boarding the microtubule expressway to the nucleus. Cancer Res. 2012, 72, 4611–4615. [Google Scholar] [CrossRef] [Green Version]
- Sepp-Lorenzino, L.; Balog, A.; Su, D.-S.; Meng, D.; Timaul, N.; Scher, H.; Danishefsky, S.J.; Rosen, N. The microtubule-stabilizing agents epothilone A and B and their desoxy-derivatives induce mitotic arrest and apoptosis in human prostate cancer cells. Prostate Cancer Prostatic Dis. 1999, 2, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Newman, R.A.; Yang, J.; Finlay, M.R.V.; Cabral, F.; Vourloumis, D.; Stephens, L.C.; Troncoso, P.; Wu, X.; Logothetis, C.J.; Nicolaou, K.C.; et al. Antitumor efficacy of 26-fluoroepothilone B against human prostate cancer xenografts. Cancer Chemother. Pharmacol. 2001, 48, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Liao, C.-H.; Chang, Y.-L.; Guh, J.-H.; Pan, S.-L.; Teng, C.-M. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett. 2012, 315, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zurwerra, D.; Glaus, F.; Betschart, L.; Schuster, J.; Gertsch, J.; Ganci, W.; Altmann, K.-H. Total synthesis of (-)-zampanolide and structure-activity relationship studies on (-)-dactylolide derivatives. Chem. Eur. J. 2012, 18, 16868–16883. [Google Scholar] [CrossRef]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Speicher, L.A.; Barone, L.; Tew, K.D. Combined antimicrotubule activity of estramustine and taxol in human prostatic carcinoma cell lines. Cancer Res. 1992, 52, 4433–4440. [Google Scholar]
- Hudes, G.R.; Obasaju, C.; Chapman, A.; Gallo, J.; McAleer, C.; Greenberg, R. Phase I study of paclitaxel and estramustine: Preliminary activity in hormone-refractory prostate cancer. Semin. Oncol. 1995, 22 (Suppl. S6), 6–11. [Google Scholar]
- Hudes, G.R.; Nathan, F.; Khater, C.; Haas, N.; Cornfield, M.; Giantonio, B.; Greenberg, R.; Gomella, L.; Litwin, S.; Ross, E.; et al. Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J. Clin. Oncol. 1997, 15, 3156–3163. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of Cremophor-free, albumin-bound paclitaxel, ABI-007, compared with Cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.E.; Pazdur, R. Docetaxel. J. Clin. Oncol. 1995, 13, 2643–2655. [Google Scholar] [CrossRef]
- Lavelle, F.; Bissery, M.C.; Combeau, C.; Riou, J.F.; Vrignaud, P.; Andre, S. Preclinical evaluation of docetaxel (Taxotere). Semin. Oncol. 1995, 22 (Suppl. S4), 3–16. [Google Scholar]
- Vrignaud, P.; Semiond, D.; Benning, V.; Beys, E.; Bouchard, H.; Gupta, S. Preclinical profile of cabazitaxel. Drug Des. Devel. Ther. 2014, 8, 1851–1867. [Google Scholar] [CrossRef] [PubMed]
- Vrignaud, P.; Semiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J.F.; Commercon, A.; Lavelle, F.; Bissery, M.C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin. Cancer Res. 2013, 19, 2973–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, C.; Nelius, T.; Martinez-Marin, D.; Sennoune, S.R.; Filleur, S. Cabazitaxel regimens inhibit the growth of prostate cancer cells and enhances the anti-tumor properties of PEDF with various efficacy and toxicity. Prostate 2018, 78, 905–914. [Google Scholar] [CrossRef]
- de Morree, E.; van Soest, R.; Aghai, A.; de Ridder, C.; de Bruijin, P.; Moghaddam-Helmanted, I.G.; Burger, H.; Mathijssen, R.; Wiemer, E.; de Wit, R.; et al. Understanding taxanes in prostate cancer; importance of intratumoral drug accumulation. Prostate 2016, 76, 927–936. [Google Scholar] [CrossRef]
- Gerth, K.; Bedorf, N.; Hofle, G.; Irschik, H.; Reichenback, H. Epothilones A and B: Antifungal cytotoxic compounds from S. cellulosum (mycobacteria). J. Antibiot. 1996, 49, 560–563. [Google Scholar] [CrossRef]
- Hofle, G.; Bedorf, N.; Steinmetz, I.H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Epothilones A and B- novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. Engl. 1996, 35, 1567–1569. [Google Scholar] [CrossRef]
- Nogales, E.; Wolf, S.G.; Khan, I.A.; Ludueña, R.F.; Downing, K.H. Structure of tubulin at 6.5 A and location of the Taxol-binding site. Nature 1995, 375, 424–427. [Google Scholar] [CrossRef]
- Prota, A.E.; Bargsten, K.; Zurwerra, D.; Field, J.J.; Diaz, J.F.; Altmann, K.-H.; Steinmetz, M.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 2013, 339, 587–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, T.; McSheehy, P.M.; Wenger, F.; Hattenberger, M.; Muller, M.; Vaxelaire, J.; Altmann, K.-H.; Wartmann, M. Patupilone (epothilone B, EPO906) inhibits growth and metastasis of experimental prostate tumors in vivo. Prostate 2005, 65, 231–240. [Google Scholar] [CrossRef]
- Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol. 2004, 22, 2015–2025. [Google Scholar] [CrossRef]
- Lee, F.Y.; Borzilleri, R.; Fairchild, C.R.; Kim, S.H.; Long, B.H.; Reventos-Suavez, C.; Vite, G.D.; Rose, W.C.; Kramer, R.A. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin. Cancer Res. 2001, 7, 1429–1437. [Google Scholar] [PubMed]
- Hussain, M.; Tangen, C.M.; Lara, P.N., Jr.; Vaishampayan, U.N.; Petrylak, D.P.; Colevas, A.D.; Sakr, W.A.; Crawford, E.D. Ixabepilone (epothilone B analogue BMS-247550) is active in chemotherapy-naïve patients with hormone-refractory prostate cancer: A Southwest Oncology Group trial S0111. J. Clin. Oncol. 2018, 23, 8724–8729. [Google Scholar] [CrossRef] [Green Version]
- Risinger, A.L.; Li, J.; Bennett, M.J.; Rohena, C.C.; Peng, J.; Schriemer, D.C.; Mooberry, S.L. Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity. Cancer Res. 2013, 73, 6780–6792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Winstead, A.; Yu, H.; Peng, J. Taccalonolides: A novel class of microtubule-stabilizing anticancer agents. Cancers 2021, 13, 920. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Y.; Li, G.; Li, S.A.; Wu, C.; Gigant, B.; Qin, W.; Chen, H.; Wu, Y.; Chen, Q.; et al. Mechanism of microtubule stabilization by taccalonolide AJ. Nat. Commun. 2017, 8, 15787. [Google Scholar] [CrossRef]
- Elder, M.C.; Buey, R.M.; Gussio, R.; Marcus, A.I.; Vanderwal, C.D.; Sorensen, E.J.; Diaz, J.F.; Giannakakou, P.; Hamel, E. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Biochemistry 2005, 44, 11525–11538. [Google Scholar]
- Sato, B.; Nakajima, H.; Hori, Y.; Hino, M.; Hashimoto, S.; Terano, H. A new antimitotic substance, FR182877. II. The mechanism of action. J. Antibiot. 2000, 53, 204–206. [Google Scholar] [CrossRef] [Green Version]
- Gaitanos, T.N.; Buey, R.M.; Diaz, J.F.; Northcote, P.T.; Teesdale-Spittle, P.; Andreu, J.M.; Miller, J.H. Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. 2004, 64, 5063–5067. [Google Scholar] [CrossRef] [Green Version]
- Kanakkanthara, A.; Northcote, P.T.; Miller, J.H. Peloruside A: A lead non-taxoid-site microtubule-stabilizing agent with potential activity against cancer, neurodegeneration, and autoimmune disease. Nat. Prod. Rep. 2016, 33, 549–561. [Google Scholar] [CrossRef]
- Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Boyd, M.R.; Schmidt, J.M. Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J. Chem. Soc. Chem. Commun. 1994, 1111–1112. [Google Scholar] [CrossRef]
- Isbrucker, R.A.; Cummins, J.; Pomponi, S.A.; Longley, R.E.; Wright, A.E. Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem. Pharmacol. 2003, 66, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, S.P.; Gunasekera, M.; Longley, R.E.; Schulte, G.K. Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissolute. J. Org. Chem. 1990, 55, 4912–4915. [Google Scholar] [CrossRef]
- Lindel, T.; Jensen, P.R.; Fenical, W.; Long, B.H.; Casazza, A.M.; Carboni, J.; Fairchild, C.R. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J. Am. Chem. Soc. 1997, 119, 8744–8745. [Google Scholar] [CrossRef]
- Hamel, E.; Sackett, D.L.; Vourloumis, D.; Nicolaou, K.C. The coral-derived natural products eleutherobin and sarcodictyins A and B: Effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 1999, 38, 5490–5498. [Google Scholar] [CrossRef]
- Mooberry, S.L.; Tien, G.; Hernandez, A.H.; Plubrukarn, A.; Davidson, B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 1999, 59, 653–660. [Google Scholar]
- West, L.M.; Northcote, P.T.; Battershill, C.N. Peloruside A: A potent cytotoxic macrolide isolated from the New Zealand marine sponge mycale sp. J. Org. Chem. 2000, 65, 445–449. [Google Scholar] [CrossRef]
- Manzo, E.; Van Soest, R.; Matainaho, L.; Roberge, M.; Andersen, R.J. Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine sponge Pseudoceratina sp. collected in Papua New Guinea. Org. Lett. 2003, 5, 4591–4594. [Google Scholar] [CrossRef]
- Wu, Y.; Suehiro, M.; Kitajima, M.; Matsuzaki, T.; Hashimoto, S.; Nagaoka, M.; Zhang, R.; Takayama, H. Rhazinilam and quebrachamine derivatives from Yunnan Kopsia arborea. J. Nat. Prod. 2009, 72, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.J.; Yeap, B.Y.; Wilding, G.; Kasimis, B.; McLeod, D.; Loehrer, D.J. Taxol in advanced, hormone refractory carcinoma of the prostate: A Phase II trial of the Eastern Cooperative Oncology Group. Cancer 1993, 72, 2457–2460. [Google Scholar] [CrossRef]
- Trivedi, C.; Redman, B.; Flaherty, L.E.; Kucuk, O.; Du, W.; Heilbrun, L.K.; Hussain, M. Weekly 1-hour infusion of paclitaxel: Clinical feasibility and efficacy in patients with hormone-refractory prostate carcinoma. Cancer 2000, 89, 431–436. [Google Scholar] [CrossRef]
- Haas, N.; Roth, B.; Garay, C.; Yeslow, G.; Entmacher, M.; Weinstein, A.; Rogatko, A.; Babb, J.; Minnitti, C.; Flinker, D.; et al. Phase I trial of weekly paclitaxel plus oral estramustine phosphate in patients with hormone-refractory prostate cancer. Urology 2001, 58, 59–64. [Google Scholar] [CrossRef]
- Kuzel, T.M.; Kies, M.; Wu, N.; Hsieh, Y.-C.; Rademaker, A.W. Phase I trial of oral estramustine phosphate and 3-hr infusional paclitaxel for the treatment of hormone refractory prostate cancer. Cancer Investig. 2002, 20, 634–643. [Google Scholar] [CrossRef]
- Picus, J.; Schultz, M. Docetaxel (Taxotere) as monotherapy in the treatment of hormone-refractory prostate cancer: Preliminary results. Semin. Oncol. 1999, 26, 14–18. [Google Scholar]
- Friedland, D.; Cohen, J.; Miller, R.; Voloshin, M.; Gluckman, R.; Lembersky, B.; Zidar, B.; Keating, M.; Reilly, N.; Dimitt, B. A Phase II trial of docetaxel (Taxotere) in hormone-refractory prostate cancer: Correlation of antitumor effect to phosphorylation of Bcl-2. Semin. Oncol. 1999, 26 (Suppl. S17), 19–23. [Google Scholar] [PubMed]
- Obasaju, C.; Hudes, G.R. Paclitaxel and docetaxel in prostate cancer. Hematol. Oncol. Clin. N. Am. 2001, 15, 525–545. [Google Scholar] [CrossRef]
- Amato, R.J.; Ellerhorst, J.; Bui, C.; Logothetis, C.J. Estramustine and vinblastine for patients with progressive androgen-independent adenocarcinoma of the prostate. Urol. Oncol. 1995, 1, 168–172. [Google Scholar] [CrossRef]
- Hudes, G.R.; Greenberg, R.; Krigel, R.L.; Fox, S.; Scher, R.; Litwinp Watts, S.; Speicher, L. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J. Clin. Oncol. 1992, 10, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Seidman, A.D.; Scher, H.I.; Petrylak, D.; Dershaw, D.D.; Curley, T. Estramustine and vinblastine: Use of prostate specific antigen as a clinical trial endpoint in hormone-refractory prostatic cancer. J. Urol. 1992, 147, 931–934. [Google Scholar] [CrossRef]
- Hudes, G.R.; Einhorn, L.; Ross, E.; Balsham, A.; Loehrer, P.; Ramsey, H.; Sprandio, J.; Entmacher, M.; Dugan, W.; Ansari, R.; et al. Vinblastine versus vinblastine plus oral estramustine phosphate for patients with hormone-refractory prostate cancer: A Hoosier Oncology Group and Fox Chase Network Phase III trial. J. Clin. Oncol. 1999, 17, 3160. [Google Scholar] [CrossRef] [PubMed]
- Savarese, D.M.; Halabi, S.; Hars, V.; Akerley, W.L.; Taplin, M.-E.; Godley, P.A.; Hussain, A.; Small, E.J.; Vogelzang, N.J. Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: A final report of CALGB 9780. J. Clin. Oncol. 2001, 19, 2509–2516. [Google Scholar] [CrossRef]
- Petrylak, D.P. Chemotherapy for androgen-independent prostate cancer. Semin. Urol. Oncol. 2002, 20 (Suppl. S1), 31–35. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Eilers, K.M.; Garzotto, M.; Egorin, M.J.; Lowe, B.A.; Henner, W.D. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol. 2003, 21, 123–128. [Google Scholar] [CrossRef]
- Puente, J.; Grande, E.; Medina, A.; Maroto, P.; Lainez, N.; Arranz, A. Docetaxel in prostate cancer: A familiar face as the new standard in a hormone-sensitive setting. Ther. Adv. Med. Oncol. 2017, 9, 307–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, C.J.; Chen, Y.-H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.-N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Philippou, Y.A.; Kuntz, G.M.; Konety, B.R.; Gupta, S.; Lamb, A.D.; Dahm, P. Taxane-base chemohormonal therapy for metastatic hormone-sensitive prostate cancer. Cochrane Database Syst. Rev. 2018, 10, CD012816. [Google Scholar] [PubMed]
- Kyriakopoulos, C.E.; Chen, Y.-H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J. Clin. Oncol. 2018, 36, 1080–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galsky, M.D.; Dritselis, A.; Kirkpatrick, P.; Oh, W.K. Cabazitaxel. Nat. Rev. Drug Discov. 2010, 9, 677–678. [Google Scholar] [CrossRef]
- Paller, C.J.; Antonarakis, E.S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Devel. Ther. 2011, 5, 117–124. [Google Scholar] [PubMed] [Green Version]
- Antonarakis, E.S.; Tagawa, S.T.; Galletti, G.; Worroll, D.; Ballman, K.; Vanhuyse, M.; Sonpavde, G.; North, S.; Albany, C.; Tsao, C.-K.; et al. Randomized, noncomparative, phase II trial of early switch from docetaxel to cabazitaxel or vice versa, with integrated biomarker analysis, in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. J. Clin. Oncol. 2017, 35, 3181–3188. [Google Scholar] [CrossRef] [Green Version]
- Chien, A.J.; Moasser, M.M. Cellular mechanisms of resistance to anthracyclines and taxanes in cancer: Intrinsic and acquired. Semin. Oncol. 2008, 35 (Suppl. S2), S1–S14. [Google Scholar] [CrossRef]
- Duran, G.E.; Wang, Y.C.; Francisco, E.B.; Rose, J.C.; Martinez, F.J.; Coller, J.; Brassard, D.; Vrignaud, P.; Sikic, B.I. Mechanisms of resistance to cabazitaxel. Mol. Cancer Ther. 2015, 14, 193–201. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, R.; Berman-Booty, L.D.; Schiewer, M.J.; Ciment, S.J.; Den, R.B.; Dicker, A.P.; Kelly, W.K.; Trabulsi, E.J.; Lallas, C.D.; Gomella, L.G.; et al. Novel actions of next-generation taxanes benefit advanced stages of prostate cancer. Clin. Cancer Res. 2015, 21, 795–807. [Google Scholar] [CrossRef] [Green Version]
- van Soest, R.J.; de Morree, E.S.; Kweldam, C.F.; de Ridder, C.M.A.; Wiemer, E.A.C.; Mathijssen, R.H.J.; de Wit, R.; Weerden, W.M. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. Eur. Urol. 2015, 67, 981–985. [Google Scholar] [CrossRef]
- Buonerba, C.; Sonpavde, G.; Vitrone, F.; Bosso, D.; Puglia, L.; Izzo, M.; Iaccarino, S.; Scafuri, L.; Muratore, M.; Foschini, F.; et al. The influence of prednisone on the efficacy of cabazitaxel in men with metastatic castration-resistant prostate cancer. J. Cancer 2017, 8, 2663–2668. [Google Scholar] [CrossRef] [Green Version]
- de Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wuelfing, C.; Kramer, G.; Eymard, J.-C.; Bamias, A.; Carles, J.; et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N. Engl. J. Med. 2019, 381, 2506–2518. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.; Kelly, W.K.; Michaelson, M.D.; Wilding, G.; Hussain, M.; Gross, M.; Small, E.J. A randomized phase II study of ixabepilone (IX) or mitoxantrone and predisone (MP) in patients with taxane (T)-resistant hormone refractory prostate cancer (HRPC). J. Clin. Oncol. 2005, 23 (Suppl. S16), 4566. [Google Scholar] [CrossRef]
- Galsky, M.D.; Small, E.J.; Oh, W.K.; Chen, I.; Smith, D.C.; Colevas, A.D.; Martone, L.; Curley, T.; Delacruz, A.; Scher, H.I.; et al. Multi-institutional randomized phase II trial of the epothilone B analog ixabepilone (BMS-247550) with or without estramusine phosphate in patients with progressive castrate metastatic prostate cancer. J. Clin. Oncol. 2005, 23, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Gross, M.E. The epothilones: New therapeutic agents for castration-resistant prostate cancer. Oncologist 2011, 16, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; DiPaola, R.S.; Baron, A.D.; Higano, C.S.; Tchekmedyian, N.S.; Johri, A.R. Phase II trial of weekly patupilone in patients with castration-resistant prostate cancer. Ann. Oncol. 2009, 20, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Beardsley, E.; Eigl, B.J.; Venner, P.; Hotte, S.J.; Winquist, E.; Ko, Y.-J.; Sridhar, S.S.; Weber, D.; Saad, F. A phase 2 study of patupilone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel: Canadian Urologic Oncology Group study Po7a. Ann. Oncol. 2012, 23, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.; Smith, D.; Neerukonda, L.; Alonso, M.; Jones, G.R.; Beer, T.M. Phase II study of sagopilone (ZK-EPO) plus prednisone as first-line chemotherapy in patients with metastatic androgen-independent prostate cancer (AIPC) [abstract 5141]. J. Clin. Oncol. 2008, 26, 284s. [Google Scholar] [CrossRef]
- Beer, T.M.; Smith, D.C.; Hussain, A.; Alonso, M.; Wang, J.; Giurescu, M.; Roth, K.; Wang, Y. Phase II study of first-line sagopilone plus prednisone in patients with castration-resistant prostate cancer: A phase II study of the Department of Defense Prostate Cancer Clinical Trials. Br. J. Cancer 2012, 107, 808–813. [Google Scholar] [CrossRef]
- Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents? Nat. Rev. Cancer 2007, 7, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Liu, H.; Kim, S.; Guo, M.; Navarro, V.; Bander, N.H. Docetaxel down-regulates the expression of androgen receptor and prostate specific antigen but not prostate-specific membrane antigen in prostate cancer cell lines: Implications for PSA surrogacy. Prostate 2009, 69, 1579–1585. [Google Scholar] [CrossRef]
- Gan, L.; Chen, S.; Wang, Y.; Watahiki, A.; Bohrer, L.; Sun, Z.; Wang, Y.; Huang, H. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer. Cancer Res. 2009, 68, 8386–8394. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.-L.; Horbinski, C.M.; Garzotto, M.; Qian, D.Z.; Beer, T.M.; Kyprianou, N. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010, 70, 7992–8002. [Google Scholar] [CrossRef] [Green Version]
- Darshan, M.S.; Loftus, M.S.; Thadani-Mulero, M.; Levy, B.P.; Escuin, D.; Zhou, X.K.; Gjyrezi, A.; Chanel-Vos, C.; Shen, R.; Tagawa, S.T.; et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011, 71, 6019–6029. [Google Scholar] [CrossRef] [Green Version]
- Thadani-Mulero, M.; Portella, L.; Sun, S.; Sung, M.; Matov, A.; Vessella, R.L.; Corey, E.; Nanus, D.M.; Plymate, S.R.; Giannakakou, P. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 2014, 74, 2270–2282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Liu, X.; Li, J.; Ledet, E.; Alvarez, X.; Qi, Y.; Fu, X.; Sartor, O.; Dong, Y.; Zhang, H. Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents. Oncotarget 2015, 6, 23358–23371. [Google Scholar] [CrossRef] [Green Version]
- Haldar, S.; Chintapalli, J.; Croce, C.M. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996, 56, 1253–1255. [Google Scholar] [PubMed]
- Haldar, S.; Basa, A.; Croce, C.M. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997, 57, 229–233. [Google Scholar] [PubMed]
Category | Brand Name | Active Ingredient | Approved Date & Therapeutic Use |
---|---|---|---|
Chemotherapy | Taxotere | Docetaxel in combination with prednisone | 19 May 2004 mCRPC |
Jevtana | Cabazitaxel in combination with prednisone | 17 June 2010 mCRPC after docetaxel | |
Zytiga | Abiraterone acetate in combination with prednisone | 28 April 2011 mCRPC after docetaxel | |
Zytiga | Abiraterone acetate in combination with prednisone | 10 December 2012 mCPRC before chemotherapy | |
Zytiga | Abiraterone acetate in combination with prednisone | 7 February 2018 mCSPC | |
Hormonal therapy | Erleada | Apalutamide | 14 February 2018 nmCRPC |
Erleada | Apalutamide | 17 September 2019 nmCRPC | |
XTANDI Capsules | Enzalutamide | 31 August 2012 mCRPC after docetaxel | |
XTANDI | Enzalutamide | 13 July 2018 nmCRPC | |
NUBEQA | darolutamide | 30 July 2019 nmCRPC | |
XTANDI | Enzalutamide | 16 December 2019 CSPC | |
Orgovyx | relugolix | 18 December 2020 Advanced prostate cancer | |
Immunotherapy | Provenge | Sipuleucel-T | 29 April 2010 Asymptomatic or minimally symptomatic mCRPC |
Radiotherapy | Xofigo | Radium-223 | 15 May 2013 mCRPC |
Gallium 68 PSMA-11 | Gallium 68 PSMA-11 | 1 December 2020 Detection and localization of prostate cancer | |
Pylarify | Piflufolastat F18 | 26 May 2021 Identify prostate specific membrane lesions in prostate cancer | |
Pluvicto | Lutetium (177 Lu) Vipivotide tetraxetan | 23 March 2022 Prostate-specific membrane androgen-positive mCRPC |
Compound | IC50 Value | Cell Model | Bioassay Method | Reference |
---|---|---|---|---|
Paclitaxel | 2.2 nM | DU145 | Coulter counter | [23] |
4.0 nM | MDA PCa 2a | MTT | [24] | |
6.2 nM | MDA PCa 2b | MTT | [24] | |
1.6 nM | LNCaP | MTT | [24] | |
10.3 nM | PC3 | MTT | [24] | |
Epothilone A | 13 nM | DU145 | Coulter counter | [23] |
1.2 nM | MDA PCa 2a | MTT | [24] | |
5.1 nM | MDA PCa 2b | MTT | [24] | |
0.7 nM | LNCaP | MTT | [24] | |
3.7 nM | PC3 | MTT | [24] | |
Desoxyepothione A | 200 nM | DU145 | Coulter counter | [23] |
Epothilone B | 0.6 nM | DU145 | Coulter counter | [23] |
0.7 nM | MDA PCa 2a | MTT | [24] | |
1.0 nM | MDA PCa 2b | MTT | [24] | |
0.2 nM | LNCaP | MTT | [24] | |
0.2 nM | PC3 | MTT | [24] | |
Desoxyepothilone B | 1.7 nM | DU145 | Coulter counter | [23] |
26-Fluoroepothilone B | 2.8 nM | MDA PCa 2a | MTT | [24] |
2.7 nM | MDA PCa 2b | MTT | [24] | |
1.2 nM | LNCaP | MTT | [24] | |
0.6 nM | PC3 | MTT | [24] | |
protopine | 13.0 µM | PC-3 | SRB assay | [25] |
15.8 µM | DU145 | SRB assay | [25] | |
(-)-zampanolide | 2.9 nM | PC-3 | Methylene blue | [26] |
(-)-dactylolide | 751 nM | PC-3 | Methylene blue | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.-H. Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers 2023, 15, 3308. https://doi.org/10.3390/cancers15133308
Chen Q-H. Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers. 2023; 15(13):3308. https://doi.org/10.3390/cancers15133308
Chicago/Turabian StyleChen, Qiao-Hong. 2023. "Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer" Cancers 15, no. 13: 3308. https://doi.org/10.3390/cancers15133308
APA StyleChen, Q. -H. (2023). Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers, 15(13), 3308. https://doi.org/10.3390/cancers15133308