Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Characteristics
2.2. Saliva and Blood Sampling
2.3. DNA Isolation, 16S rRNA Gene Sequencing, and Analysis
2.4. Measuring SCFA, FFAR2, and Chemokine/Cytokine-Related Cancer Associations with Oral Microbial Signals
2.5. Oral Microbiota Key Metabolic Pathways Prediction
2.6. Machine Learning and Statistical Analyses
3. Results
3.1. Demographic and Lifestyle Characteristics of Study Participants
3.2. Taxonomic Analyses and the Identification of Genera Potentially Associated with Cancer Risk
3.3. Oral Microbiota Profiles Are Switched in All Cancer and Control Groups
3.4. Identification of Potential Correlation between Specific KOs in Oral Microbiota and Increased Cancer Risk
3.5. Oral Microbiota Modified Systemic Inflammation and Cancer Initiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitmore, S.E.; Lamont, R.J. Oral bacteria and cancer. PLoS Pathog. 2014, 10, e1003933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Gou, Y.W.; Jin, W.W.; Xiao, M.; Fang, H.Y. Association between alcohol intake and the risk of pancreatic cancer: A dose–response meta-analysis of cohort studies. BMC Cancer 2016, 16, 212. [Google Scholar] [CrossRef]
- Bagnardi, V.; Blangiardo, M.L.; Vecchia, C.; Corrao, G. A meta-analysis of alcohol drinking and cancer risk. Br. J. Cancer 2001, 85, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L. The case for early detection. Nat. Rev. Cancer 2003, 4, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Hackshaw, A.; Cohen, S.S.; Reichert, H.; Kansal, A.R.; Chung, K.C.; Ofman, J.J. Estimating the population health impact of a multi-cancer early detection genomic blood test to complement existing screening in the US and UK. Br. J. Cancer 2021, 10, 1432–1442. [Google Scholar] [CrossRef]
- Bakhti, S.Z.; Latifi-Navid, S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: What do we know and where next? BMC Microbiol. 2021, 2, 11–15. [Google Scholar] [CrossRef]
- Khan, A.A.; Sirsat, A.T.; Singh, H.; Cash, P. Microbiota and cancer: Current understanding and mechanistic implications. Clin. Transl. Oncol. 2021, 13, 193–202. [Google Scholar] [CrossRef]
- Frank, D.N.; Qiu, Y.; Cao, Y.; Zhang, S.; Lu, L.; Kofonow, J.M.; Robertson, C.E.; Liu, Y.; Wang, H.; Levens, C.L.; et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 2022, 41, 1269–1280. [Google Scholar] [CrossRef]
- Chen, X.; Winckler, B.; Lu, M.; Cheng, H.; Yuan, Z.; Yang, Y.; Jin, L.; Ye, W. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE 2015, 10, e0143603. [Google Scholar] [CrossRef]
- Han, S.; Yang, X.I.; Qi, Q.; Pan, Y.; Chen, Y.; Shen, J.; Liao, H.; Ji, Z. Potential screening and early diagnosis method for cancer: Tongue diagnosis. Int. J. Oncol. 2016, 48, 2257–2264. [Google Scholar] [CrossRef]
- García-Castillo, V.; Sanhueza, E.; McNerney, E.; Onate, S.A.; García, A. Microbiota dysbiosis: A new piece in the understanding of the carcinogenesis puzzle. J. Med. Microbiol. 2016, 65, 1347–1362. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Yang, L.V.; Tiriveedhi, V.; Muzaffar, M. Complex role of microbiome in pancreatic tumorigenesis: Potential therapeutic implications. Cells 2022, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Hujoel, P.P.; Drangsholt, M.; Spiekerman, C.; Weiss, N.S. An exploration of the periodontitis–cancer association. Ann. Epidemiol. 2003, 13, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef]
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef]
- Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lambert, N.A.; et al. GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009, 69, 2826–2832. [Google Scholar] [CrossRef]
- Campisciano, G.; de Manzini, N.; Delbue, S.; Cason, C.; Cosola, D.; Basile, G.; Ferrante, P.; Comar, M.; Palmisano, S. The obesity-related gut bacterial and viral dysbiosis can impact the risk of colon cancer development. Microorganisms 2020, 8, 431. [Google Scholar] [CrossRef]
- Cani, P.D.; Jordan, B.F. Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 671–682. [Google Scholar] [CrossRef]
- Yang, G.; Chen, S.; Deng, B.; Tan, C.; Deng, J.; Zhu, G.; Yin, Y.; Ren, W. Implication of G protein-coupled receptor 43 in intestinal inflammation: A mini-review. Front. Immunol. 2018, 9, 1434. [Google Scholar] [CrossRef]
- Kovács, G. Smote-variants: A python implementation of 85 minority oversampling techniques. Neurocomputing 2019, 366, 352–354. [Google Scholar] [CrossRef]
- Fotouhi, S.; Asadi, S.; Kattan, M.W. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J. Biomed. Inform. 2019, 90, 103089. [Google Scholar] [CrossRef] [PubMed]
- Kovács, G. An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets. Appl. Soft Comput. 2019, 83, 105662. [Google Scholar] [CrossRef]
- Tuominen, H.; Rautava, J. Oral microbiota and cancer development. Pathobiology 2021, 88, 116–126. [Google Scholar] [CrossRef]
- Mager, D.L.; Haffajee, A.D.; Devlin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.B.; Ahn, J.; Fan, X.; Peters, B.A.; Ma, Y.; Yang, L.; Agalliu, I.; Burk, R.D.; Ganly, I.; Purdue, M.P.; et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018, 4, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Stasiewicz, M.; Karpiński, T.M. The oral microbiota and its role in carcinogenesis. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef]
- Qadir, R.M.; Assafi, M.S. The association between body mass index and the oral Firmicutes and Bacteroidetes profiles of healthy individuals. Malays. Fam. Physician Off. J. Acad. Fam. Physicians Malays. 2021, 16, 36. [Google Scholar] [CrossRef]
- Chocolatewala, N.; Chaturvedi, P.; Desale, R. The role of bacteria in oral cancer. Indian J. Med. Paediatr. Oncol. 2010, 31, 126–131. [Google Scholar] [CrossRef]
- Do, T.; Devine, D.; Marsh, P.D. Oral biofilms: Molecular analysis, challenges, and future prospects in dental diagnostics. Clin. Cosmet. Investig. Dent. 2013, 5, 11–19. [Google Scholar]
- Zarco, M.F.; Vess, T.J.; Ginsburg, G.S. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Sasaki, H.; Ishizuka, T.; Muto, M.; Nezu, M.; Nakanishi, Y.; Inagaki, Y.; Watanabe, H.; Watanabe, H.; Terada, M. Presence of Streptococcus anginosus DNA in esophageal cancer, dysplasia of esophagus, and gastric cancer. Cancer Res. 1998, 58, 2991–2995. [Google Scholar] [PubMed]
- Sasaki, M.; Yamaura, C.; Ohara-Nemoto, Y.; Tajika, S.; Kodama, Y.; Ohya, T.; Harada, R.; Kimura, S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005, 11, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Narikiyo, M.; Nishimura, E.; Yano, A.; Tanabe, C.; Sasaki, H.; Hanada, N. Molecular analysis of age-related changes of Streptococcus anginosus group and Streptococcus mitis in saliva. Oral Microbiol. Immunol. 2004, 19, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Krogh, P.; Hald, B.; Holmstrup, P. Possible mycological etiology of oral mucosal cancer: Catalytic potential of infecting Candida aibicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis 1987, 8, 1543–1548. [Google Scholar] [CrossRef]
- Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The microflora associated with human oral carcinomas. Oral Oncol. 1998, 34, 304–308. [Google Scholar] [CrossRef]
- Schmidt, B.L.; Kuczynski, J.; Bhattacharya, A.; Huey, B.; Corby, P.M.; Queiroz, E.L.; Nightingale, K.; Kerr, A.R.; DeLacure, M.D.; Veeramachaneni, R.; et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE 2014, 9, e98741. [Google Scholar] [CrossRef]
- Jooeun, K.W.; Lee, D.H.; George, C.O.; Topham, A.; Misbahuddin, S.Y.; Ramsakal, A.; Greene, J. Abiotrophia and Granulicatella infections in cancer patients: A single-center chart review study. J. Microbiol. Infect. Dis. 2020, 10, 89–97. [Google Scholar]
- Alan, Y.; Savcı, A.; Koçpınar, E.F.; Ertaş, M. Postbiotic metabolites, antioxidant and anticancer activities of probiotic Leuconostoc pseudomesenteroides strains in natural pickles. Arch. Microbiol. 2022, 204, 571. [Google Scholar] [CrossRef]
- Vahed, S.Z.; Barzegari, A.; Saadat, Y.R.; Goreyshi, A.; Omidi, Y. Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed. Pharmacother. 2017, 94, 1094–1100. [Google Scholar] [CrossRef]
- Sun, J.H.; Li, X.L.; Yin, J.; Li, Y.H.; Hou, B.X.; Zhang, Z. A screening method for gastric cancer by oral microbiome detection. Oncol. Rep. 2018, 39, 2217–2224. [Google Scholar] [CrossRef]
- Abdulamir, A.S.; Hafidh, R.R.; Bakar, F.A. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 2011, 30, 11. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Gao, X.; Wu, L.; Yan, B.; Wang, Z.; Zhang, X.; Peng, L.; Yu, J.; Sun, G.; Yang, Y. Salivary microbiota for gastric cancer prediction: An exploratory study. Front. Cell. Infect. Microbiol. 2021, 11, 640309. [Google Scholar] [CrossRef] [PubMed]
- Duijster, J.W.; Franz, E.; Neefjes, J.; Mughini-Gras, L. Bacterial and parasitic pathogens as risk factors for cancers in the gastrointestinal tract: A review of current epidemiological knowledge. Front. Microbiol. 2021, 12, 790256. [Google Scholar] [CrossRef]
- Brahe, L.K.; Astrup, A.; Larsen, L.H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 2013, 14, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Farrow, B.; Rychahou, P.; O’Connor, K.L.; Evers, B.M. Butyrate inhibits pancreatic cancer invasion. J. Gastrointest. Surg. 2003, 7, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signaling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, H.; Nachbaur, D.M.; Fritz, E.; Krainer, M.; Huber, H. Interleukin-6 is a prognostic factor in multiple myeloma [letter] [see comments]. Blood 1991, 77, 2794–2795. [Google Scholar] [CrossRef]
- Padmavathi, G.; Banik, K.; Monisha, J.; Bordoloi, D.; Shabnam, B.; Arfuso, F.; Sethi, G.; Fan, L.; Kunnumakkara, A.B. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Lett. 2018, 432, 260–271. [Google Scholar] [CrossRef]
Variable | Control | Cancer | p Value a |
---|---|---|---|
(n = 745) | (n = 309) | ||
Age a | 57.3 ± 9.20 | 63.2 ± 12.2 | <0.0001 |
Sex a | <0.0001 | ||
Female | 434 (58.3%) | 116 (37.5%) | |
Male | 311 (41.7%) | 193 (62.5%) | |
BMI (kg/m2) | 24.0 ± 3.03 | 23.6 ± 3.67 | <0.0001 |
<18.5 | 17 (2.28%) | 24 (7.77%) | 0.002 |
18.5~22.9 | 272 (36.5%) | 101 (32.7%) | |
23.0~24.9 | 197 (26.4%) | 78 (25.2%) | |
25.0~29.9 | 226 (30.3%) | 90 (29.1%) | |
30≥ | 27 (3.62%) | 11 (3.56%) | |
Smoking b | <0.0001 | ||
Non-smoker | 447 (60.0%) | 152 (49.2%) | |
Former smoker | 202 (27.1%) | 85 (27.5%) | |
Current smoker | 71 (9.53%) | 66 (21.4%) | |
Drinking c | <0.0001 | ||
Non-drinker | 179 (24.0%) | 118 (38.2%) | |
Former drinker | 85 (11.4%) | 56 (18.1%) | |
Current drinker | 441 (59.2%) | 129 (41.8%) | |
Stage d | |||
1 | 89 (28.8%) | ||
2 | 43 (13.9%) | ||
3 | 43 (13.9%) | ||
4 | 101 (32.7%) | ||
T Stage e | |||
T1 | 96 (31.1%) | ||
T2 | 57 (18.5%) | ||
T3 | 36 (11.7%) | ||
T4 | 63 (20.4%) | ||
N Stage f | |||
N0 | 141 (45.6%) | ||
N1 | 40 (12.9%) | ||
N2 | 32 (10.4%) | ||
N3 | 14 (4.53%) |
Taxon Name | Logistic Regression | Number of Subjects a | OR b (95% CI) | p Value c | |
---|---|---|---|---|---|
Control | Cancer | ||||
Streptococcus | Continuous scale | 745 | 309 | 3.13 (2.51, 3.94) | 3.33 × 10−23 |
Quartile 1 | 187 | 33 | ref | ||
Quartile 2 | 186 | 36 | 1.09 (0.65, 1.83) | 0.72 | |
Quartile 3 | 186 | 57 | 1.73 (1.08, 2.81) | 0.02 | |
Quartile 4 | 186 | 183 | 5.57 (3.69, 8.62) | 1.60 × 10−15 | |
Haemophilus | Continuous scale | 745 | 309 | 0.42 (0.35, 0.51) | 3.30 × 10−19 |
Quartile 1 | 187 | 165 | ref | ||
Quartile 2 | 186 | 46 | 0.28 (0.18, 0.40) | 9.15 × 10−11 | |
Quartile 3 | 186 | 38 | 0.23 (0.15, 0.34) | 1.83 × 10−12 | |
Quartile 4 | 186 | 60 | 0.36 (0.25, 0.52) | 3.76 × 10−8 | |
Prevotella | Continuous scale | 745 | 309 | 0.51 (0.42, 0.62) | 1.62 × 10−11 |
Quartile 1 | 187 | 131 | ref | ||
Quartile 2 | 186 | 70 | 0.53 (0.37, 0.76) | 0.00 | |
Quartile 3 | 186 | 60 | 0.46 (0.31, 0.66) | 3.42 × 10−5 | |
Quartile 4 | 186 | 48 | 0.36 (0.24, 0.53) | 4.55 × 10−7 | |
Leuconostoc | Continuous scale | 745 | 309 | 2.23 × 1041 (1.24 × 1026, 2.06 × 105) | 3.06 × 10−6 |
=0 | 715 | 207 | ref | ||
>0 | 30 | 102 | 11.74 (7.69, 18.42) | 1.45 × 10−28 | |
Neisseria | Continuous scale | 745 | 309 | 0.72 (0.63, 0.83) | 4.86 × 10−6 |
Quartile 1 | 187 | 111 | ref | ||
Quartile 2 | 186 | 74 | 0.67 (0.46, 0.95) | 0.02 | |
Quartile 3 | 186 | 63 | 0.57 (0.39, 0.82) | 0.00 | |
Quartile 4 | 186 | 61 | 0.55 (0.37, 0.79) | 0.00 | |
Abiotrophia | Continuous scale | 745 | 309 | 658.08 (98.59, 5651.18) | 3.24 × 10−10 |
=0 | 368 | 104 | ref | ||
>0 | 377 | 205 | 1.92 (1.46, 2.54) | 3.42 × 10−6 |
Function Name | Abundance Median | Fold Change | Univariate Logistic Regression | OR (95% CI) b | p Value c | AUC | ||
---|---|---|---|---|---|---|---|---|
Control (n = 750) | Cancer (n = 313) | p Value a | Cancer/ Control | |||||
G protein-coupled receptor kinase (K08291) | 3.1 × 10−8 | 1.7 × 10−7 | 1.5 × 10−16 | 5.40 | Continuous Scale | 1.75 (1.54–1.98) | 7.2 × 10−18 | 0.73 |
Quartile 1 | ref | 7.1 × 10−25 | ||||||
Quartile 2 | 1.37 (0.87–2.15) | |||||||
Quartile 3 | 2.34 (1.57–3.49) | |||||||
Quartile 4 | 3.13 (2.20–4.45) | |||||||
Futalosine hydrolase (K11783) | 2.3 × 10−8 | 1.2 × 10−7 | 6.9 × 10−8 | 5.20 | Continuous Scale | 1.39 (1.24–1.56) | 1.9 × 10−8 | 0.76 |
Quartile 1 | ref | 6.8 × 10−19 | ||||||
Quartile 2 | 2.35 (1.58–3.51) | |||||||
Quartile 3 | 3.06 (2.09–4.48) | |||||||
Quartile 4 | 4.61 (3.24–6.57) | |||||||
H+-transporting ATPase (K01535) | 5.1 × 10−8 | 2.5 × 10−7 | 8.5 × 10−23 | 5.00 | Continuous Scale | 1.74 (1.56–1.94) | 1.2 × 10−23 | 0.73 |
Quartile 1 | ref | 3.1 × 10−25 | ||||||
Quartile 2 | 1.66 (1.07–2.60) | |||||||
Quartile 3 | 1.78 (1.15–2.76) | |||||||
Quartile 4 | 6.74 (4.71–9.66) |
Name | Leuconostoc | Streptococcus | Abiotrophia | Prevotella | Haemophilus | Neisseria | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r a | p b | r a | p b | r a | p b | r a | p b | r a | p b | r a | p b | |
G protein-coupled receptor kinase (K08291) | 0.16 | <0.0001 | 0.16 | <0.0001 | 0.05 | 0.13 | −0.07 | 0.02 | −0.10 | 0.001 | −0.12 | 0.000 |
Futalosine hydrolase (K11783) | 0.13 | <0.0001 | 0.16 | <0.0001 | 0.12 | 0.000 | −0.14 | <0.0001 | −0.10 | 0.001 | −0.01 | 0.79 |
H+−transporting ATPase (K01535) | 0.22 | <0.0001 | 0.21 | <0.0001 | 0.07 | 0.02 | −0.12 | <0.0001 | −0.18 | <0.0001 | −0.14 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouri, Z.; Choi, S.W.; Choi, I.J.; Ryu, K.W.; Woo, S.M.; Park, S.-J.; Lee, W.J.; Choi, W.; Jung, Y.-S.; Myung, S.-K.; et al. Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers 2023, 15, 2898. https://doi.org/10.3390/cancers15112898
Nouri Z, Choi SW, Choi IJ, Ryu KW, Woo SM, Park S-J, Lee WJ, Choi W, Jung Y-S, Myung S-K, et al. Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers. 2023; 15(11):2898. https://doi.org/10.3390/cancers15112898
Chicago/Turabian StyleNouri, Zahra, Sung Weon Choi, Il Ju Choi, Keun Won Ryu, Sang Myung Woo, Sang-Jae Park, Woo Jin Lee, Wonyoung Choi, Yuh-Seog Jung, Seung-Kwon Myung, and et al. 2023. "Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer" Cancers 15, no. 11: 2898. https://doi.org/10.3390/cancers15112898
APA StyleNouri, Z., Choi, S. W., Choi, I. J., Ryu, K. W., Woo, S. M., Park, S. -J., Lee, W. J., Choi, W., Jung, Y. -S., Myung, S. -K., Lee, J. -H., Park, J. -Y., Praveen, Z., Woo, Y. J., Park, J. H., & Kim, M. K. (2023). Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers, 15(11), 2898. https://doi.org/10.3390/cancers15112898