Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Passive Targeted Delivery Approach for Topotecan
3. Active Targeting
4. Combinatorial Drug Therapy Employing Topotecan
5. Clinical Studies of Topotecan Nanoformulations
6. Patent Literature
7. Authors’ Opinion/Analysis
8. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garg, P. Selective Preference of Antibody Mimetics over Antibody, as Binding Molecules, for Diagnostic and Therapeutic Applications in Cancer Therapy. Biointerface Res. Appl. Chem. 2021, 11, 10679–10689. [Google Scholar]
- Arifin, M.Z.; Parikesit, A.A.; Agustriawan, D. Molecular Simulation of MDM2 and E6AP Proteins as P53 Regulator in Cervical Cancer. Biointerface Res. Appl. Chem. 2020, 10, 5875–5879. [Google Scholar]
- Alavi, M.; Nokhodchi, A. Micro- and Nanoformulations of Paclitaxel Based on Micelles, Liposomes, Cubosomes, and Lipid Nanoparticles: Recent Advances and Challenges. Drug Discov. Today 2022, 27, 576–584. [Google Scholar] [CrossRef]
- Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; et al. Inhalable Particulate Drug Delivery Systems for Lung Cancer Therapy: Nanoparticles, Microparticles, Nanocomposites and Nanoaggregates. J. Control. Release 2018, 269, 374–392. [Google Scholar] [CrossRef]
- Verma, D.; Thakur, P.S.; Padhi, S.; Khuroo, T.; Talegaonkar, S.; Iqbal, Z. Design Expert Assisted Nanoformulation Design for Co-Delivery of Topotecan and Thymoquinone: Optimization, in Vitro Characterization and Stability Assessment. J. Mol. Liq. 2017, 242, 382–394. [Google Scholar] [CrossRef]
- Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Nicoletta, F.P.; Leggio, A.; Iemma, F. Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics 2021, 13, 304. [Google Scholar] [CrossRef]
- Padhi, S.; Behera, A. Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin. Sustain. Agric. Rev. 2020, 44, 243–272. [Google Scholar]
- Kundu, A.; Padhi, S.; Behera, A.; Hasnain, M.S.; Nayak, A.K. Tumor Targeting Strategies by Chitosan-Based Nanocarriers. In Chitosan in Biomedical Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 163–188. [Google Scholar]
- Behera, A.; Mittu, B.; Padhi, S.; Singh, A. Antimicrobial Efficacy of Essential Oil Nanoemulsions. In Nanotechnological Approaches in Food Microbiology; CRC Press: Boca Raton, FL, USA, 2020; pp. 293–309. [Google Scholar]
- Hassan, N.; Firdaus, S.; Padhi, S.; Ali, A.; Iqbal, Z. Investigating Natural Antibiofilm Components: A New Therapeutic Perspective against Candidal Vulvovaginitis. Med. Hypotheses 2021, 148, 110515. [Google Scholar] [CrossRef]
- Behera, A.; Patra, N.; Mittu, B.; Padhi, S.; Singh, J. Bimetallic Nanoparticles: Green Synthesis, Applications, and Future Perspectives. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 639–682. [Google Scholar]
- Padhi, S.; Behera, A. Advanced Drug Delivery Systems in the Treatment of Ovarian Cancer. In Advanced Drug Delivery Systems in the Management of Cancer; Academic Press: Cambridge, MA, USA, 2021; pp. 127–139. [Google Scholar]
- Behera, A.; Padhi, S.; Nayak, A.K. Engineered Liposomes as Drug Delivery and Imaging Agents. Des. Appl. Theranostic. Nanomed. 2022, 75. [Google Scholar] [CrossRef]
- Padhi, S.; Mirza, M.A.; Verma, D.; Khuroo, T.; Panda, A.K.; Talegaonkar, S.; Khar, R.K.; Iqbal, Z. Revisiting the Nanoformulation Design Approach for Effective Delivery of Topotecan in Its Stable Form: An Appraisal of Its in Vitro Behavior and Tumor Amelioration Potential. Drug Deliv. 2015, 23, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.; Gorain, B.; Padhi, S.; Choudhury, H.; Gabr, G.A.; Md, S.; Kumar, M.D.; Kesharwani, P. Recent Update of Toxicity Aspects of Nanoparticulate Systems for Drug Delivery. Eur. J. Pharm. Biopharm. 2021, 161, 100–119. [Google Scholar] [CrossRef]
- Padhi, S.; Behera, A.; Hasnain, M.S.; Nayak, A.K. Chitosan-Based Drug Delivery Systems in Cancer Therapeutics. Chitosan. Drug Deliv. 2022, 159–193. [Google Scholar]
- Padhi, S.; Dash, M.; Behera, A. Nanophytochemicals for the Treatment of Type II Diabetes Mellitus: A Review. Environ. Chem. Lett. 2021, 19, 4349–4373. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II Diabetes Mellitus: A Review on Recent Drug Based Therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- De La Torre, P.; Jesús Pérez-Lorenzo, M.; Alcázar-Garrido, Á.; Flores, A.I.; Baeza, A.; Novio, F.; Paris, J.L. Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments. Molecules 2020, 25, 715. [Google Scholar] [CrossRef] [Green Version]
- Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current Trends and Challenges in Cancer Management and Therapy Using Designer Nanomaterials. Nano Converg. 2019, 6, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Dehshahri, A.; Ashrafizadeh, M.; Ghasemipour, A.E.; Pardakhty, A.; Mandegary, A.; Mohammadinejad, R.; Sethi, G. Topoisomerase Inhibitors: Pharmacology and Emerging Nanoscale Delivery Systems. Pharmacol. Res. 2020, 151, 104551. [Google Scholar] [CrossRef]
- Chen, A.Y.; Choy, H.; Rothenberg, M.L. DNA Topoisomerase I-Targeting Drugs as Radiation Sensitizers. Oncology 1999, 13, 39–46. [Google Scholar]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B.; Stewart, L. The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.Y.; Lee, J.W.; Park, H.S.; Song, T.J.; Kim, M.K.; Choi, C.H.; Kim, T.J.; Lee, J.H.; Bae, D.S.; Kim, B.G. Sequence-Dependent Hematologic Side Effects of Topotecan and Cisplatin in Persistent or Recurrent Cervical Cancer. Gynecol. Oncol. 2010, 119, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Brogden, R.N.; Wiseman, L.R.; Noble, S. Topotecan. A Review of Its Potential in Advanced Ovarian Cancer. Drugs 1998, 56, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Kollmannsberger, C.; Mross, K.; Jakob, A.; Kanz, L.; Bokemeyer, C. Topotecan–a novel topoisomerase I inhibitor: Pharmacology and clinical experience. Oncology 1999, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, Z.H.; Zhang, L.; Yao, H.J.; Zhang, Y.; Li, R.J.; Ju, R.J.; Wang, X.X.; Zhou, J.; Li, N.; et al. Mitochondrial Targeting Topotecan-Loaded Liposomes for Treating Drug-Resistant Breast Cancer and Inhibiting Invasive Metastases of Melanoma. Biomaterials 2012, 33, 1808–1820. [Google Scholar]
- Wethington, S.L.; Wright, J.D.; Herzog, T.J. Key Role of Topoisomerase I Inhibitors in the Treatment of Recurrent and Refractory Epithelial Ovarian Carcinoma. Expert Rev. Anticancer Ther. 2014, 8, 819–831. [Google Scholar] [CrossRef]
- Brave, M.; Dagher, R.; Farrell, A.; Abraham, S.; Ramchandani, R.; Gobburu, J.; Booth, B.; Jiang, X.; Sridhara, R.; Justice, R.; et al. Topotecan in Combination with Cisplatin for the Treatment of Stage IVB, Recurrent, or Persistent Cervical Cancer. Oncology 2006, 20, 1401–1415. [Google Scholar]
- Nicum, S.J.; O’Brien, M.E.R. Topotecan for the Treatment of Small-Cell Lung Cancer. Expert Rev. Anticancer Ther. 2007, 7, 795–801. [Google Scholar] [CrossRef]
- Beretta, G.L.; Zunino, F. Relevance of Extracellular and Intracellular Interactions of Camptothecins as Determinants of Antitumor Activity. Biochem. Pharmacol. 2007, 74, 1437–1444. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in Cancer and Other Diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Behera, A.; Padhi, S. Passive and Active Targeting Strategies for the Delivery of the Camptothecin Anticancer Drug: A Review. Environ. Chem. Lett. 2020, 18, 1557–1567. [Google Scholar] [CrossRef]
- Lim, E.-K.; Chung, B.H.; Chung, S.J. Recent Advances in PH-Sensitive Polymeric Nanoparticles for Smart Drug Delivery in Cancer Therapy. Curr. Drug Targets 2016, 19, 300–317. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Selective Topotecan Delivery to Cancer Cells by Targeted PH-Sensitive Mesoporous Silica Nanoparticles. RSC Adv. 2016, 6, 50923–50932. [Google Scholar] [CrossRef] [Green Version]
- Patankar, N.A.; Waterhouse, D.; Strutt, D.; Anantha, M.; Bally, M.B. Topophore C: A Liposomal Nanoparticle Formulation of Topotecan for Treatment of Ovarian Cancer. Investig. New Drugs 2012, 31, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; et al. Development of a Highly Stable and Targetable Nanoliposomal Formulation of Topotecan. J. Control. Release 2010, 141, 13–21. [Google Scholar] [CrossRef]
- Padhi, S.; Kapoor, R.; Verma, D.; Panda, A.K.; Iqbal, Z. Formulation and Optimization of Topotecan Nanoparticles: In Vitro Characterization, Cytotoxicity, Cellular Uptake and Pharmacokinetic Outcomes. J. Photochem. Photobiol. B Biol. 2018, 183, 222–232. [Google Scholar] [CrossRef]
- Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-Loaded Lipid Nanoparticles as a Viable Tool for the Topical Treatment of Skin Cancers. J. Pharm. Pharmacol. 2017, 69, 1318–1326. [Google Scholar] [CrossRef]
- Xing, R.; Mustapha, O.; Ali, T.; Rehman, M.; Zaidi, S.S.; Baseer, A.; Batool, S.; Mukhtiar, M.; Shafique, S.; Malik, M.; et al. Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery. Biomed. Res. Int. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Jeong, S.H.; Jang, J.H.; Lee, Y.B. Oral Delivery of Topotecan in Polymeric Nanoparticles: Lymphatic Distribution and Pharmacokinetics. J. Control. Release 2021, 335, 86–102. [Google Scholar] [CrossRef]
- Scharovsky, O.G.; Mainetti, L.E.; Rozados, V.R. Metronomic Chemotherapy: Changing the Paradigm That More Is Better. Curr. Oncol. 2009, 16, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Maiti, R. Metronomic chemotherapy. J. Pharmacol. Pharmacother. 2014, 5, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Jyoti, A.; Fugit, K.D.; Sethi, P.; McGarry, R.C.; Anderson, B.D.; Upreti, M. An in Vitro Assessment of Liposomal Topotecan Simulating Metronomic Chemotherapy in Combination with Radiation in Tumor-Endothelial Spheroids. Sci. Rep. 2015, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackl, C.; Man, S.; Francia, G.; Milsom, C.; Xu, P.; Kerbel, R.S. Metronomic Oral Topotecan Prolongs Survival and Reduces Liver Metastasis in Improved Preclinical Orthotopic and Adjuvant Therapy Colon Cancer Models. Gut 2013, 62, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Nakasone, E.S.; Werb, Z. Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Dev. Cell 2010, 18, 884–901. [Google Scholar] [PubMed] [Green Version]
- Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies. ACS Biomater. Sci. Eng. 2015, 1, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Seow, E.; Zhang, Y.; Lim, Y.C. Targeting CCL21-Folic Acid-Upconversion Nanoparticles Conjugates to Folate Receptor-α Expressing Tumor Cells in an Endothelial-Tumor Cell Bilayer Model. Biomaterials 2013, 34, 4860–4871. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, O.; Cheikh, K.E.; Warther, D.; Brevet, D.; Maynadier, M.; Bouffard, E.; Salgues, F.; Jeanjean, A.; Puche, P.; Mazerolles, C.; et al. Mannose-6-Phosphate Receptor: A Target for Theranostics of Prostate Cancer. Angew. Chem. Int. Ed. 2015, 54, 5952–5956. [Google Scholar]
- Yang, K.S.; Budin, G.; Tassa, C.; Kister, O.; Weissleder, R. Bioorthogonal Approach to Identify Unsuspected Drug Targets in Live Cells. Angew. Chem. 2013, 125, 10787–10791. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Meng, B.; Yu, Y.; Wang, S. Folic Acid-Conjugated Mesoporous Silica Nanoparticles for Enhanced Therapeutic Efficacy of Topotecan in Retina Cancers. Int. J. Nanomed. 2018, 13, 4379. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, Y.; Youn, Y.S.; Oh, K.T.; Kim, D.; Lee, E.S. Transferrin-Conjugated PH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020, 12, 1109. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, W.; Xue, G.; Ma, Q.; Cui, H.; Zhang, L. Improved Therapeutic Efficacy of Topotecan Against A549 Lung Cancer Cells with Folate-Targeted Topotecan Liposomes. Curr. Drug Metab. 2020, 21, 902–909. [Google Scholar] [CrossRef]
- Tardi, P.; Choice, E.; Masin, D.; Redelmeier, T.; Bally, M.; Madden, T.D. Liposomal Encapsulation of Topotecan Enhances Anticancer Efficacy in Murine and Human Xenograft Models 1. Cancer Res. 2000, 60, 3389–3393. [Google Scholar] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtari, R.B.; Kumar, S.; Islam, S.S.; Yazdanpanah, M.; Adeli, K.; Cutz, E.; Yeger, H. Combination of Carbonic Anhydrase Inhibitor, Acetazolamide, and Sulforaphane, Reduces the Viability and Growth of Bronchial Carcinoid Cell Lines. BMC Cancer 2013, 13, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Chaudhary, K.; Gupta, S.; Singh, H.; Kumar, S.; Gautam, A.; Kapoor, P.; Raghava, G.P.S. CancerDR: Cancer drug resistance database. Sci. Rep. 2013, 3, 1445. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Lu, W.L.; Ying, X.; Liu, Y.; Du, P.; Tian, W.; Men, Y.; Guo, J.; Zhang, Y.; Li, R.J.; et al. Dual-Targeting Topotecan Liposomes Modified with Tamoxifen and Wheat Germ Agglutinin Significantly Improve Drug Transport across the Blood-Brain Barrier and Survival of Brain Tumor-Bearing Animals. Mol. Pharm. 2009, 6, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jain, S.K. Multipronged, Strategic Delivery of Paclitaxel-Topotecan Using Engineered Liposomes to Ovarian Cancer. Drug Dev. Ind. Pharm. 2015, 42, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Li, S.; Li, Y.; Galons, H.; Guo, N.; Teng, Y.; Zhang, Y.; Li, M.; Yu, P. F7 and Topotecan Co-Loaded Thermosensitive Liposome as a Nano-Drug Delivery System for Tumor Hyperthermia. Drug Deliv. 2020, 27, 836–847. [Google Scholar] [CrossRef]
- Khuroo, T.; Verma, D.; Talegaonkar, S.; Padhi, S.; Panda, A.K.; Iqbal, Z. Topotecan–Tamoxifen Duple PLGA Polymeric Nanoparticles: Investigation of in Vitro, in Vivo and Cellular Uptake Potential. Int. J. Pharm. 2014, 473, 384–394. [Google Scholar] [CrossRef]
- Liu, B.; Li, R.; Liu, Q. Polymer Nanoparticles for Loading Alkaline Antitumor Drugs. Chinese Patent Application Publication Number CN102697735A, 3 October 2012. [Google Scholar]
- Tao, T.; Zhao, Y.; Chen, Z.; Deng, J.; Chai, X.; Yin, X.; Gao, D. Topotecan Hydrochloride Targeted Liposome Preparation and Preparation Method Thereof. Chinese Patent Application Publication Number CN102764234A, 7 November 2012. [Google Scholar]
- Oh, C.K.; Ignatious, F. Stabilized Topotecan Liposomal Composition and Methods. U.S. Patent US2006222694A1, 5 October 2006. [Google Scholar]
- Redelmeier, T.; Luz, M. Liposomal Composition for Convection-Enhanced Delivery to the Central Nervous Centre. U.S. Patent US9295735B2, 29 March 2016. [Google Scholar]
- Madden, T.D.; Semple, S.C. Liposomal camptothecins And Uses Thereof. U.S. Patent US7060828B2, 13 June 2006. [Google Scholar]
- Zheng, X.; Liu, X.; Shao, Q.; Deng, Q.; Hu, Q.; Tan, J. Oral Sustained Release Preparation for Anti-Tumor Drug and Preparation Method of Oral Sustained Release Preparation. Chinese Patent Number CN109999009B, 23 June 2020. [Google Scholar]
- Li, Y.; Gu, W.; Xu, L. Topotecan Hydrochloride Lipidosome Nano Preparation and Preparing Method Thereof. Chinese Patent Number CN104771361B, 1 June 2018. [Google Scholar]
- Tao, L. Topotecan Hydrochloride Liposome Injection. Chinese Patent Number CN102716085B, 21 August 2013. [Google Scholar]
- Mei, X. Thermal Sensitive Liposome Preparation Containing Camptothecin Antineoplastic Agents. Chinese Patent Number CN101744767B, 13 February 2013. [Google Scholar]
- Xiaole, Q.; Huan, H.; Zhenghong, W.; Xiaoli, M.; Xiaohua, C.; Lin, G.; Ke, Z.; Miao, Z.; Fang, J. Novel tumor-targeting arboraceous polymer nano carrier of camptothecin drug. Chinese Patent Application Publication Number CN102429870A, 2 May 2012. [Google Scholar]
- Tingting, C.; Li, J.; Weigen, L.; Lili, W.; Peiquan, W.; Lifang, Y. Blank and topotecan hydrochloride containing polycystin liposome and preparation method thereof. Chinese Patent Application Publication Number CN101744764A, 23 June 2010. [Google Scholar]
- Ye, D.Z. Topotecan Liposome and Preparation Method Therefor. Chinese Patent Application Publication Number CN101015526A, 15 August 2007. [Google Scholar]
- Wu, Z.; Xing, J.; Qi, X.; Zhu, X.; Zhang, Z. Novel Hydrochloric Acid Topotecan Intratumor Injection Preparation Composition and Preparation Method Thereof. Chinese Patent Application Publication Number CN103479568A, 1 January 2014. [Google Scholar]
Nanocarrier | Targeting Ligand | Cell Line/In Vivo Model | Outcomes | Ref |
---|---|---|---|---|
Liposome | scFv F5, C225 Fab | HER2 positive, EGFR positive cell line/NCR nu/nu athymic female mice | Targeted formulations significantly boosted topotecan internalization with a concomitant rise in cytotoxicity and enhanced antitumor efficacy. | [40] |
Liposomes | Dequalinium (DQA) | MCF7 and MCF7/ADR cells/MCF7/ADR tumor-bearing mice | A 2-fold and 4-fold-higher cytotoxic potential was conferred by the targeted ones than free topotecan. According to the co-localization study, the liposomes carried the payload to mitochondria at 21.2-fold higher than free form and 12.9 factors higher than non-targeted liposomes. Compared to the other treatment groups, the DQA-targeted liposomes significantly inhibited tumor growth, according to an antitumor investigation in mice bearing the MCF7/ADR tumor. | [28] |
Liposome | Folic acid | A549 cells/xenografted A549 cancer cells in female nude mice | Targeting lung cancers with folate-targeted topotecan liposomes reduced tumor volume and prolonged blood circulation duration. | [54] |
Liposome | Polyethylene glycol (PEG) | _ | Around 100% loading efficiency was attained. Compared to the free drug, the PEG-coated liposomes were cleared from blood circulation at a comparatively slower pace. Additionally, compared to normal tissues, tumor tissues accumulated more nanoliposomal formulation than normal cells did with topotecan in its free form under the same circumstances. | [55] |
Malignancy | Clinical Trial Phase | Clinical Trial Number | Intervention/Treatment | Status | |
---|---|---|---|---|---|
Advanced Solid Tumors | I | NCT04047251 | Drug: FF-10850 Topotecan Liposome Injection | Recruiting | Advanced Solid Tumors |
Small Cell Lung Cancer, Ovarian Cancer | I | NCT00765973 | Drug: Topotecan Liposomes Injection (TLI) | Completed | Small Cell Lung Cancer, Ovarian Cancer |
Patent/Application Number (Applicant) | Summary |
---|---|
CN102697735A (Nanjing University) | This Chinese patent application claims a biocompatible and biodegradable polymer-based nanoformulation of TOPO [63]. |
CN102764234A (Shanghai Modern Pharmaceutical) | This Chinese patent application claims topotecan hydrochloride targeting liposome modified with a hydrophilic polymer polyethylene glycol (PEG) and a targeting ligand RGD peptide [64]. |
US2006222694A1 (SmithKline) | This US patent application claims a lyophilized topotecan liposomal composition comprising topotecan, liposomes and cryoprotectant [65]. |
US9295735B2 (Medgenesis Therapeutix) | This US patent claims a therapeutic composition comprising a non-PEGylated liposomal delivery vehicle for administering TOPO via convection-enhanced delivery to the central nervous system [66]. |
US7060828B2 (Inex Pharmaceuticals) | This US patent claims a liposomal topotecan unit dosage form comprising a mixture of lipid (sphingomyelin and cholesterol) and topotecan [67]. |
CN109999009B (Chongqing Medical College) | This Chinese patent claims an emulsification method based on oral sustained-release microsphere preparation of TOPO [68]. |
CN104771361B (Chinese Academy of Sciences) | This Chinese patent claims a phospholipid-based topotecan hydrochloride liposome nanoformulation of TOPO [69]. |
CN102716085B (Hainan Lingkang Pharmaceutical) | This Chinese patent claims a cholesterol succinate-based topotecan hydrochloride liposome injection [70]. |
CN101744767B (Academy of Military Medical Sciences) | This Chinese patent claims a common lipids-based thermosensitive liposome preparation containing TOPO [71]. |
CN102429870A (China Pharmaceutical University) | This Chinese patent application claims a polyamide-amine dendrimer-based targeting nanocarrier for carrying TOPO [72]. |
CN101744764A (Shanghai Institute of Pharmaceutical Industry) | This Chinese patent application claims an amphiphilic lipid-based topotecan hydrochloride polycystic liposome [73]. |
CN101015526A (Jiangsu Aosaikang Pharmaceutical) | This Chinese patent application claims a biologically acceptable phospholipid-based topotecan liposome [74]. |
CN103479568A (China Pharmaceutical University) | This Chinese patent application claims a lipid and situ-gel substrate-based topotecan hydrochloride intratumor injection liposome preparation [75]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, M.K.; Alghazwni, M.K.; Alharbi, A.S.; Alqurashi, G.G.; Kamal, M.; Alnufaie, S.R.; Alshammari, S.S.; Alshehri, B.A.; Tayeb, R.H.; Bougeis, R.J.M.; et al. Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy. Cancers 2023, 15, 65. https://doi.org/10.3390/cancers15010065
Alshammari MK, Alghazwni MK, Alharbi AS, Alqurashi GG, Kamal M, Alnufaie SR, Alshammari SS, Alshehri BA, Tayeb RH, Bougeis RJM, et al. Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy. Cancers. 2023; 15(1):65. https://doi.org/10.3390/cancers15010065
Chicago/Turabian StyleAlshammari, Mohammed Kanan, Mohammed Khalid Alghazwni, Abrar Saleh Alharbi, Ghayda Ghazi Alqurashi, Mehnaz Kamal, Salman Rahim Alnufaie, Salem Sayer Alshammari, Bandar Ali Alshehri, Rami Hatem Tayeb, Rashad Jameel M. Bougeis, and et al. 2023. "Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy" Cancers 15, no. 1: 65. https://doi.org/10.3390/cancers15010065
APA StyleAlshammari, M. K., Alghazwni, M. K., Alharbi, A. S., Alqurashi, G. G., Kamal, M., Alnufaie, S. R., Alshammari, S. S., Alshehri, B. A., Tayeb, R. H., Bougeis, R. J. M., Aljehani, A. A., Alotaibi, N. M., Abida, A., & Imran, M. (2023). Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy. Cancers, 15(1), 65. https://doi.org/10.3390/cancers15010065