The BETTY Score to Predict Perioperative Outcomes in Surgical Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Procedures
2.3. The BETTY Score
2.4. Endpoints
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tevis, S.E.; Cobian, A.G.; Truong, H.P.; Craven, M.W.; Kennedy, G.D. Implications of Multiple Complications on the Postoperative Recovery of General Surgery Patients. Ann. Surg. 2016, 263, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Liu, Y.; Paruch, J.L.; Kmiecik, T.E.; Cohen, M.E.; Ko, C.Y.; Bilimoria, K.Y. Risk of discharge to postacute care: A patient-centered outcome for the american college of surgeons national surgical quality improvement program surgical risk calculator. JAMA Surg. 2015, 150, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassin, M.T.; Owen, R.M.; Perez, S.D.; Leeds, I.; Cox, J.C.; Schnier, K.; Sadiraj, V.; Sweeney, J.F. Risk factors for 30-day hospital readmission among general surgery patients. J. Am. Coll. Surg. 2012, 215, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massarweh, N.N.; Kaji, A.H.; Itani, K.M.F. Practical Guide to Surgical Data Sets: Veterans Affairs Surgical Quality Improvement Program (VASQIP). JAMA Surg. 2018, 153, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and evaluation of the universal ACS NSQIP surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, B.L.; Hamilton, B.H.; Richards, K.; Bilimoria, K.Y.; Cohen, M.E.; Ko, C.Y. Does surgical quality improve in the American College of Surgeons National Surgical Quality Improvement Program: An evaluation of all participating hospitals. Ann. Surg. 2009, 250, 363–376. [Google Scholar] [CrossRef]
- Ingraham, A.M.; Richards, K.E.; Hall, B.L.; Ko, C.Y. Quality improvement in surgery: The American College of Surgeons National Surgical Quality Improvement Program approach. Adv. Surg. 2010, 44, 251–267. [Google Scholar] [CrossRef]
- Gawande, A.A.; Kwaan, M.R.; Regenbogen, S.E.; Lipsitz, S.A.; Zinner, M.J. An Apgar score for surgery. J. Am. Coll. Surg. 2007, 204, 201–208. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Martini, A.; Falagario, U.G.; Villers, A.; Dell’oglio, P.; Mazzone, E.; Autorino, R.; Moschovas, M.C.; Buscarini, M.; Bravi, C.A.; Briganti, A.; et al. Contemporary Techniques of Prostate Dissection for Robot-assisted Prostatectomy. Eur. Urol. 2020, 78, 583–591. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.; Golijanin, D.; Pareek, G.; Guo, R.; Zhang, Z.; Renzulli, J.; Gershman, M.B. The association of age with perioperative morbidity and mortality among men undergoing radical prostatectomy. Urol. Oncol. 2018, 36, 157.e7–157.e13. [Google Scholar] [CrossRef]
- Kumar, A.; Samavedi, S.; Bates, A.S.; Cuevas, C.A.G.; Coelho, R.F.; Rocco, B.; Palmer, K.; Patel, V.R. Age stratified comparative analysis of perioperative, functional and oncologic outcomes in patients after robot assisted radical prostatectomy--A propensity score matched study. Eur. J. Surg. Oncol. 2015, 41, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Rosiello, G.; Palumbo, C.; Knipper, S.; Deuker, M.; Stolzenbach, L.F.; Tian, Z.; Gandaglia, G.; Fossati, N.; Montorsi, F.; Shariat, S.F.; et al. Preoperative frailty predicts adverse short-term postoperative outcomes in patients treated with radical prostatectomy. Prostate Cancer Prostatic. Dis. 2020, 23, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, A.; Spalteholz, J.; Langer, F.; Heinzer, H.; Budäus, L.; Tilki, D.; Michl, U.; Soave, A.; Steuber, T.; Veleva, V.; et al. Perioperative management of direct oral anticoagulants in patients undergoing radical prostatectomy: Results of a prospective assessment. World J. Urol. 2019, 37, 2657–2662. [Google Scholar] [CrossRef] [PubMed]
- Krane, L.S.; Laungani, R.; Satyanarayana, R.; Kaul, S.; Bhandari, M.; Peabody, J.O.; Menon, M. Robotic-assisted radical prostatectomy in patients receiving chronic anticoagulation therapy: Role of perioperative bridging. Urology 2008, 72, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, B.; Vallancien, G. Laparoscopic radical prostatectomy: The Montsouris technique. J. Urol. 2000, 163, 1643–1649. [Google Scholar] [CrossRef]
- Menon, M.; Shrivastava, A.; Bhandari, M.; Satyanarayana, R.; Siva, S.; Agarwal, P.K. Vattikuti Institute prostatectomy: Technical modifications in 2009. Eur. Urol. 2009, 56, 89–96. [Google Scholar] [CrossRef]
- Martini, A.; Tewari, A.K. Anatomic robotic prostatectomy: Current best practice. Ther. Adv. Urol. 2019, 11, 1756287218813789. [Google Scholar] [CrossRef] [Green Version]
- Baboudjian, M.; Gondran-Tellier, B.; Grabia, A.; Barret, E.; Beauval, J.-B.; Brureau, L.; Crehange, G.; Dariane, C.; Fiard, G.; Fromont, G.; et al. Perioperative outcomes after radical prostatectomy: Does the surgical approach change the impact of hospital volume? A nationwide analysis. Minerva Urol. Nephrol. 2022, 74, 638–640. [Google Scholar] [CrossRef]
- Ploussard, G.; Grabia, A.; Barret, E.; Beauval, J.B.; Brureau, L.; Créhange, G.; Dariane, C.; Fiard, G.; Fromont, G.; Gauthé, M.; et al. Annual nationwide analysis of costs and post-operative outcomes after radical prostatectomy according to the surgical approach (open, laparoscopic, and robotic). World J. Urol. 2022, 40, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Apgar, V.; Holaday, D.A.; James, L.S.; Weisbrot, I.M.; Berrien, C. Evaluation of the newborn infant: Second report. J. Am. Med. Assoc. 1958, 168, 1985–1988. [Google Scholar] [CrossRef] [PubMed]
- Wuerz, T.H.; Regenbogen, S.E.; Ehrenfeld, J.M.; Malchau, H.; Rubash, H.E.; Gawande, A.A. The Surgical Apgar Score in hip and knee arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Strøyer, S.; Mantoni, T.; Svendsen, L.B. Evaluation of the Surgical Apgar Score in patients undergoing Ivor-Lewis esophagectomy. J. Surg. Oncol. 2017, 115, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Lee, M.S.; Rauh-Hain, J.A.; Hall, T.; Boruta, D.; del Carmen, M.G.; Goodman, A.; Schorge, J.O.; Growdon, W.B. Surgical Apgar Score and prediction of morbidity in women undergoing hysterectomy for malignancy. Gynecol. Oncol. 2015, 136, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Yee, T.J.; La Marca, F.; Patel, R.; Park, P. Utility of the Surgical Apgar Score for Patients Who Undergo Surgery for Spinal Metastasis. Clin. Spine Surg. 2017, 30, 374–381. [Google Scholar] [CrossRef]
- Ettinger, K.S.; Moore, E.J.; Lohse, C.M.; Reiland, M.D.; Yetzer, J.G.; Arce, K. Application of the Surgical Apgar Score to microvascular head and neck reconstruction. J. Oral. Maxillofac. Surg. 2016, 74, 1668–1677. [Google Scholar] [CrossRef]
- Nair, A.; Bharuka, A.; Rayani, B.K. The Reliability of Surgical Apgar Score in Predicting Immediate and Late Postoperative Morbidity and Mortality: A Narrative Review. Rambam Maimonides Med. J. 2018, 9, e0004. [Google Scholar] [CrossRef] [Green Version]
Variables (BETTY) | |
---|---|
Body mass index (kg/m2) | |
Estimated blood loss (mL) | |
Operative Time (min) | |
FiTness for surgery (i.e., ASA score) | |
Instability | Hemodynamic/respiratory instability during surgery |
Major intraoperative complication |
Variables | Overall Cohort (n = 297) |
---|---|
Age, years | 67 (62–71) |
BMI, kg/m2 | 26 (24–28) |
Charlson Comorbidity Index | 4 (4–5) |
ASA score | |
1 | 283 (95.3) |
2 | 12 (4) |
3 | 2 (0.7) |
Anti-platelet therapy | 42 (14.1) |
Anticoagulant therapy | 15 (5) |
T stage | |
T1 | 146 (49.2) |
T2 | 131 (44.1) |
T3 | 20 (6.7) |
Preoperative PSA value, ng/mL | 7.1 (5.4–10) |
Prostate volume, mL | 48 (37–63) |
PSA density | 0.15 (0.11–0.21) |
Gleason score (GS) | |
GS 6 | 10 (3.4) |
GS 7 | 253 (85.2) |
GS 8 | 30 (10.1) |
GS 9 | 4 (1.3) |
Variables | Overall Cohort (n = 297) |
---|---|
Intraoperative data | |
Pelvic lymph node dissection | 232 (78.1) |
Estimated blood loss, mL | 200 (150–350) |
Blood transfusion | 1 (0.3) |
Major complication | 5 (1.7) |
Hemodynamic/respiratory instability | 10 (3.4) |
Operative time, min | 149 (126–174) |
Postoperative data | |
Length of stay, days | 1 (1–2) |
Unplanned patient visit | 51 (17.2) |
Unplanned readmission | 35 (11.8) |
30-d complications | |
Any | 84 (28.3) |
High grade (i.e., CD ≥ 3) | 15 (5) |
r | p Value | |
---|---|---|
Any complication | −0.13 | 0.01 |
High-grade complication (CD ≥ 3) | −0.28 | <0.001 |
Length of hospital stay | −0.27 | <0.001 |
Unplanned visit | −0.13 | 0.01 |
Unplanned readmission | −0.14 | 0.01 |
Low Risk BETTY ≥ 12 (n = 275) | Intermediate Risk BETTY 7–11 (n = 20) | High Risk BETTY ≤ 6 (n = 2) | ||
---|---|---|---|---|
Any complication | Rate (%) | 25% | 65% | 100% |
Adjusted OR (95% CI) | Ref. | 5.3 (2–15) | N/A | |
p | Ref. | <0.001 | N/A | |
High-grade complication (CD ≥ 3) | Rate (%) | 2.5% | 30% | 100% |
Adjusted OR (95% CI) | Ref. | 16 (4.7–56) | N/A | |
p | Ref. | <0.001 | N/A | |
Length of hospital stay, days | Median | 1 | 1.5 | 1.5 |
Adjusted OR (95% CI) | Ref. | 2.72 (1.01–6.97) | N/A | |
p | Ref. | 0.04 | N/A | |
Unplanned visit | Rate (%) | 14.9% | 40% | 100% |
Adjusted OR (95% CI) | Ref. | 3.5 (1.3–9) | N/A | |
p | Ref. | 0.01 | N/A | |
Unplanned readmission | Rate (%) | 9% | 40% | 100% |
Adjusted OR (95% CI) | Ref. | 6 (2.1–16) | N/A | |
p | Ref. | <0.001 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baboudjian, M.; Abou-Zahr, R.; Buhas, B.; Touzani, A.; Beauval, J.-B.; Ploussard, G. The BETTY Score to Predict Perioperative Outcomes in Surgical Patients. Cancers 2023, 15, 3050. https://doi.org/10.3390/cancers15113050
Baboudjian M, Abou-Zahr R, Buhas B, Touzani A, Beauval J-B, Ploussard G. The BETTY Score to Predict Perioperative Outcomes in Surgical Patients. Cancers. 2023; 15(11):3050. https://doi.org/10.3390/cancers15113050
Chicago/Turabian StyleBaboudjian, Michael, Rawad Abou-Zahr, Bogdan Buhas, Alae Touzani, Jean-Baptiste Beauval, and Guillaume Ploussard. 2023. "The BETTY Score to Predict Perioperative Outcomes in Surgical Patients" Cancers 15, no. 11: 3050. https://doi.org/10.3390/cancers15113050
APA StyleBaboudjian, M., Abou-Zahr, R., Buhas, B., Touzani, A., Beauval, J. -B., & Ploussard, G. (2023). The BETTY Score to Predict Perioperative Outcomes in Surgical Patients. Cancers, 15(11), 3050. https://doi.org/10.3390/cancers15113050