Time for Dynamic Assessment of Fitness in Acute Myeloid Leukemia
Funding
Conflicts of Interest
References
- Palmieri, R.; Paterno, G.; De Bellis, E.; Mercante, L.; Buzzatti, E.; Esposito, F.; Del Principe, M.I.; Maurillo, L.; Buccisano, F.; Venditti, A. Therapeutic Choice in Older Patients with Acute Myeloid Leukemia: A Matter of Fitness. Cancers 2020, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Levine, R.L.; Löwenberg, B.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood J. Am. Soc. Hematol. 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Barosi, G.; Venditti, A.; Angelucci, E.; Gobbi, M.; Pane, F.; Tosi, P.; Zinzani, P.; Tura, S. Consensus-based definition of unfitness to intensive and non-intensive chemotherapy in acute myeloid leukemia: A project of SIE, SIES and GITMO group on a new tool for therapy decision making. Leukemia 2013, 27, 997–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, R.B.; Othus, M.; Borthakur, G.; Ravandi, F.; Cortes, J.; Pierce, S.A.; Appelbaum, F.R.; Kantarjian, H.A.; Estey, E.H. Prediction of Early Death After Induction Therapy for Newly Diagnosed Acute Myeloid Leukemia With Pretreatment Risk Scores: A Novel Paradigm for Treatment Assignment. J. Clin. Oncol. 2011, 29, 4417–4424. [Google Scholar] [CrossRef] [PubMed]
- Sorror, M.L.; Storer, B.E.; Fathi, A.T.; Brunner, A.M.; Gerds, A.T.; Sekeres, M.A.; Mukherjee, S.; Medeiros, B.C.; Wang, E.S.; Vachhani, P.; et al. Multisite 11-year experience of less-intensive vs intensive therapies in acute myeloid leukemia. Blood 2021, 138, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Klepin, H.D.; Geiger, A.M.; Tooze, J.A.; Kritchevsky, S.B.; Williamson, J.D.; Pardee, T.S.; Powell, B.L.; Ellis, L.R. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood 2013, 121, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Pratz, K.W.; Dinardo, M.C.D.; Arellano, M.L.; Letai, A.G.; Thirman, M.; Pullarkat, V.A.; Roboz, G.J.; Becker, P.S.; Hong, W.-J.; Jiang, Q.; et al. Outcomes after Stem Cell Transplant in Older Patients with Acute Myeloid Leukemia Treated with Venetoclax-Based Therapies. Blood 2019, 134, 264. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Löwenberg, B. Towards precision medicine for AML. Nat. Rev. Clin. Oncol. 2021, 18, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Vosberg, S.; Greif, P.A. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosom. Cancer 2019, 58, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Xie, J.; Yang, X.; Shen, H.; Cen, J.; Yao, L.; Hu, X.; Wu, Q.; Zhang, J.; Qiu, H.; et al. Venetoclax Plus Decitabine for Young Adults with Newly Diagnosed ELN Adverse-Risk Acute Myeloid Leukemia: Interim Analysis of a Prospective, Multicenter, Single-Arm, Phase 2 Trial. Blood 2021, 138, 35. [Google Scholar] [CrossRef]
- Sekeres, M.A.; Elson, P.; Kalaycio, M.E.; Advani, A.S.; Copelan, E.A.; Faderl, S.; Kantarjian, H.M.; Estey, E. Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood 2009, 113, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Bérard, E.; Huguet, F.; Huynh, A.; Tavitian, S.; Vergez, F.; Dobbelstein, S.; Dastugue, N.; Mas, V.M.-D.; Delabesse, E.; et al. Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia. Blood 2013, 121, 2618–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röllig, C.; Kramer, M.; Schliemann, C.; Mikesch, J.H.; Steffen, B.; Krämer, A.; Bornhäuser, M.; Thiede, C.; Wass, M.; Heits, F.; et al. Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 2020, 136, 823–830. [Google Scholar] [CrossRef] [PubMed]
Fitness Score | Aim | Clinical Prognosticators | Biological Prognosticators | Reference |
---|---|---|---|---|
Treatment-related mortality (TRM) | To predict 28-days treatment-related mortality after induction chemotherapy | PS Age Albumin Creatinine | Secondary vs De novo Leukemia WBC count Platelet count %Blast peripheral | Walter et al.; J. Clin. Oncol. (2011) [4] |
Acute myeloid leukemia composite model (AML-CM) | To predict the impact of a given treatment intensity based on clinical and biological parameters | Age Arrhythmia, Cardiac dysfunction Heart valve disease Inflammatory bowel disease, Diabetes, Peptic ulcer Cerebrovascular disease Psychiatric disturbance Obesity Infection Rheumatologic comorbidity Renal dysfunction Pulmonary comorbidity Prior malignancy Hepatic function Hypoalbuminemia < 3.5 g/dL LDH level | Thrombocytopenia ELN 2017 risk (favorable, intermediate, adverse) | Sorror et al.; Blood (2021) [5] |
Geriatric assessment | To offer a comprehensive geriatric/quality of life assessment aside from established disease-specific variables | Cognition Psychological function (CES-D) Physical function (ADL, IADL, PAT-D, Mobility Sub-scale, PAT-D 6-mo recall, SPPB). Grip strength HCT-CI | None | Klepin et al.; Blood (2013) [6] |
SIE/SIES/GITMO | To select treatment intensity based on a multi-organ functional evaluation, regardless of disease-related factors | Age PS Cardiac function Pulmonary function Renal function Infection, Psychiatric comorbidities, Other not classified | None | Ferrara et al.; Leukemia (2013) [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, R.; Maurillo, L.; Del Principe, M.I.; Paterno, G.; Walter, R.B.; Venditti, A.; Buccisano, F. Time for Dynamic Assessment of Fitness in Acute Myeloid Leukemia. Cancers 2023, 15, 136. https://doi.org/10.3390/cancers15010136
Palmieri R, Maurillo L, Del Principe MI, Paterno G, Walter RB, Venditti A, Buccisano F. Time for Dynamic Assessment of Fitness in Acute Myeloid Leukemia. Cancers. 2023; 15(1):136. https://doi.org/10.3390/cancers15010136
Chicago/Turabian StylePalmieri, Raffaele, Luca Maurillo, Maria Ilaria Del Principe, Giovangiacinto Paterno, Roland Bruno Walter, Adriano Venditti, and Francesco Buccisano. 2023. "Time for Dynamic Assessment of Fitness in Acute Myeloid Leukemia" Cancers 15, no. 1: 136. https://doi.org/10.3390/cancers15010136
APA StylePalmieri, R., Maurillo, L., Del Principe, M. I., Paterno, G., Walter, R. B., Venditti, A., & Buccisano, F. (2023). Time for Dynamic Assessment of Fitness in Acute Myeloid Leukemia. Cancers, 15(1), 136. https://doi.org/10.3390/cancers15010136