Telomere Length and Telomerase Activity in Subcutaneous and Visceral Adipose Tissues from Obese and Non-Obese Patients with and without Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Parameters Related to Telomere Function Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossi Welendorf, C.; Ferreire Nicoletti, C.; Yumi Noronha, N.; Campos Ferreira, F.; Santana Wolf, L.; De Sousa Pinhel, M.A.; Caressato Pinhanelli, V.; Cortes de Oliveira, C.; Parenti de Oliveira, B.A.; Dos Santos Martins, L.; et al. The impact of gastric bypass on telomere length and shelterin complex gene expression: 6 months prospective study. Obes. Surg. 2021, 31, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Lakowa, N.; Trieu, N.; Flehmig, G.; Lohmann, T.; Schön, M.R.; Dietrich, A.; Zeplin, P.H.; Langer, S.; Stumvoll, M.; Blüher, M.; et al. Telomere length differences between subcutaneous and visceral adipose tissue in humans. Biochem. Biophys. Res. Comm. 2015, 457, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, X.; Ding, X.; Wang, F.; Geng, X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behaviour in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Useros, J.; García-Foncillas, J. Obesity and colorectal cancer: Molecular features of adipose tissue. J. Transl. Med. 2016, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Liesenfeld, D.B.; Grapov, D.; Fahrmann, J.F.; Salou, M.; Scherer, D.; Toth, R.; Habermann, N.; Böhm, J.; Schrotz-King, P.; Gigic, B.; et al. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: The ColoCare study. Am. J. Clin. Nutr. 2015, 102, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Fernández-Marcelo, T.; Sánchez-Pernaute, A.; Pascua, I.; De Juan, C.; Head, J.; Torres-García, A.J.; Iniesta, P. Clinical relevance of telomere status and telomerase activity in Colorectal Cancer. PLoS ONE 2016, 11, e0149626. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, S.; González-Gamo, D.; Fernández-Marcelo, T.; Tesolato, S.; De la Serna, S.; Domínguez-Serrano, I.; Cano-Valderrama, O.; Barabash, A.; De Juan, C.; Torres-García, A.; et al. Obesity and telomere status in the prognosis of patients with colorectal cancer submitted to curative intention surgical treatment. Mol. Clin. Oncol. 2021, 15, 184. [Google Scholar] [CrossRef]
- Ozoya, O.O.; Siegel, E.M.; Srikumar, T.; Bloomer, A.M.; DeRenzis, A.; Shibata, D. Quantitative Assessment of Visceral Obesity and Postoperative Colon Cancer Outcomes. J. Gastrointest. Surg. 2017, 21, 534–542. [Google Scholar] [CrossRef]
- Fleming, C.A.; O’Connell, E.P.; Kayanagh, R.G.; O’Leary, D.P.; Twomey, M.; Corrigan, M.A.; Wang, J.H.; Maher, M.M.; O’Connor, O.J.; Redmond, H.P. Body composition, inflammation, and 5-year outcomes in colon cancer. JAMA Netw. Open 2021, 4, e2115274. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Caan, B.J.; Prado, C.M.; Cespedes Feliciano, E.M.; Xiao, J.; Kroenke, C.H.; Meyerhardt, J.A. The association of abdominal adiposity with mortality in patients with stage I–III colorectal cancer. J. Nat. Cancer Inst. 2020, 112, 377–383. [Google Scholar] [CrossRef]
- Silva, A.; Faria, G.; Araújo, A.; Monteiro, M.P. Impact of adiposity on staging and prognosis of colorectal cancer. Crit. Rev. Oncol. Hematol. 2020, 145, 102857. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, R.B., Jr.; Kyle, K.; Watson, F.R.; Spratt, J. Cancer of the colon: The influence of the no-touch isolation technic on survival rates. Ann. Surg. 1967, 166, 420–427. [Google Scholar] [CrossRef]
- Blin, N.; Stafford, D.W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976, 3, 2303–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurung, R.L.; Yiamunaa, M.; Moh, A.M.C.; Dorajoo, R.; Liu, S.; Liu, J.J.; Shabbir, A.; So, J.; Tan, C.H.; Cheng, A.; et al. Correlation of telomere length in adipose tissue and leukocytes and its association with postsurgical weight loss. Obesity 2020, 28, 2424–2430. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Renner, W.; Almer, G.; Gruber, H.J.; Zelzer, S.; Moeller, R.; Horeisi, R.; Herrmann, M. Subcutaneous adipose tissue distribution and telomere length. Clin. Chem. Lab. Med. 2019, 57, 1358–1363. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.M.; Ortega, F.; Sabater, M.; Ricart, W.; Fernández-Real, J.M. Telomere length of subcutaneous adipose tissue cells is shorter in obese and formerly obese subjects. Int. J. Obes. 2010, 34, 1345–1348. [Google Scholar] [CrossRef] [Green Version]
- Monickaraj, F.; Gokulakrishnan, K.; Prabu, P.; Sathishkumar, C.; Anjana, R.M.; Rajkumar, J.S.; Mohan, V.; Balasubramanyam, M. Convergence of adipocyte hypertrophy, telomere shortening and hypoadiponectinemia in obese subjects and in patients with type 2 diabetes. Clin. Biochem. 2012, 45, 1432–1438. [Google Scholar] [CrossRef]
- Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 2017, 13, 20170463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vitis, M.; Berardinelli, F.; Sgura, A. Telomere length maintenance in cáncer: At the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int. J. Mol. Sci. 2018, 19, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardini, M.A.; Segatto, M.; Santos da Silva, M.; Nunes, V.S.; Cano, M.I.N. Telomeres and telomerase biology. Prog. Mol. Biol. Transl. Sci. 2014, 125, 1–40. [Google Scholar] [CrossRef]
- Gutkin, A.; Uziel, O.; Beery, E.; Nordenberg, J.; Pinchasi, M.; Goldvaser, H.; Henick, S.; Goldberg, M.; Lahav, M. Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget 2016, 7, 59173–59188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE 2014, 9, e92921. [Google Scholar] [CrossRef]
- Cooks, T.; Pateras, I.S.; Jenkins, L.M.; Patel, K.M.; Robles, A.I.; Morris, J.; Forshew, T.; Appella, E.; Gorgoulis, V.G.; Harris, C.C. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Comm. 2018, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Samadian, M. A review on the role of miR-1246 in the pathoetiology of different cancers. Front. Mol. Biosci. 2022, 8, 771835. [Google Scholar] [CrossRef]
- Oliva-Olivera, W.; Coín-Aragüez, L.; Lhamyani, S.; Clemente-Postigo, M.; Torres, J.A.; Bernal-López, M.R.; El Bekay, R.; Tinahones, F.J. Adipo-genic impairment of adipose tissue-derived mesenchymal stem cells in subjects with metabolic syndrome: Possible protective role of FGF2. J. Clin. Endocrinol. Metab. 2017, 102, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, S.; Bianca, P.; Sardina, D.S.; Turdo, A.; Gaggianesi, M.; Veschi, V.; Nicotra, A.; Mangiapane, L.S.; Lo Iacono, M.; Pillitteri, I.; et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nat. Commun. 2021, 12, 5006. [Google Scholar] [CrossRef]
- Miller, D.; Grant, A.; Durgam, S.; El-Hayek, K.; Flanigan, D.C.; Malanga, G.; Vasileff, W.K.; Baria, M.R. Adipose-derived stem cells, obesity, and inflammation: A systematic review and implications for osteoarthritis treatment. Am. J. Phys. Med. Rehabil. 2022, 101, 879–887. [Google Scholar] [CrossRef]
- Sistigu, A.; Di Modugno, F.; Manic, G.; Nisticò, P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev. 2017, 36, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci. 2021, 22, 5421. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Yang, W.L.; Ochani, M.; Wang, P. Mitigation of sepsisinduced inflammatory responses and organ injury through targeting Wnt/βcatenin signaling. Sci. Rep. 2017, 7, 9235. [Google Scholar] [CrossRef] [PubMed]
- Houschyar, K.S.; Chelliah, M.P.; Rein, S.; Maan, Z.N.; Weissenberg, K.; Duscher, D.; Branski, L.K.; Siemers, F. Role of Wnt signaling during inflammation and sepsis: A review of the literature. Int. J. Artif. Organs 2018, 41, 247–253. [Google Scholar] [CrossRef] [PubMed]
BMI 3 Values | Nº of Cases | VAT 1 T/S Ratio (Mean ± SE 4) | P * | Nº of Cases | SAT 2 T/S Ratio (Mean ± SE 4) | P * |
---|---|---|---|---|---|---|
Normal weight | ||||||
(BMI 3 ≤ 24.9 kg/m2) | 15 | 1.05 ± 0.20 | 15 | 1.21 ± 0.16 | ||
Overweight or Obese | ||||||
(BMI 3 ≥ 25 kg/m2) | 132 | 0.91 ± 0.06 | 0.574 | 132 | 0.89 ± 0.05 | 0.046 |
BMI 3 Values | Nº of Cases | VAT 1 Telomerase Activity | P * | Nº of Cases | SAT 2 Telomerase Activity | P * | ||
---|---|---|---|---|---|---|---|---|
Negative | Positive | Negative | Positive | |||||
Normal weight | ||||||||
(BMI 3 ≤ 24.9 kg/m2) | 15 | 12 | 3 | 15 | 15 | 0 | ||
Overweight or Obese | ||||||||
(BMI 3 ≥ 25 kg/m2) | 132 | 105 | 27 | 0.010 | 132 | 117 | 15 | 0.078 |
Clinical-Pathological Variables of Tumors | Nº of Cases | VAT 1 T/S Ratio (Mean ± SE 3) | P | Nº of Cases | SAT 2 T/S Ratio (Mean ± SE 3) | P |
---|---|---|---|---|---|---|
Primary Tumor (T) | 66 | 66 | ||||
T1 | 6 | 1.14 ± 0.38 | 0.887 ≠ | 6 | 1.43 ± 0.27 | 0.037 ≠ |
T2 | 15 | 1.00 ± 0.14 | 15 | 0.96 ± 0.15 | ||
T3 | 33 | 1.11 ± 0.12 | 33 | 1.15 ± 0.10 | ||
T4 | 12 | 0.98 ± 0.21 | 12 | 0.76 ± 0.12 | ||
Lymph Node Invasion (N) | 66 | 0540 ≠ | 66 | 0.433 ≠ | ||
N0 | 42 | 1.13 ± 0.10 | 42 | 1.10 ± 0.10 | ||
N1 | 16 | 1.06 ± 0.19 | 16 | 0.90 ± 0.08 | ||
N2 | 8 | 0.86 ± 0.22 | 8 | 1.23 ± 0.22 | ||
Distant Metastasis (M) | 66 | 0.080 * | 66 | 0.343 * | ||
M0 | 58 | 1.14 ± 0.09 | 58 | 1.10 ± 0.08 | ||
M1 | 8 | 0.65 ± 0.12 | 8 | 0.86 ± 0.12 |
Group of Subjects and BMI 3 Values | Nº of Cases | VAT 1 Telomerase Activity | P * | Nº of Cases | SAT 2 Telomerase Activity | P * | ||
---|---|---|---|---|---|---|---|---|
Negative | Positive | Negative | Positive | |||||
Control group | 81 | 64 | 17 | 81 | 93 | 8 | ||
Overweight | ||||||||
(BMI 3 25–29.9 kg/m2) | 18 | 7 | 11 | 18 | 12 | 6 | ||
Obese | ||||||||
(BMI 3 ≥ 30 kg/m2) | 63 | 57 | 6 | <0.001 | 63 | 61 | 2 | 0.001 |
CRC 4 group | 66 | 54 | 12 | 66 | 58 | 8 | ||
Normal weight | 0.962 | 0.131 | ||||||
(BMI 3 < 25 kg/m2) | 15 | 12 | 3 | 15 | 15 | 0 | ||
Overweight | ||||||||
(BMI 3 25–29.9 kg/m2) | 27 | 23 | 4 | 27 | 24 | 3 | ||
Obese | ||||||||
(BMI 3 ≥ 30 kg/m2) | 24 | 19 | 5 | 24 | 19 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martínez, S.; González-Gamo, D.; Tesolato, S.E.; Barabash, A.; de la Serna, S.C.; Domínguez-Serrano, I.; Dziakova, J.; Rivera, D.; Torres, A.J.; Iniesta, P. Telomere Length and Telomerase Activity in Subcutaneous and Visceral Adipose Tissues from Obese and Non-Obese Patients with and without Colorectal Cancer. Cancers 2023, 15, 273. https://doi.org/10.3390/cancers15010273
García-Martínez S, González-Gamo D, Tesolato SE, Barabash A, de la Serna SC, Domínguez-Serrano I, Dziakova J, Rivera D, Torres AJ, Iniesta P. Telomere Length and Telomerase Activity in Subcutaneous and Visceral Adipose Tissues from Obese and Non-Obese Patients with and without Colorectal Cancer. Cancers. 2023; 15(1):273. https://doi.org/10.3390/cancers15010273
Chicago/Turabian StyleGarcía-Martínez, Sergio, Daniel González-Gamo, Sofía Elena Tesolato, Ana Barabash, Sofía Cristina de la Serna, Inmaculada Domínguez-Serrano, Jana Dziakova, Daniel Rivera, Antonio José Torres, and Pilar Iniesta. 2023. "Telomere Length and Telomerase Activity in Subcutaneous and Visceral Adipose Tissues from Obese and Non-Obese Patients with and without Colorectal Cancer" Cancers 15, no. 1: 273. https://doi.org/10.3390/cancers15010273
APA StyleGarcía-Martínez, S., González-Gamo, D., Tesolato, S. E., Barabash, A., de la Serna, S. C., Domínguez-Serrano, I., Dziakova, J., Rivera, D., Torres, A. J., & Iniesta, P. (2023). Telomere Length and Telomerase Activity in Subcutaneous and Visceral Adipose Tissues from Obese and Non-Obese Patients with and without Colorectal Cancer. Cancers, 15(1), 273. https://doi.org/10.3390/cancers15010273