Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Study Endpoints
3. Patients and Methods
3.1. Study Design and Patient Selection
3.2. Surgical Approach and Diagnostic Workup before RAI
3.3. RAI Ablation/Therapy
3.4. Thyroglobulin, Anti-Thyroglobulin Antibodies and Thyrotropin Measurements
3.5. Imaging during Follow-Up
3.6. Patient’s Classification
- (i)
- Patients with evidence of locoregional structural disease (nodal disease, ND);
- (ii)
- Patients with evidence of distant structural disease (distant disease, DD);
- (iii)
- Patients with no evidence of structural disease but with a biochemical indeterminate response and minimal residual thyroid tissue after RAI ablation/therapy (R);
- (iv)
- Patients with no evidence of structural or biochemical disease and intermediate ATA risk (NED-I);
- (v)
- Patients with no evidence of structural or biochemical disease and low ATA risk (NED-L).
3.7. Ethical Requirements
3.8. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robie, D.K.; Dinauer, C.W.; Tuttle, R.M.; Ward, D.T.; Parry, R.; McClellan, D.; Svec, R.; Adair, C.; Francis, G. The impact of initial surgical management on outcome in young patients with differentiated thyroid cancer. J. Pediatr. Surg. 1998, 33, 1134–1138. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Grebe, S.K. Diagnosis and management of thyroid carcinoma: Focus on serum thyroglobulin. Exp. Rev. Endocrinol. Metab. 2009, 4, 25–43. [Google Scholar] [CrossRef]
- Spencer, C.A. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J. Clin. Endocrinol. Metab. 2011, 96, 3615–3627. [Google Scholar] [CrossRef]
- Spencer, C.; LoPresti, J.; Fatemi, S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence of thyroglobulin autoantibodies. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 394–404. [Google Scholar] [CrossRef]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010; pp. 87–96. [Google Scholar]
- Haugen, B.R.; Pacini, F.; Reiners, C.; Schlumberger, M.; Ladenson, P.W.; Sherman, S.I.; Cooper, D.S.; Graham, K.E.; Braverman, L.E.; Skarulis, M.C.; et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J. Clin. Endocrinol. Metab. 1999, 84, 3877–3885. [Google Scholar] [CrossRef]
- Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.; Tennvall, J.; Bombardieri, E. European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1941–1959. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Signore, A.; Campagna, G.; Marinaccio, J.; Vitis, M.; Lauri, C.; Berardinelli, F.; Tofani, A.; Chianelli, M.; Borro, M.; Gentile, G.; et al. Analysis of Short-Term and Stable DNA Damage in Patients with Differentiated Thyroid Cancer Treated with 131I in Hypothyroidism or with Recombinant Human Thyroid-Stimulating Hormone for Remnant Ablation. J. Nucl. Med. 2022, 63, 1515–1522. [Google Scholar] [CrossRef]
- Watanabe, K.; Uchiyama, M.; Fukuda, K. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation. Jpn. J. Radiol. 2017, 35, 505–510. [Google Scholar] [CrossRef]
- Lin, J.D.; Huang, M.J.; Hsu, B.R.; Chao, T.C.; Hsueh, C.; Liu, F.H.; Liou, M.J.; Weng, H.F. Significance of post-operative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J. Surg. Oncol. 2002, 80, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Samaan, N.A.; Schultz, P.N.; Hickey, R.C.; Goepfert, H.; Haynie, T.P.; Johnston, D.A.; Ordonez, N.G. The results of various modalities of treatment of well differentiated thyroid carcinomas: A retrospective review of 1599 patients. J. Clin. Endocrinol. Metab. 1992, 75, 714–720. [Google Scholar] [PubMed]
- Lamartina, L.; Durante, C.; Filetti, S.; Cooper, D.S. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: A systematic review of the literature. J. Clin. Endocrinol. Metab. 2015, 100, 1748–1761. [Google Scholar] [CrossRef]
- Schlumberger, M.; Leboulleux, S.; Catargi, B.; Deandreis, D.; Zerdoud, S.; Bardet, S.; Rusu, D.; Godbert, Y.; Buffet, C.; Schvartz, C.; et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. 2018, 6, 618–626. [Google Scholar] [CrossRef]
- Trimboli, P.; Piccardo, A.; Signore, A.; Valabrega, S.; Barnabei, A.; Santolamazza, G.; Di Paolo, A.; Stati, V.; Chiefari, A.; Vottari, S.; et al. Patient Age Is an Independent Risk Factor of Relapse of Differentiated Thyroid Carcinoma and Improves the Performance of the American Thyroid Association Stratification System. Thyroid 2020, 30, 713–719. [Google Scholar] [CrossRef]
- Mäenpää, H.O.; Heikkonen, J.; Vaalavirta, L.; Tenhunen, M.; Joensuu, H. Low vs high radioiodine activity to ablate the thyroid after thyroidectomy for cancer: A randomised study. PLoS ONE. 2008, 3, e1885. [Google Scholar] [CrossRef]
- Fallahi, B.; Beiki, D.; Takavar, A.; Fard-Esfahani, A.; Gilani, K.A.; Saghari, M.; Eftekhari, M. Low versus high radioiodine dose in post-operative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: A large randomised clinical trial. Nucl. Med. Commun. 2012, 33, 275–282. [Google Scholar] [CrossRef]
- Sabra, M.M.; Grewal, R.K.; Ghossein, R.A.; Tuttle, R.M. Higher administered activities of radioactive iodine are associated with less structural persistent response in older, but not younger, papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid Off. J. Am. Thyroid Assoc. 2014, 24, 1088–1095. [Google Scholar] [CrossRef]
- Webb, R.C.; Howard, R.S.; Stojadinovic, A.; Gaitonde, D.Y.; Wallace, M.K.; Ahmed, J.; Burch, H.B. The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: A meta-analysis involving 3947 patients. J. Clin. Endocrinol. Metab. 2012, 97, 2754–2763. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Ceriani, L.; Suriano, S.; Ghelfo, A.; Maffioli, M. Thyroglobulin measurement before rhTSH-aided 131I ablation in detecting metastases from differentiated thyroid carcinoma. Clin. Endocrinol. 2008, 69, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Polachek, A.; Hirsch, D.; Tzvetov, G.; Grozinsky-Glasberg, S.; Slutski, I.; Singer, J.; Weinstein, R.; Shimon, I.; Benbassat, C.A. Prognostic value of post-thyroidectomy thyroglobulin levels in patients with differentiated thyroid cancer. J. Endocrinol. Investig. 2011, 34, 855–860. [Google Scholar]
- Ronga, G.; Filesi, M.; Ventroni, G.; Vestri, A.R.; Signore, A. Value of the first serum thyroglobulin level after total thyroidectomy for the diagnosis of metastases from differentiated thyroid carcinoma. Eur. J. Nucl. Med. 1999, 26, 1448–1452. [Google Scholar] [CrossRef]
- Piccardo, A.; Arecco, F.; Puntoni, M.; Foppiani, L.; Cabria, M.; Corvisieri, S.; Arlandini, A.; Altrinetti, V.; Bandelloni, R.; Orlandi, F. Focus on high-risk DTC patients: High postoperative serum thyroglobulin level is a strong predictor of disease persistence and is associated to progression-free survival and overall survival. Clin. Nucl. Med. 2013, 38, 18–24. [Google Scholar] [CrossRef]
- Salvatori, M.; Raffaelli, M.; Castaldi, P.; Treglia, G.; Rufini, V.; Perotti, G.; Lombardi, C.P.; Rubello, D.; Ardito, G.; Bellantone, R. Evaluation of the surgical completeness after total thyroidectomy for differentiated thyroid carcinoma. Eur. J. Surg. Oncol. 2007, 33, 648–654. [Google Scholar] [CrossRef]
- Makarewicz, J.; Adamczewski, Z.; Knapska-Kucharska, M.; Lewinski, A. Evaluation of the diagnostic value of the first thyroglobulin determination in detecting metastases after differentiated thyroid carcinoma surgery. Exp. Clin. Endocrinol. Diabetes. 2006, 114, 485–489. [Google Scholar] [CrossRef]
- McLeod, D.S.; Cooper, D.S.; Ladenson, P.W.; Ain, K.B.; Brierley, J.D.; Fein, H.G.; Haugen, B.R.; Jonklaas, J.; Magner, J.; Ross, D.S. Prognosis of differentiated thyroid cancer concerning serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid 2014, 24, 35–42. [Google Scholar] [CrossRef]
- Husseini, M.A. The implication of different clinical and pathological variables in patients with differentiated thyroid cancer on successful ablation for 3700 MBq (131)I: A single Egyptian institutional experience over 14 years. Ann. Nucl. Med. 2016, 30, 468–476. [Google Scholar] [CrossRef]
- Robenshtok, E.; Grewal, R.K.; Fish, S.; Sabra, M.; Tuttle, R.M. A low postoperative nonstimulated serum thyroglobulin level does not exclude the presence of radioactive iodine avid metastatic foci in intermediate-risk differentiated thyroid cancer patients. Thyroid 2013, 23, 436–442. [Google Scholar] [CrossRef] [PubMed]
- de Rosário, P.W.; Guimarães, V.C.; Maia, F.F.; Fagundes, T.A.; Purisch, S.; Padrao, E.L.; Rezende, L.L.; Barroso, A.L. Thyroglobulin before ablation and correlation with posttreatment scanning. Laryngoscope 2005, 115, 264–267. [Google Scholar] [PubMed]
- Giovannella, L.; Castellana, M.; Trimboli, P. Unstimulated high-sensitive thyroglobulin is a powerful prognostic predictor in patients with thyroid cancer. Clin. Chem. Lab. Med. 2019, 58, 130–137. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Age at diagnosis, mean ± SD, (range) (years) | 51.21 ± 13.77, (21 to 84) |
Age (years) | |
Male, mean ± SD, (range) | 62.24 ± 12.62, (29.33 to 84.71) |
Female, (mean ± SD), (range) | 56.62 ± 13.06, (28.86 to 90.07) |
Sex, n (%) | |
Male | 30 (23.26) |
Female | 99 (76.74) |
Histology, n (%) | |
Classic papillary | 59 (45.74) |
Papillary follicular variant | 47 (36.43) |
Papillary mixed variant | 13 (10.08) |
Papillary tall cells variant | 5 (3.88) |
Papillary oncocystic variant | 4 (3.10) |
Papillary sclerosis variant | 1 (0.78) |
Multifocality, n (%) | |
Yes | 52 (40.31) |
No | 77 (59.69) |
Capsular invasion, n (%) | |
Yes | 41 (31.78) |
No | 7 (5.43) |
Not available | 81 (62.79) |
Vascular invasion, n (%) | |
Yes | 10 (7.75) |
No | 109 (84.50) |
Not available | 10 (7.75) |
Margins, n (%) | |
R0 | 108 (83.72) |
R1 | 12 (9.30) |
Not available | 9 (6.98) |
AJCC TNM classification, n (%) | |
T1 | 60 (46.51) |
T2 | 15 (11.63) |
T3 | 53 (41.08) |
T4 | 1 (0.78) |
Nx | 77 (59.69) |
N0 | 21 (16.28) |
N1 | 31 (24.03) |
ATA risk, n (%) | |
Low | 78 (60.47) |
Intermediate | 49 (37.98) |
High | 2 (1.55) |
Patient preparation, n (%) | |
rhTSH | 75 (58.14) |
4 weeks Levotyroxine withdrawal | 54 (41.86) |
RAI dose, n (%) | |
1850 MBq (50 mCi) | 34 (26.36) |
1850–3700 MBq (50–100 mCi) | 22 (17.05) |
>3700 MBq (>100 mCi) | 73 (56.59) |
ATA Risk | ||||
---|---|---|---|---|
n (%) | Low n (%) | Intermediate n (%) | High n (%) | |
Nodal Disease (ND) | 15 (11.63) | 5 (33.33) | 9 (60.00) | 1 (6.67) |
Distant Disease (DD) | 5 (3.88) * | 0 (0.00) | 4 (80.00) | 1 (20.00) |
Biochemical Indeterminate—Minimal residual tissue (R) | 8 (6.20) | 2 (40.00) | 6 (60.00) | 0 (0.00) |
Non-evidence of disease—ATA intermediate risk (NED-I) | 30 (23.26) | 0 (0.00) | 30 (100.00) | 0 (0.00) |
Non-evidence of disease ATA low risk (NED-L) | 71 (55.04) | 71 (100.00) | 0 (0.00) | 0 (0.00) |
ND Median (95%CI) (Min to Max) | DD Median (95%CI) (Min to Max) | R Median (95%CI) (Min to Max) | NED-I Median (95%CI) (Min to Max) | NED-L Median (95%CI) (Min to Max) | p | |
---|---|---|---|---|---|---|
Tg−30 (ng/mL) | 3.50 (1.62 to 5.00) (1.30 to 8.60) | 28.80 (16.00 to 189.00) (16.00 to 189.00) | 1.50 (0.40 to 2.93) (0.30 to 2.93) | 0.47 (0.30 to 0.64) (0.09 to 1.50) | 0.48 (0.30 to 0.63) (0.00 to 1.45) | <0.0001 |
Tg0 (ng/mL) | 15.26 (5.92 to 38.43) (0.97 to 64.00) | 159.40 (33.00 to 2095.00) (33.00 to 2095.00) | 7.82 (0.98 to 149.00) (0.61 to 149.00) | 1.38 (0.59 to 2.20) (0.00 to 25.31) | 1.59 (0.43 to 3.08) (0.00 to 81.90) | <0.0001 |
Tg0H | 33.70 (2.49 to 64.00) (2.49 to 64.00) | 359.00 (159.40 to 2095.00) (159.40 to 2095.00) | 74.99 (0.98 to 149.00) (0.49 to 149.00) | 1.97 (0.30 to 6.54) (0.00 to 14.68) | 2.73 (1.33 to 4.80) (0.00 to 39.80) | 0.002 |
Tg0TSH | 7.41 (0.97 to 38.43) (0.97 to 38.43) | 59.24 (33.00 to 85.49) (33.00 to 85.49) | 7.15 (0.61 to 20.32) (0.61 to 20.32) | 0.59 (0.00 to 3.07) (0.00 to 25.31) | 0.44 (0.23 to 3.08) (0.00 to 81.90) | 0.004 |
p | 0.11 | 0.15 | 0.84 | 0.21 | 0.08 | |
Tg+7 (ng/mL) | 82.00 (40.00 to 308.50) (0.69 to 515.00) | 169.70 (100.00 to 900.00) (100.00 to 900.00) | 13.70 (1.91 to 211.20) (1.91 to 211.20) | 23.81 (5.60 to 50.60) (0.00 to 99.40) | 18.58 (7.39 to 37.00) (0.00 to 872.00) | 0.005 |
Tg+7H | 85.95 (40.00 to 515.00) (40.00 to 515.00) | 534.85 (169.70 to 900.00) (169.70 to 900.00) | 139.50 (88.00 to 191.00) (88.00 to 191.00) | 33.85 (4.43 to 96.50) (0.00 to 99.40) | 36.40 (6.39 to 78.70) (0.00 to 283.00) | 0.036 |
Tg+7TSH | 78.99 (0.69 to 183.00) (0.69 to 183.00) | 100.00 (100.00 to 100.00) (100.00 to 100.00) | 11.46 (1.91 to 211.20) (1.91 to 211.20) | 18.42 (0.54 to 50.60) (0.00 to 211.20) | 12.80 (5.12 to 35.00) (0.00 to 872.00) | 0.37 |
p | 0.08 | 0.54 | 0.33 | 0.24 | 0.36 | |
TSH−30 (mIU/L) | 0.49 (0.13 to 0.80) (0.00 to 0.87) | 0.50 (0.08 to 1.26) (0.08 to 1.26) | 0.45 (0.07 to 1.35) (0.04 to 1.35) | 0.11 (0.09 to 0.25) (0.00 to 0.71) | 0.17 (0.12 to 0.21) (0.00 to 1.34) | 0.14 |
TSH0 (mIU/L) | 101.67 (79.29 to 138.38) (26.51 to 160.97) | 102.86 (64.30 to 244.41) (64.30 to 244.41) | 171.61 (79.34 to 498.00) (43.33 to 498.00) | 106.59 (82.74 to 121.00) (36.20 to 232.43) | 98.59 (84.18 to 116.10) (20.28 to 299.23) | 0.32 |
Activity (mCi) | 120 (100 to 120) (30 to 150) | 150 (100 to 150) (100 to 150) | 100 (80 to 150) (50 to 150) | 100 (100 to 120) (50 to 120) | 80 (80 to 100) (50 to 150) | <0.0001 |
Activity (MBq) | 4440 (3700 to 4440) (1110 to 5550) | 5550 (3700 to 5550) (3700 to 5550) | 3700 (2960 to 5550) (1850 to 5550) | 3700 (1850 to 4440) (3700 to 4440) | 2960 (2960 to 3700) (1850 to 5550) | <0.0001 |
Nodal Disease vs. Non-Evidence Disease | Distal Disease vs. Non-Evidence Disease | |||
---|---|---|---|---|
Cutoff (Se and Sp) | AUC (95% CI) | Cutoff (Se and Sp) | AUC (95% CI) | |
Tg−30 (ng/mL) | 1.30 (100 and 89.0) | 99.0 (96.9 to 100) | 16.00 (100.0 and 100.0) | 100 (100 to 100) |
Tg0 (ng/mL) | 5.70 (85.7 and 76.8) | 85.0 (75.8 to 94.6) | 32.98 (100 and 96.0) | 99.2 (97.4 to 100) |
Tg+7 (ng/mL) | 78.23 (76.9 and 79.0) | 76.9 (63.2 to 90.6) | 100.07 (100 and 87.7) | 93.4 (85.3 to 100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signore, A.; Lauri, C.; Di Paolo, A.; Stati, V.; Santolamazza, G.; Capriotti, G.; Prosperi, D.; Tofani, A.; Valabrega, S.; Campagna, G. Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma. Cancers 2023, 15, 2976. https://doi.org/10.3390/cancers15112976
Signore A, Lauri C, Di Paolo A, Stati V, Santolamazza G, Capriotti G, Prosperi D, Tofani A, Valabrega S, Campagna G. Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma. Cancers. 2023; 15(11):2976. https://doi.org/10.3390/cancers15112976
Chicago/Turabian StyleSignore, Alberto, Chiara Lauri, Arianna Di Paolo, Valeria Stati, Giuliano Santolamazza, Gabriela Capriotti, Daniela Prosperi, Anna Tofani, Stefano Valabrega, and Giuseppe Campagna. 2023. "Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma" Cancers 15, no. 11: 2976. https://doi.org/10.3390/cancers15112976
APA StyleSignore, A., Lauri, C., Di Paolo, A., Stati, V., Santolamazza, G., Capriotti, G., Prosperi, D., Tofani, A., Valabrega, S., & Campagna, G. (2023). Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma. Cancers, 15(11), 2976. https://doi.org/10.3390/cancers15112976